MA 101 (Mathematics I)
Solutions for Tutorial Problem Set

1. Let (x,) be a convergent sequence of positive real numbers such that lim z,, < 1. Show that

n—oo
lim 27 = 0.
n—00
Solution: If ¢ = lim x,, then 3(1—¢) > 0 and so there exists ng € N such that |z, —¢| < $(1—¢)

n—00
for all n > ng. Hence 0 < z,, < $(14¢) for all n > ng = 0 < 27 < ()" for all n > ny. Since

11+0) <1, hm (1“) = 0. Therefore by sandwich theorem, lim z? = 0.
n—oo

[e o]
Alternative solution: Since lim (xz)% = lim z, < 1, by root test, the series ) z' converges

n—00 n—00 ne1

and hence lim z) = 0.
n—oo
2. Let (z,) be a convergent sequence in R with limit £ € R and let a € R.
(a) If x, > «a for all n € N, then show that ¢ > .
(b) If £ > «, then show that there exists ny € N such that z,, > « for all n > n,.

(Note that ¢ can be equal to a in (a).)

Solution: (a) If possible, let £ < a. Then oo — ¢ > 0 and since z,, — ¢, there exists ng € N such
that |z, — ¢| < a— ¢ for all n > ngy. This implies that z, < {4+ a —{ = « for all n > ng, which
is a contradiction. Hence ¢ > «.

(b) Since ¢ — «a > 0 and since x,, — ¢, there exists ng € N such that |z, — ¢] < £ — « for all
n > ng. This implies that Ty >0 — (0 —a)= a for all n > ny.

(Note that although * > 0 for all n € N, lim + =0 and thus ¢ can be equal to a in (a).)

n—o0

3. For o € R, examine whether lim =5 ([a] + [20] 4 - - - + [na]) exists (in R). Also, find the value

n—00
if it exists.

(For each x € R, [z] denotes the greatest integer not exceeding z.)

Solution: For each x € R, [z] <z < [z]+1 = 2 —1 < [z] < 2. Hence, for all n € N,
o=+ Ra—1)++(nha—1)} <z, < Hla+2a+--+na) = $(1+2) - L <z, <
2(1+2) foralln € N. Since §(1+1) -2 — 2 and $(1+ 1) — ¢, by sandwich theorem, ()

is convergent and lim z,, = 3.

n—oo
4. Let 21 = 6 and 2, = 5 — 2 for all n € N. Examine whether the sequence (x,) is convergent.
Also, find lim z, if (z,) is Convergent
n—oo

Solution: We have x; > 3 and if we assume that x > 3 for some k € N, then z,,; >5—2 = 3.
Hence by the principle of mathematical induction, x, > 3 for all n € N. Therefore (z,) is
bounded below. Again, r9 = 4 < x; and if we assume that x;,; < ) for some k£ € N, then
Thio — Tyl = 6(% Ik+1) < 0= xpio < x41. Hence by the principle of mathematical induc-

tion, z,+1 < z, for all n € N. Therefore (z,,) is decreasing. Consequently (x,) is convergent.
LetE— lim x,,. Then hm Tpp1 =5 — =2 :625—% (since z,, > 3 for all n € N, £ #£ 0)

n—oo nh_>moo In

= (0 —2)(( — 3):0:>€:20r€:3. But x,, > 3 for all n € N, so £ > 3. Therefore ¢ = 3.

Alterbative solution: For all n € N, we have |z,40 — x,11| = munﬂ —x,|. Also, as shown
n n

in the above solution, x, > 3 for all n € N. Hence |z,12 — x,11| < §|:1:n+1 — x| for all n € N.
It follows that (x,) is a Cauchy sequence in R and hence (x,) is convergent. To show that
lim z,, = 3, we proceed as in the above solution.
n—oo

5. Let (x,) be a sequence of nonzero real numbers. If (x,) does not have any convergent subse-

quence, then show that lim xi =0.
n—oo "



Solution: If lim xl = 0, then there exists € > 0 such that for each n € N, there exists a positive

n—oo °n
integer m > n satlsfylng | = —| >¢, de [, < 1. Thus we get positive integers ny < ny < -
such that |x,, | < I for each k € N. So (%n,) is a bounded subsequence of (z,) and hence by
Bolzano- Welerstrass theorem, (z,,) has a convergent subsequence, which is also a convergent

subsequence of (z,,), which contradicts the hypothesis. Therefore lim -+ = 0.
n—oo -

Alternative solution: Let € > 0. We claim that there exist at most finitely many n € N for which
T, € [—1,1]. Because otherwise, we get a subsequence (z,, ) of (z,,) such that z,, € [—e¢,¢] for

ele

all £ € N and so (z,,) is bounded. By Bolzano-Weierstrass theorem, (x,,) has a convergent
subsequence, which is also a subsequence of (z,,). This contradicts the given hypothesis. Hence
our claim is proved and so there exists ng € N such that |z,| > £ for all n > ny. Thus |--| <¢

for all n > ng and therefore lim + = 0.
n—oo "

. Examine whether the series Z
n=1"m

Solution: Let x, = nl+% and let y, = = for all n € N. Then lim z" =1 +# 0. Since Z Yn 1S

n—oo Jn

+ T is convergent.

not convergent, by the limit comparison test, Z T, is also not convergent.
n=1

. Let x,, > 0 for all n € N. Show that the series Z x,, converges iff the series Z T2 converges.

n=

for all n € N. Hence by comparison test, Z Tra- converges

if ) x, converges.
n=1

Conversely, let Z

<_

Tt
for all n > ny. ThlS implies that x, < 1 for all n > ng, i.e. 1+ :Un < 2 for all n > nyg and SO

Ty < ff;n for all n > ny. By comparison test, we conclude that 21 T, converges.
n=

o0 Tn
Alternative solution: If Y x, converges, then lim == = lim 1+1 = 1 (since z,, — 0) and
o n—oo In n—oo +T¥n
oo
hence by limit comparison test, »_ 7=
n=1
e} _Tn
Conversely, if g Hin — im =1#0
y? Z 1+ N—00 Tn n—oo 1+ Tn, # (

) and hence by limit comparison test, Z T CONVErges.

1+zn
+xn n—=1

. Find all x € R for which the series Z % converges.
n=1

Solution: If x = 1, then the given series becomes 0 + 0 + - - -, which is clearly convergent. Let

z(# 1) € R and let a, = (1)2n—x21) for all n € N. Then llm |a"“| = 2|z — 1|. Hence by ratio

o

test, > a, converges (absolutely) if |z — 1| < 1, i.e. if 2 € (—1,3) and does not converge
f iz —1 > 1, de if 2 € (—o0,—1) U (3,00). If iz — 1] = 1, i.e. if z € {—1,3}, then
> an| = Z - converges and hence Y a, converges. Therefore the set of z € R for which

n=1 n=1

> a, converges is [—1, 3].

n=1

Alternative solution: Instead of ratio test, one can find lim |ay|= |z — 1] and use root test.

n—oo



10.

11.

The remaining part is same.

If a(# 0) € R, then show that the series ) (—1)"sin(%) is conditionally convergent.
n=1

Solution: We choose ny € N such that ‘%l < Z. Then for all n > nyg, sin(2) has the same

sign as that of a. Since the sine function is increasing in (0, 7 ), it follows that the sequence

(sm(‘i'))oo is decreasing. Also, lim sm(f‘) = 0. Hence by Leibniz’s test, ) (—1)"sin(%)
n=ng

n—00 n=no

is convergent. Consequently Z (—=1)"sin(%) is convergent.
n—l

o
Again, Z |(—=1)"sin(2)| = Z |sin(%)| is not convergent by limit comparison test, since (using

sinx sm(a/n

— im lsinte/n)| _
e = T =

the given series is conditionally convergent

|| lim = |a| # 0 and Z is not convergent. Therefore
n—oo

Let f:R — R be defined by f(z) = { [i] ﬁi g %\ 0

Determine all the points of R where f is continuous.

Solution: Let x € R\ Q. Then there exists a sequence (r,) in Q such that r, — z. So

f(ry) =r, = x # [x] = f(x). Hence f is not continuous at .

Again, let y € Q. Then there exists a sequence (¢,,) in R\ Q such that ¢, < y for all n € N and
[t <y—1 ifyeZ,

t, — y. For each n € N, f(t,) = { <y <y itydZ

In either case f(t,) /4 f(y) = y. Hence f is not continuous at y. Therefore f is not continuous

at any point of R.

Let f:[0,1] — R be continuous such that f(0) = f(1). Show that

(a) there exist xq,x9 € [0,1] such that f(x1) = f(z2) and 1 — x5 =
(b) there exist x1,x9 € [0,1] such that f(z1) = f(x2) and 1 — 29 =
(

QO

In fact, if n € N, then there exist 21, 5 € [0,1] such that f(z1) = f(x2) and 21 —22 = L. How-
ever, it is not necessary that there exist 1, 25 € [0, 1] such that f(z;) = f(22) and z; —2 = 2.)
Solution: (a) Let g(z) = f(z + 1) — f(z) for all z € [0, 3]. Since f is continuous, g : [0,3] = R
is continuous. Also g(0) = f(3) — f(0) and g(2) = f(1) — f(3) = —g(0), since f(0) = f(1). If
g(0) = 0, then we can take x; = % and z = 0. Otherwise, g(%) and ¢(0) are of opposite signs
and hence by the intermediate value property of continuous functions, there exists ¢ € (0, %)
such that g(c) =0, i.e. f(c+ 1) = f(c). We take z; = ¢+ 5 and x5 = c.

(b) Let g(z) = f(z + 3) — f(x) for all € [0,2]. Since f is continuous, g : [0,2] — R is
continuous. Also g(0) + g(35) + g(2) = f(1) — f(0) = 0. If at least one of ¢(0), g(3) and g(3)
is 0, then the result follows immediately. Otherwise, at least two of g(0), g(5) and g(3) are
of opposite signs and hence by the intermediate value property of continuous functions, there

exists ¢ € (0, %) such that g(c) =0, i.e. f(c+5) = f(c). We take z; = ¢+ 3 and x5 = c.

5]
3)

(Assuming n > 1, we define g(z) = f(z+ 2) — f(z) for all z € [0,1 — %]. Since f is continuous,

g:10,1—1] = Ris continuous. Also g(0)+g(£)+g(2)+---+g(1—21) = f(1)— f(0) = 0. If at
least one of g(0), g(£), ..., g(1— ) is 0, then the result follows immediately. Otherwise, at least
two of ¢(0), g(%), ey g(1— %) are of opposite signs and hence by the intermediate value property
of continuous functions, there exists ¢ € (0,1 — +) such that g(c) =0, i.e. f(c+2) = f(c). We
take ;1 = c—i—% and z9 = c.

Again, if f(z) = sin*(2rz) — z for all € [0,1], then f : [0,1] — R is continuous and

f(0) =0= f(1). However, f(z) — f(z+2) = 2 for all z € [0, 2] and so no points zy,z, € [0, 1]



12.

13.

14.

15.

exist satisfying f(z1) = f(x2) and 7 — 29 =

)

Let p be an odd degree polynomial with real coefficients in one real variable. If g : R — R is a
bounded continuous function, then show that there exists zo € R such that p(xo) = g(zo).

(1)

(In particular, this shows that

(a) every odd degree polynomial with real coefficients in one real variable has at least one real
Zero.

(b) the equation x° — 425 + 2° + 1+1x2 = sin3x 4 17 has at least one real root.

(c) the range of every odd degree polynomial with real coefficients in one real variable is R.)

Solution: Let f(x) = p(z) — g(x) for all € R. Since both p and g are continuous, f : R — R

is continuous.

Since g is bounded, there exists M > 0 such that |g(z)] < M for all z € R.

Let p(z) = apz"™ + a12™ ' + -+ + a,_17 + a, for all x € R, where a; € R for i = 0,1,...,n,

n € Nis odd and ay # 0. So p(z) = a0$”(1+%-%+---+%-1,},1 —1—2—;‘#) for all

z(# 0) € R. We assume that ag > 0. (The case ay < 0 is almost similar.) Then lim p(z) = oo
Tr—00

and lim p(z) = —oo (since n is odd). So there exist 1 > 0 and z2 < 0 such that p(z1) > M
T——00

and p(z3) < —M. Hence f(z1) > 0 and f(z2) < 0. By the intermediate value property of
continuous functions, there exists xg € (2, x1) such that f(z9) =0, i.e. p(zo) = g(x).

(For (a), we take g(z) = 0 for all z € R. For (b), we take p(z) = x° — 42° + 2° — 17 and
g(x) = sin3z — ﬁ for all z € R and we note that |g(z)| < 2 for all z € R. For (c), given
y € R, we take g(x) =y for all z € R.)

Does there exist a continuous function from (0, 1] onto R? Justify.

Solution: If f(z) = Lsin i for all z € (0,1], then f: (0,1] — R is continuous and f(m) =
2nm + 7, f(m) = —2nm — 37” for all n € N. For each y € R, we can find n € N such
that —2nm — 37” <y < 2n7m + 5 and hence by the intermediate value property of continuous
functions, there exists € R such that f(xz) =y. Thus f: (0,1] — R is onto. Therefore there

exists such a function.

Let f : R — R be differentiable on (—4, ) for some § > 0 and let f”(0) exist (in R). If f(1) =0

for all n € N, then find f/(0) and f”(0).

Solution: Since f is continuous at 0 and since £ — 0, we have f(0) = lim f(1) = 0. Also,
n—o0

1y_
since f(0) exists (in R) and since £ — 0, we have f/(0) = lim w = 0. Again, we
n—oo
can choose ng € N such that nio < 0. By Rolle’s theorem, for each n > ng, there exists
Ty € (n+_1, 1) such that f'(z,) = 0. By sandwich theorem, z,, — 0. Since f”(0) exists, we have
o) — Tim 4 @a)=f0)
f(0) = lim == 0.

For n € N, show that the equation 1 — z + % — %3 + -+ 4 (=1)"£ = 0 has exactly one real

root if n is odd and has no real root if n is even.

Solution: Let p(x) =1—x+ % - % 4o (=1)"L for all z € R. Then p/(z) = —1+z — 2%+
<+ (=1)"z" ! for all x € R.

We first assume that n is odd. By Ex.12 of Tutorial Problem Set, the equation p(z) = 0 has

at least one real root. Also, p/(—1) = —n # 0 and p'(z) = —(11?:) # 0 forall z € R\ {—1}.

As a consequence of Rolle’s theorem, the equation p(x) = 0 can have at most one real root.
Therefore the equation p(x) = 0 has exactly one real root.

We now assume that n is even. Then p'(—1) = —n < 0 and p'(z) = —(11;””:) forallz € R\{—1}.

So p'(z) > 0 for all z > 1 and p'(x) < 0 for all x < 1. Hence p is strictly increasing in [1, 0o) and
p is strictly decreasing in (—oo, 1]. So p(x) > p(1) for all x > 1 and also p(z) > p(1) for all z < 1,

i.e. p(x) >p(1) forall z(#1) € R. Since p(1) = (3 —35)+(G—32)+ -+ (5 —=5)++ >0,

n—2




16.

17.

18.

we get p(x) > 0 for all x € R. Therefore the equation p(z) = 0 has no real root.

Let f: R — R be differentiable such that f(0) = f(1) = 0 and f’(0) > 0, f’(1) > 0. Show that
there exist c1, ¢y € (0,1) with ¢; # ¢ such that f'(c;) = f'(cz) = 0.

Solution: Since f'(0) > 0, there exists 0; € (0, 3) such that f(z) > f(0) = 0 for all z € (0,4;).
Also, since f'(1) > 0, there exists d, € (0, 3) such that f(z) < f(1) =0 for all z € (1 — &, 1).
By the intermediate value property of continuous functions, there exists ¢ € (%, 1- %2) such
that f(c) = 0. Now, by Rolle’s theorem, there exists ¢; € (0,¢) and ¢ € (¢,1) such that

f'(c1) = f'(e2) = 0.

Alternative solution: If possible, let f'(z) > 0 for all z € (0,1). Then f is an increasing function
on [0,1]. So 0 = f(0) < f(x) < f(1) =0 for all x € [0,1], i.e. f(x) =0 for all x € [0,1]. This
gives f/(0) = 0, which is a contradiction. Therefore there exists ¢ € (0, 1) such that f'(c) < 0.
Then by the intermediate value property of derivatives, there exist ¢; € (0,¢) and ¢3 € (¢, 1)
such that f'(¢1) = f'(c2) = 0.

Let f: R — R be such that f”(c) exists (in R), where ¢ € R. Show that
f(C'i‘h)—z‘Z(;)"rf(C—h) — f,/(C).

lim
h—0
Give an example of an f: R — R and a point ¢ € R for which f”(c) does not exist (in R) but
the above limit exists (in R).

Solution: Since f"(c) exists (in R), there exists 6 > 0 such that f'(x) exists (in R) for each

x € (¢—9,c+0). Hence by L'Hépital’s rule, }lbir% f(c+h)_2]}:(20)+f(c_h) = }Lir% M, provided
— —
the second limit exists (in R).
o Fleth)—f(e=h) _ 1715, feth)=F'(c) f'le=h)—f _lren 1" _ g

Now i o = 4lim LRI 4 gy RS Z 4(7() 4 ()] = f(c). Honee
. c+ 2f(c)+ "
lim = f"(c).

1 ifx>0,
If f(x)=4¢ 0 ifx=0, then f: R — R is not continuous at 0 and hence f”(0) does not

-1 ifz <0,
exist (in R), but }llllr(l) 0+h)_2’;(20)+f(0_h) =0, since f(h) + f(—h) =0 for all h(£0) € R

%
1 if:v——forsomenEN,
Let f:[—1,1] — R be defined by f(x) = { 0 otherw1se
Show that f is Riemann integrable on [—1, 1] and that f f(z)dz =0.
41

If F(x f f(t)dt for all x € [—1,1], then show that F': [—1,1] — R is differentiable, and in
particular, F '(0) = £(0), although f is not continuous at 0.
Solution: 1f P = {xg,x1,...,x,} is any partition of [—1,1], then clearly m; = inf{f(z) :
r € [ri—1,7]} = 0 and M; = sup{f(x) : © € [z;_ l,xz]} > 0 for i = 1,2,...,n and so

1
L(f,P) =0 and U(f,P) > 0. Hence [ f(z)dz = 0 and ffx Ydr > 0. Let ¢ > 0. There
—1 -1

exists ng € N such that % < 5. We choose u, v and s, tp for k = 2,3,...,n9 such that

no+1 <u<8n0<nio<tn0<---<32<%<tg<v<1andalsol—v<ﬁandtk—sk<ﬁ
for k = 2,3,...,n9. Then the partition Py = {—1,0,u, Sng, tng, .-, S2, 2, v, 1} of [—1,1] is such

1 ]
that U(f, Py) < e. It follows that 0 < [ f(z)dx < U(f,Py) < e and so [ f(z)dx = 0. Thus
-1 -1

1 1 1
xT)ar = xr)ar = U. ererore 1S hiaemann mtegra eon |—1, an r)ar = .
f(z)d f(x)dz = 0. Therefore f is Ri i bl 1,1 and [ f(z)dz =0

—1 —1 1

As above we can see that F(z) = 0 for all # € [~1,1]. Hence F is differentiable and



19.

20.

21.

F'(0) = 0 = f(0). However, f is not continuous at 0, because = — 0 but f(%) — 1 (since

f(2)=1forall n € N).

(Alternative method of showz’ng F(z) =0 for all x € [-1,1]: Since f(t) > 0 for all t € [—1, 1],
1

we have 0 < F(z) < —|—ff t)dt = [ f(t)dt =0 for all z € [—1,1]. Hence F(x) = 0 for
1

all z € [-1,1].)

b
Let f : [a,b] — R be continuous such that f(z) > 0 for all « € [a,b] and [ f(z)dz = 0. Show
that f(x) =0 for all z € [a, b)].

(The above result need not be true if f is assumed to be only Riemann integrable on [a, b].)

Solution: If possible, let f(c) # 0 for some ¢ € (a,b), so that f(c) > 0. Since f is continuous at
¢, there exists § > 0 such that |f(z) — f(c)| < 5f(c) for all z € (¢ — §,¢+ ). (We may choose
¢ such that (¢ — &, ¢+ 8) C [a,b].) This implies that f(z) > 3 f(c) for all z € (¢ — §,¢+d). So

b c—6/2 c+6/2 b
[flx)de = [ f(z)de+ [ f(z)dz+ [ f(z)dz > 16f(c) > 0, a contradiction. Hence
a a c—6/2 c+5/2

f(x) =0 for all x € (a,b). Almost similar arguments work if ¢ = a or ¢ = b.

(Taking f(0) = 1 and f(z) = 0 for all x € (0,1], we find that f : [0,1] — R is Riemann
1

integrable on [0, 1] with f(z) > 0 for all z € [0,1] and [ f(z)dz =0 but f(0) #0.)
0

If f : [0,1] — R is continuous, then show that f(f f@)dt)du = [(x—u)f(u)duforallz € [0,1].
0

u

Solution: Let F(u) = [ f(t)dt for all u € [0,1]. Then for all z € [0, 1],
0

J([f@)dt)du= [ F(u)-1du = F(u)ul§ — f f(u)udu (integrating by parts and using the fact
00 0
)

that F'(u) = f(u) for all u € [0,1], since f is continuous on [0,1]) = zF(x) — [uf(u)du =
0

T

z [ fu)du— Ofxuf(u) du = j(m —u) f(u) du.

0

Alternative solution: Let F(x) = j(ofu f(t)dt)du and G(x) = Of(x —u)f(u)du = xff(u) du —

fuf(u) du for all z € [0,1]. Since f is continuous on [0, 1], both F': [0,1] - R and G : [0, 1] —

R are differentiable and F’(z f f(t)dt and G'(z) = xf(x) + ff Ydu — zf(x f f(u

for all z € [0,1]. Thus (F — G) (x ) F'(z) = G'(z) = 0 for all z € [0,1] and hence F G is a
constant function on [0, 1]. Since (F'—G)(0) = F(0)—G(0) =0—0 =0, we get (F—G)(z) =0
for all z € [0,1] = F(x) = G(z) for all z € [0, 1].

o
Examine whether the integral [ sin(z?)dz is convergent.

1
Solution: Since the Riemann integral [ sin(z?)dz exists (in f sin(z?) dx is convergent if
0

fsm )dz is convergent. Let f(z) = 5= and g(z) = 2zsin(z?) for all z € [1,00). Then

f is decreasing on [1,00) and lim f(z) = 0. Also

T—00

[ 9( dt‘ = |cos1 — cos(z?)| < 2 for all
1



22.

23.

24.

€ [1,00). Hence by Dirichlet’s test, [ f(z)g(z)dz, i.e. f sin(x?) dz is convergent. Conse-
1

quently f sin(z?) dz is convergent.

o0
Determine all real values of p for which the integral [ ”i‘:;
0

1
Solution: The given integral is convergent iff both the integrals [ !
0

1+z
convergent. If p > 1, then “”i:,c (in R) as a Riemann integral. For p < 1, since
p—1 L
a? !t
JE& T+a 1ff

verges. We know that f = dz converges iff 1 —p < 1, i.e. iff p > 0. Hence f

14z

iff p > 0. Again, since hm ﬁz:zl - 22P = lim e =1 7& 0, by the hmlt comparison test,
T—00

1+x

iff p < 1. Therefore the given integral is convergent iff

iff p < 1. Hence fﬁﬂ
1

0<p<l.

Find the area of the region that is inside the cardioid r = a(1 + cos #) and
(a) inside the circle r = 3

2®
(b) outside the circle r = 3a.

Solution: At a point of intersection of the cardioid r = a(1 + cosf) and the circle r = %a,
we have a(1 + cosf) = 2a. So § = I corresponds to a point of intersection. Hence the
area of the region that is inside the cardioid r = a(1 + cosf) and inside the circle r = 3a is
- o -
2|5 f a)>df + 3 { (1+cosf)?df| = (IF — %g)a? Also, the area of the region that is
/3
in81de the cardioid r = a(1 + cos6) and outside the circle r = 3a is
[ 73 / i
2|4 Of a®(1+ cos)?d — 1 g" (2a)2do| = (2L — T)a?.

Find the length of the curve y = f Veos2tdt, 0 <z <

T
Solution: Let y = f(z f\/COSQ tdt for all x € [0,5]. Then f'(x) = v/cos2x for all x €

71 (by the first fundamental theorem of calculus). Hence the length of the given curve is

4

\/1—1—(f’(x))Zdw:f\/1+cos2xd:U:\/chosa:d:v: 1.
0

0

Cr—en 'S



