
MA 101 (Mathematics I)

Solutions for Tutorial Problem Set

1. Let (xn) be a convergent sequence of positive real numbers such that lim
n→∞

xn < 1. Show that

lim
n→∞

xnn = 0.

Solution: If ` = lim
n→∞

xn, then 1
2
(1−`) > 0 and so there exists n0 ∈ N such that |xn−`| < 1

2
(1−`)

for all n ≥ n0. Hence 0 < xn <
1
2
(1 + `) for all n ≥ n0 ⇒ 0 < xnn < (1+`

2
)n for all n ≥ n0. Since

1
2
(1 + `) < 1, lim

n→∞
(1+`

2
)n = 0. Therefore by sandwich theorem, lim

n→∞
xnn = 0.

Alternative solution: Since lim
n→∞

(xnn)
1
n = lim

n→∞
xn < 1, by root test, the series

∞∑
n=1

xnn converges

and hence lim
n→∞

xnn = 0.

2. Let (xn) be a convergent sequence in R with limit ` ∈ R and let α ∈ R.
(a) If xn > α for all n ∈ N, then show that ` ≥ α.
(b) If ` > α, then show that there exists n0 ∈ N such that xn > α for all n ≥ n0.

(Note that ` can be equal to α in (a).)
Solution: (a) If possible, let ` < α. Then α− ` > 0 and since xn → `, there exists n0 ∈ N such
that |xn − `| < α− ` for all n ≥ n0. This implies that xn < `+ α− ` = α for all n ≥ n0, which
is a contradiction. Hence ` ≥ α.
(b) Since ` − α > 0 and since xn → `, there exists n0 ∈ N such that |xn − `| < ` − α for all
n ≥ n0. This implies that xn > `− (`− α) = α for all n ≥ n0.
(Note that although 1

n
> 0 for all n ∈ N, lim

n→∞
1
n

= 0 and thus ` can be equal to α in (a).)

3. For α ∈ R, examine whether lim
n→∞

1
n2 ([α] + [2α] + · · ·+ [nα]) exists (in R). Also, find the value

if it exists.
(For each x ∈ R, [x] denotes the greatest integer not exceeding x.)
Solution: For each x ∈ R, [x] ≤ x < [x] + 1 ⇒ x − 1 < [x] ≤ x. Hence, for all n ∈ N,
1
n2{(α− 1) + (2α− 1) + · · ·+ (nα− 1)} < xn ≤ 1

n2 (α+ 2α+ · · ·+ nα)⇒ α
2
(1 + 1

n
)− 1

n
< xn ≤

α
2
(1 + 1

n
) for all n ∈ N. Since α

2
(1 + 1

n
)− 1

n
→ α

2
and α

2
(1 + 1

n
)→ α

2
, by sandwich theorem, (xn)

is convergent and lim
n→∞

xn = α
2
.

4. Let x1 = 6 and xn+1 = 5− 6
xn

for all n ∈ N. Examine whether the sequence (xn) is convergent.

Also, find lim
n→∞

xn if (xn) is convergent.

Solution: We have x1 > 3 and if we assume that xk > 3 for some k ∈ N, then xk+1 > 5− 2 = 3.
Hence by the principle of mathematical induction, xn > 3 for all n ∈ N. Therefore (xn) is
bounded below. Again, x2 = 4 < x1 and if we assume that xk+1 < xk for some k ∈ N, then
xk+2− xk+1 = 6( 1

xk
− 1

xk+1
) < 0⇒ xk+2 < xk+1. Hence by the principle of mathematical induc-

tion, xn+1 < xn for all n ∈ N. Therefore (xn) is decreasing. Consequently (xn) is convergent.
Let ` = lim

n→∞
xn. Then lim

n→∞
xn+1 = 5− 6

lim
n→∞

xn
⇒ ` = 5− 6

`
(since xn > 3 for all n ∈ N, ` 6= 0)

⇒ (`− 2)(`− 3) = 0⇒ ` = 2 or ` = 3. But xn > 3 for all n ∈ N, so ` ≥ 3. Therefore ` = 3.

Alterbative solution: For all n ∈ N, we have |xn+2−xn+1| = 6
|xn+1||xn| |xn+1−xn|. Also, as shown

in the above solution, xn > 3 for all n ∈ N. Hence |xn+2 − xn+1| ≤ 2
3
|xn+1 − xn| for all n ∈ N.

It follows that (xn) is a Cauchy sequence in R and hence (xn) is convergent. To show that
lim
n→∞

xn = 3, we proceed as in the above solution.

5. Let (xn) be a sequence of nonzero real numbers. If (xn) does not have any convergent subse-
quence, then show that lim

n→∞
1
xn

= 0.



Solution: If lim
n→∞

1
xn
6= 0, then there exists ε > 0 such that for each n ∈ N, there exists a positive

integer m > n satisfying | 1
xm
| ≥ ε, i.e. |xm| ≤ 1

ε
. Thus we get positive integers n1 < n2 < · · ·

such that |xnk | ≤ 1
ε

for each k ∈ N. So (xnk) is a bounded subsequence of (xn) and hence by
Bolzano-Weierstrass theorem, (xnk) has a convergent subsequence, which is also a convergent
subsequence of (xn), which contradicts the hypothesis. Therefore lim

n→∞
1
xn

= 0.

Alternative solution: Let ε > 0. We claim that there exist at most finitely many n ∈ N for which
xn ∈ [−1

ε
, 1
ε
]. Because otherwise, we get a subsequence (xnk) of (xn) such that xnk ∈ [−ε, ε] for

all k ∈ N and so (xnk) is bounded. By Bolzano-Weierstrass theorem, (xnk) has a convergent
subsequence, which is also a subsequence of (xn). This contradicts the given hypothesis. Hence
our claim is proved and so there exists n0 ∈ N such that |xn| > 1

ε
for all n ≥ n0. Thus | 1

xn
| < ε

for all n ≥ n0 and therefore lim
n→∞

1
xn

= 0.

6. Examine whether the series
∞∑
n=1

1

n1+ 1
n

is convergent.

Solution: Let xn = 1

n1+ 1
n

and let yn = 1
n

for all n ∈ N. Then lim
n→∞

xn
yn

= 1 6= 0. Since
∞∑
n=1

yn is

not convergent, by the limit comparison test,
∞∑
n=1

xn is also not convergent.

7. Let xn > 0 for all n ∈ N. Show that the series
∞∑
n=1

xn converges iff the series
∞∑
n=1

xn
1+xn

converges.

Solution: We have 0 < xn
1+xn

< xn for all n ∈ N. Hence by comparison test,
∞∑
n=1

xn
1+xn

converges

if
∞∑
n=1

xn converges.

Conversely, let
∞∑
n=1

xn
1+xn

converge. Then xn
1+xn

→ 0 and so there exists n0 ∈ N such that xn
1+xn

< 1
2

for all n ≥ n0. This implies that xn < 1 for all n ≥ n0, i.e. 1 + xn < 2 for all n ≥ n0 and so

xn <
2xn
1+xn

for all n ≥ n0. By comparison test, we conclude that
∞∑
n=1

xn converges.

Alternative solution: If
∞∑
n=1

xn converges, then lim
n→∞

xn
1+xn

xn
= lim

n→∞
1

1+xn
= 1 (since xn → 0) and

hence by limit comparison test,
∞∑
n=1

xn
1+xn

converges.

Conversely, if
∞∑
n=1

xn
1+xn

converges, then lim
n→∞

xn
1+xn

xn
= lim

n→∞
1

1+xn
= 1 6= 0 (since xn

1+xn
→ 0 and so

1
1+xn

= 1− xn
1+xn

→ 1) and hence by limit comparison test,
∞∑
n=1

xn converges.

8. Find all x ∈ R for which the series
∞∑
n=1

(−1)n(x−1)n
2nn2 converges.

Solution: If x = 1, then the given series becomes 0 + 0 + · · · , which is clearly convergent. Let

x(6= 1) ∈ R and let an = (−1)n(x−1)n
2nn2 for all n ∈ N. Then lim

n→∞
|an+1

an
| = 1

2
|x− 1|. Hence by ratio

test,
∞∑
n=1

an converges (absolutely) if 1
2
|x − 1| < 1, i.e. if x ∈ (−1, 3) and does not converge

if 1
2
|x − 1| > 1, i.e. if x ∈ (−∞,−1) ∪ (3,∞). If 1

2
|x − 1| = 1, i.e. if x ∈ {−1, 3}, then

∞∑
n=1

|an| =
∞∑
n=1

1
n2 converges and hence

∞∑
n=1

an converges. Therefore the set of x ∈ R for which

∞∑
n=1

an converges is [−1, 3].

Alternative solution: Instead of ratio test, one can find lim
n→∞

|an|
1
n = 1

2
|x− 1| and use root test.



The remaining part is same.

9. If α( 6= 0) ∈ R, then show that the series
∞∑
n=1

(−1)n sin(α
n
) is conditionally convergent.

Solution: We choose n0 ∈ N such that |α|
n0

< π
2
. Then for all n ≥ n0, sin(α

n
) has the same

sign as that of α. Since the sine function is increasing in (0, π
2
), it follows that the sequence(

sin( |α|
n

)
)∞
n=n0

is decreasing. Also, lim
n→∞

sin( |α|
n

) = 0. Hence by Leibniz’s test,
∞∑

n=n0

(−1)n sin(α
n
)

is convergent. Consequently
∞∑
n=1

(−1)n sin(α
n
) is convergent.

Again,
∞∑
n=1

|(−1)n sin(α
n
)| =

∞∑
n=1

| sin(α
n
)| is not convergent by limit comparison test, since (using

lim
x→0

sinx
x

= 1) lim
n→∞

| sin(α/n)|
1/n

= |α| lim
n→∞

∣∣∣ sin(α/n)α/n

∣∣∣ = |α| 6= 0 and
∞∑
n=1

1
n

is not convergent. Therefore

the given series is conditionally convergent.

10. Let f : R→ R be defined by f(x) =

{
x if x ∈ Q,

[x] if x ∈ R \Q.
Determine all the points of R where f is continuous.
Solution: Let x ∈ R \ Q. Then there exists a sequence (rn) in Q such that rn → x. So
f(rn) = rn → x 6= [x] = f(x). Hence f is not continuous at x.
Again, let y ∈ Q. Then there exists a sequence (tn) in R \Q such that tn < y for all n ∈ N and

tn → y. For each n ∈ N, f(tn) =

{
[tn] ≤ y − 1 if y ∈ Z,
[tn] ≤ [y] < y if y 6∈ Z.

In either case f(tn) 6→ f(y) = y. Hence f is not continuous at y. Therefore f is not continuous
at any point of R.

11. Let f : [0, 1]→ R be continuous such that f(0) = f(1). Show that
(a) there exist x1, x2 ∈ [0, 1] such that f(x1) = f(x2) and x1 − x2 = 1

2
.

(b) there exist x1, x2 ∈ [0, 1] such that f(x1) = f(x2) and x1 − x2 = 1
3
.

(In fact, if n ∈ N, then there exist x1, x2 ∈ [0, 1] such that f(x1) = f(x2) and x1−x2 = 1
n
. How-

ever, it is not necessary that there exist x1, x2 ∈ [0, 1] such that f(x1) = f(x2) and x1−x2 = 2
5
.)

Solution: (a) Let g(x) = f(x+ 1
2
)− f(x) for all x ∈ [0, 1

2
]. Since f is continuous, g : [0, 1

2
]→ R

is continuous. Also g(0) = f(1
2
)− f(0) and g(1

2
) = f(1)− f(1

2
) = −g(0), since f(0) = f(1). If

g(0) = 0, then we can take x1 = 1
2

and x2 = 0. Otherwise, g(1
2
) and g(0) are of opposite signs

and hence by the intermediate value property of continuous functions, there exists c ∈ (0, 1
2
)

such that g(c) = 0, i.e. f(c+ 1
2
) = f(c). We take x1 = c+ 1

2
and x2 = c.

(b) Let g(x) = f(x + 1
3
) − f(x) for all x ∈ [0, 2

3
]. Since f is continuous, g : [0, 2

3
] → R is

continuous. Also g(0) + g(1
3
) + g(2

3
) = f(1) − f(0) = 0. If at least one of g(0), g(1

3
) and g(2

3
)

is 0, then the result follows immediately. Otherwise, at least two of g(0), g(1
3
) and g(2

3
) are

of opposite signs and hence by the intermediate value property of continuous functions, there
exists c ∈ (0, 2

3
) such that g(c) = 0, i.e. f(c+ 1

3
) = f(c). We take x1 = c+ 1

3
and x2 = c.

(Assuming n > 1, we define g(x) = f(x+ 1
n
)− f(x) for all x ∈ [0, 1− 1

n
]. Since f is continuous,

g : [0, 1− 1
n
]→ R is continuous. Also g(0)+g( 1

n
)+g( 2

n
)+ · · ·+g(1− 1

n
) = f(1)−f(0) = 0. If at

least one of g(0), g( 1
n
), ..., g(1− 1

n
) is 0, then the result follows immediately. Otherwise, at least

two of g(0), g( 1
n
), ..., g(1− 1

n
) are of opposite signs and hence by the intermediate value property

of continuous functions, there exists c ∈ (0, 1− 1
n
) such that g(c) = 0, i.e. f(c+ 1

n
) = f(c). We

take x1 = c+ 1
n

and x2 = c.

Again, if f(x) = sin2(5
2
πx) − x for all x ∈ [0, 1], then f : [0, 1] → R is continuous and

f(0) = 0 = f(1). However, f(x)− f(x+ 2
5
) = 2

5
for all x ∈ [0, 3

5
] and so no points x1, x2 ∈ [0, 1]



exist satisfying f(x1) = f(x2) and x1 − x2 = 2
5
.)

12. Let p be an odd degree polynomial with real coefficients in one real variable. If g : R→ R is a
bounded continuous function, then show that there exists x0 ∈ R such that p(x0) = g(x0).

(In particular, this shows that
(a) every odd degree polynomial with real coefficients in one real variable has at least one real

zero.
(b) the equation x9 − 4x6 + x5 + 1

1+x2
= sin 3x+ 17 has at least one real root.

(c) the range of every odd degree polynomial with real coefficients in one real variable is R.)
Solution: Let f(x) = p(x)− g(x) for all x ∈ R. Since both p and g are continuous, f : R→ R
is continuous.
Since g is bounded, there exists M > 0 such that |g(x)| ≤M for all x ∈ R.
Let p(x) = a0x

n + a1x
n−1 + · · · + an−1x + an for all x ∈ R, where ai ∈ R for i = 0, 1, ..., n,

n ∈ N is odd and a0 6= 0. So p(x) = a0x
n(1 + a1

a0
· 1
x

+ · · · + an−1

a0
· 1
xn−1 + an

a0
· 1
xn

) for all

x(6= 0) ∈ R. We assume that a0 > 0. (The case a0 < 0 is almost similar.) Then lim
x→∞

p(x) =∞
and lim

x→−∞
p(x) = −∞ (since n is odd). So there exist x1 > 0 and x2 < 0 such that p(x1) > M

and p(x2) < −M . Hence f(x1) > 0 and f(x2) < 0. By the intermediate value property of
continuous functions, there exists x0 ∈ (x2, x1) such that f(x0) = 0, i.e. p(x0) = g(x0).

(For (a), we take g(x) = 0 for all x ∈ R. For (b), we take p(x) = x9 − 4x6 + x5 − 17 and
g(x) = sin 3x − 1

1+x2
for all x ∈ R and we note that |g(x)| ≤ 2 for all x ∈ R. For (c), given

y ∈ R, we take g(x) = y for all x ∈ R.)

13. Does there exist a continuous function from (0, 1] onto R? Justify.
Solution: If f(x) = 1

x
sin 1

x
for all x ∈ (0, 1], then f : (0, 1]→ R is continuous and f( 2

(4n+1)π
) =

2nπ + π
2
, f( 2

(4n+3)π
) = −2nπ − 3π

2
for all n ∈ N. For each y ∈ R, we can find n ∈ N such

that −2nπ − 3π
2
< y < 2nπ + π

2
and hence by the intermediate value property of continuous

functions, there exists x ∈ R such that f(x) = y. Thus f : (0, 1]→ R is onto. Therefore there
exists such a function.

14. Let f : R→ R be differentiable on (−δ, δ) for some δ > 0 and let f ′′(0) exist (in R). If f( 1
n
) = 0

for all n ∈ N, then find f ′(0) and f ′′(0).
Solution: Since f is continuous at 0 and since 1

n
→ 0, we have f(0) = lim

n→∞
f( 1

n
) = 0. Also,

since f ′(0) exists (in R) and since 1
n
→ 0, we have f ′(0) = lim

n→∞

f( 1
n
)−f(0)
1/n

= 0. Again, we

can choose n0 ∈ N such that 1
n0

< δ. By Rolle’s theorem, for each n ≥ n0, there exists

xn ∈ ( 1
n+1

, 1
n
) such that f ′(xn) = 0. By sandwich theorem, xn → 0. Since f ′′(0) exists, we have

f ′′(0) = lim
n→∞

f ′(xn)−f ′(0)
xn

= 0.

15. For n ∈ N, show that the equation 1 − x + x2

2
− x3

3
+ · · · + (−1)n x

n

n
= 0 has exactly one real

root if n is odd and has no real root if n is even.
Solution: Let p(x) = 1− x+ x2

2
− x3

3
+ · · ·+ (−1)n x

n

n
for all x ∈ R. Then p′(x) = −1 + x− x2 +

· · ·+ (−1)nxn−1 for all x ∈ R.
We first assume that n is odd. By Ex.12 of Tutorial Problem Set, the equation p(x) = 0 has
at least one real root. Also, p′(−1) = −n 6= 0 and p′(x) = −(1+x

n

1+x
) 6= 0 for all x ∈ R \ {−1}.

As a consequence of Rolle’s theorem, the equation p(x) = 0 can have at most one real root.
Therefore the equation p(x) = 0 has exactly one real root.
We now assume that n is even. Then p′(−1) = −n < 0 and p′(x) = −(1−x

n

1+x
) for all x ∈ R\{−1}.

So p′(x) > 0 for all x > 1 and p′(x) < 0 for all x < 1. Hence p is strictly increasing in [1,∞) and
p is strictly decreasing in (−∞, 1]. So p(x) > p(1) for all x > 1 and also p(x) > p(1) for all x < 1,
i.e. p(x) > p(1) for all x(6= 1) ∈ R. Since p(1) = (1

2
− 1

3
) + (1

4
− 1

5
) + · · ·+ ( 1

n−2 −
1

n−1) + 1
n
> 0,



we get p(x) > 0 for all x ∈ R. Therefore the equation p(x) = 0 has no real root.

16. Let f : R→ R be differentiable such that f(0) = f(1) = 0 and f ′(0) > 0, f ′(1) > 0. Show that
there exist c1, c2 ∈ (0, 1) with c1 6= c2 such that f ′(c1) = f ′(c2) = 0.
Solution: Since f ′(0) > 0, there exists δ1 ∈ (0, 1

2
) such that f(x) > f(0) = 0 for all x ∈ (0, δ1).

Also, since f ′(1) > 0, there exists δ2 ∈ (0, 1
2
) such that f(x) < f(1) = 0 for all x ∈ (1− δ2, 1).

By the intermediate value property of continuous functions, there exists c ∈ ( δ1
2
, 1 − δ2

2
) such

that f(c) = 0. Now, by Rolle’s theorem, there exists c1 ∈ (0, c) and c2 ∈ (c, 1) such that
f ′(c1) = f ′(c2) = 0.

Alternative solution: If possible, let f ′(x) ≥ 0 for all x ∈ (0, 1). Then f is an increasing function
on [0, 1]. So 0 = f(0) ≤ f(x) ≤ f(1) = 0 for all x ∈ [0, 1], i.e. f(x) = 0 for all x ∈ [0, 1]. This
gives f ′(0) = 0, which is a contradiction. Therefore there exists c ∈ (0, 1) such that f ′(c) < 0.
Then by the intermediate value property of derivatives, there exist c1 ∈ (0, c) and c2 ∈ (c, 1)
such that f ′(c1) = f ′(c2) = 0.

17. Let f : R→ R be such that f ′′(c) exists (in R), where c ∈ R. Show that

lim
h→0

f(c+h)−2f(c)+f(c−h)
h2

= f ′′(c).

Give an example of an f : R→ R and a point c ∈ R for which f ′′(c) does not exist (in R) but
the above limit exists (in R).
Solution: Since f ′′(c) exists (in R), there exists δ > 0 such that f ′(x) exists (in R) for each

x ∈ (c−δ, c+δ). Hence by L’Hôpital’s rule, lim
h→0

f(c+h)−2f(c)+f(c−h)
h2

= lim
h→0

f ′(c+h)−f ′(c−h)
2h

, provided

the second limit exists (in R).

Now lim
h→0

f ′(c+h)−f ′(c−h)
2h

= 1
2
[lim
h→0

f ′(c+h)−f ′(c)
h

+ lim
h→0

f ′(c−h)−f ′(c)
−h ] = 1

2
[f ′′(c) + f ′′(c)] = f ′′(c). Hence

lim
h→0

f(c+h)−2f(c)+f(c−h)
h2

= f ′′(c).

If f(x) =

 1 if x > 0,
0 if x = 0,
−1 if x < 0,

then f : R → R is not continuous at 0 and hence f ′′(0) does not

exist (in R), but lim
h→0

f(0+h)−2f(0)+f(0−h)
h2

= 0, since f(h) + f(−h) = 0 for all h( 6= 0) ∈ R.

18. Let f : [−1, 1]→ R be defined by f(x) =

{
1 if x = 1

n
for some n ∈ N,

0 otherwise.

Show that f is Riemann integrable on [−1, 1] and that
1∫
−1
f(x) dx = 0.

If F (x) =
x∫
−1
f(t) dt for all x ∈ [−1, 1], then show that F : [−1, 1]→ R is differentiable, and in

particular, F ′(0) = f(0), although f is not continuous at 0.
Solution: If P = {x0, x1, ..., xn} is any partition of [−1, 1], then clearly mi = inf{f(x) :
x ∈ [xi−1, xi]} = 0 and Mi = sup{f(x) : x ∈ [xi−1, xi]} ≥ 0 for i = 1, 2, ..., n and so

L(f, P ) = 0 and U(f, P ) ≥ 0. Hence
1∫
−1
f(x) dx = 0 and

1∫
−1
f(x) dx ≥ 0. Let ε > 0. There

exists n0 ∈ N such that 1
n0

< ε
2
. We choose u, v and sk, tk for k = 2, 3, ..., n0 such that

1
n0+1

< u < sn0 <
1
n0
< tn0 < · · · < s2 <

1
2
< t2 < v < 1 and also 1− v < ε

2n0
and tk − sk < ε

2n0

for k = 2, 3, ..., n0. Then the partition P0 = {−1, 0, u, sn0 , tn0 , ..., s2, t2, v, 1} of [−1, 1] is such

that U(f, P0) < ε. It follows that 0 ≤
1∫
−1
f(x) dx ≤ U(f, P0) < ε and so

1∫
−1
f(x) dx = 0. Thus

1∫
−1
f(x) dx =

1∫
−1
f(x) dx = 0. Therefore f is Riemann integrable on [−1, 1] and

1∫
−1
f(x) dx = 0.

As above we can see that F (x) = 0 for all x ∈ [−1, 1]. Hence F is differentiable and



F ′(0) = 0 = f(0). However, f is not continuous at 0, because 1
n
→ 0 but f( 1

n
) → 1 (since

f( 1
n
) = 1 for all n ∈ N).

(Alternative method of showing F (x) = 0 for all x ∈ [−1, 1]: Since f(t) ≥ 0 for all t ∈ [−1, 1],

we have 0 ≤ F (x) ≤ F (x) +
1∫
x

f(t) dt =
1∫
−1
f(t) dt = 0 for all x ∈ [−1, 1]. Hence F (x) = 0 for

all x ∈ [−1, 1].)

19. Let f : [a, b] → R be continuous such that f(x) ≥ 0 for all x ∈ [a, b] and
b∫
a

f(x) dx = 0. Show

that f(x) = 0 for all x ∈ [a, b].

(The above result need not be true if f is assumed to be only Riemann integrable on [a, b].)
Solution: If possible, let f(c) 6= 0 for some c ∈ (a, b), so that f(c) > 0. Since f is continuous at
c, there exists δ > 0 such that |f(x)− f(c)| < 1

2
f(c) for all x ∈ (c− δ, c+ δ). (We may choose

δ such that (c− δ, c+ δ) ⊂ [a, b].) This implies that f(x) > 1
2
f(c) for all x ∈ (c− δ, c+ δ). So

b∫
a

f(x) dx =
c−δ/2∫
a

f(x) dx +
c+δ/2∫
c−δ/2

f(x) dx +
b∫

c+δ/2

f(x) dx ≥ 1
2
δf(c) > 0, a contradiction. Hence

f(x) = 0 for all x ∈ (a, b). Almost similar arguments work if c = a or c = b.

(Taking f(0) = 1 and f(x) = 0 for all x ∈ (0, 1], we find that f : [0, 1] → R is Riemann

integrable on [0, 1] with f(x) ≥ 0 for all x ∈ [0, 1] and
1∫
0

f(x) dx = 0 but f(0) 6= 0.)

20. If f : [0, 1]→ R is continuous, then show that
x∫
0

(
u∫
0

f(t) dt) du =
x∫
0

(x−u)f(u) du for all x ∈ [0, 1].

Solution: Let F (u) =
u∫
0

f(t) dt for all u ∈ [0, 1]. Then for all x ∈ [0, 1],

x∫
0

(
u∫
0

f(t) dt) du =
x∫
0

F (u) · 1 du = F (u)u|x0 −
x∫
0

f(u)u du (integrating by parts and using the fact

that F ′(u) = f(u) for all u ∈ [0, 1], since f is continuous on [0, 1]) = xF (x) −
x∫
0

uf(u) du =

x
x∫
0

f(u) du−
x∫
0

uf(u) du =
x∫
0

(x− u)f(u) du.

Alternative solution: Let F (x) =
x∫
0

(
u∫
0

f(t) dt) du and G(x) =
x∫
0

(x− u)f(u) du = x
x∫
0

f(u) du−
x∫
0

uf(u) du for all x ∈ [0, 1]. Since f is continuous on [0, 1], both F : [0, 1]→ R and G : [0, 1]→

R are differentiable and F ′(x) =
x∫
0

f(t) dt and G′(x) = xf(x) +
x∫
0

f(u) du− xf(x) =
x∫
0

f(u) du

for all x ∈ [0, 1]. Thus (F −G)′(x) = F ′(x)−G′(x) = 0 for all x ∈ [0, 1] and hence F −G is a
constant function on [0, 1]. Since (F −G)(0) = F (0)−G(0) = 0−0 = 0, we get (F −G)(x) = 0
for all x ∈ [0, 1]⇒ F (x) = G(x) for all x ∈ [0, 1].

21. Examine whether the integral
∞∫
0

sin(x2) dx is convergent.

Solution: Since the Riemann integral
1∫
0

sin(x2) dx exists (in R),
∞∫
0

sin(x2) dx is convergent if

∞∫
1

sin(x2) dx is convergent. Let f(x) = 1
2x

and g(x) = 2x sin(x2) for all x ∈ [1,∞). Then

f is decreasing on [1,∞) and lim
x→∞

f(x) = 0. Also

∣∣∣∣ x∫
1

g(t) dt

∣∣∣∣ = | cos 1 − cos(x2)| ≤ 2 for all



x ∈ [1,∞). Hence by Dirichlet’s test,
∞∫
1

f(x)g(x) dx, i.e.
∞∫
1

sin(x2) dx is convergent. Conse-

quently
∞∫
0

sin(x2) dx is convergent.

22. Determine all real values of p for which the integral
∞∫
0

xp−1

1+x
dx is convergent.

Solution: The given integral is convergent iff both the integrals
1∫
0

xp−1

1+x
dx and

∞∫
1

xp−1

1+x
dx are

convergent. If p ≥ 1, then
1∫
0

xp−1

1+x
dx exists (in R) as a Riemann integral. For p < 1, since

lim
x→0+

xp−1

1+x
· x1−p = 1 6= 0, by the limit comparison test,

1∫
0

xp−1

1+x
dx converges iff

1∫
0

1
x1−p

dx con-

verges. We know that
1∫
0

1
x1−p

dx converges iff 1−p < 1, i.e. iff p > 0. Hence
1∫
0

xp−1

1+x
dx converges

iff p > 0. Again, since lim
x→∞

xp−1

1+x
· x2−p = lim

x→∞
x

1+x
= 1 6= 0, by the limit comparison test,

∞∫
1

xp−1

1+x
dx converges iff

∞∫
1

1
x2−p

dx converges. We know that
∞∫
1

1
x2−p

dx converges iff 2− p > 1, i.e.

iff p < 1. Hence
∞∫
1

xp−1

1+x
dx converges iff p < 1. Therefore the given integral is convergent iff

0 < p < 1.

23. Find the area of the region that is inside the cardioid r = a(1 + cos θ) and
(a) inside the circle r = 3

2
a,

(b) outside the circle r = 3
2
a.

Solution: At a point of intersection of the cardioid r = a(1 + cos θ) and the circle r = 3
2
a,

we have a(1 + cos θ) = 3
2
a. So θ = π

3
corresponds to a point of intersection. Hence the

area of the region that is inside the cardioid r = a(1 + cos θ) and inside the circle r = 3
2
a is

2

[
1
2

π/3∫
0

(3
2
a)2 dθ + 1

2

π∫
π/3

a2(1 + cos θ)2 dθ

]
= (7π

4
− 9

√
3

8
)a2. Also, the area of the region that is

inside the cardioid r = a(1 + cos θ) and outside the circle r = 3
2
a is

2

[
1
2

π/3∫
0

a2(1 + cos θ)2 dθ − 1
2

π/3∫
0

(3
2
a)2 dθ

]
= (9

√
3

8
− π

4
)a2.

24. Find the length of the curve y =
x∫
0

√
cos 2t dt, 0 ≤ x ≤ π

4
.

Solution: Let y = f(x) =
x∫
0

√
cos 2t dt for all x ∈ [0, π

4
]. Then f ′(x) =

√
cos 2x for all x ∈

[0, π
4
] (by the first fundamental theorem of calculus). Hence the length of the given curve is

π
4∫
0

√
1 + (f ′(x))2 dx =

π
4∫
0

√
1 + cos 2x dx =

√
2

π
4∫
0

cosx dx = 1.


