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» A sequence of real numbers or a sequence in R
is a mapping f : N — R.

» Notation: We write x, for f(n), n € N
and the notation for a sequence is (x,).

» Examples:
1. Constant sequence: (a,a, a,...), where a € R
2. Sequence defined by listing: (1,4,8,11,52,...)

3. Sequence defined by rule: (x,), where
xp = 3n? for all n e N

4. Sequence defined recursively: (x,), where
x1 =4 and x,41 =2x, —5forall neN
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» Convergence: What does it mean?

» Think of the examples:
(2,2,2,..)

Definition: The sequence (x,) is convergent if there exists
¢ € R such that for every € > 0, there exists ng € N
satisfying |x, — ¢| < ¢ for all n > ny.

» We say: (is a limit of (x,): lim x, = ¢ or x, — (.
n—00
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A sequence which is not convergent is called divergent.
Result: The limit of a convergent sequence is unique.
Examples: (a) (s%) (b) (1,2,1,2,...) (c) (P +1)

Definition: The sequence (x,) is bounded if there exists M > 0
such that |x,| < M for all n € N.

Otherwise (x,) is called unbounded (not bounded).

Examples: (a) (32£2) (b) (1,2,1,3,1,4,...)

2n+5

Result: Every convergent sequence is bounded.
So, Not bounded implies Not convergent.
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Then
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Limit rules for convergent sequences

Let x, — x and y, — .
Then

(@) Xo+yn— x+y.
(b) ax, — ax for all « € R.

(c) |xa| = |x]

(d) Xpyn — xy.

(e) 22— Xify,#0forallne Nandy #0.

Yn y

Examples: (a) (3§;j;§;3) (b) (vVn+1—+/n)
Standard examples: (a) (a"), where |a| < 1
(b) (an), where a >0 (c) (nn)
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Sandwich theorem: Let (x,), (¥a), (zn) be sequences such that
Xp < yp, < z, for all n € N.

If both (x,) and (z,) converge to the same limit ¢, then (y,)
also converges to /.

Bamples: (2) (27 +308) ) (ke + 0+ )

exist.

Result: Let x, # 0 for all n € N and let L = lim

n—oo Xn

(a) If L <1, then x, — 0.
(b) If L > 1, then (x,) is divergent.

Examples: (a) (%), a € R (b) (%)
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Definition: (x,) is increasing if x,.1 > x, for all n € N.
(x,) is decreasing if x,.1 < x, for all n € N.

(x,) is monotonic if it is either increasing or decreasing.
Examples: (a) (1— 1) (b) (n+3) (c) (cos &)

Definition: Let S(# ) C R and u € R.

u is an upper bound of Sin R if x < u for all x € S.
u is the supremum (least upper bound) of S in R if
(a) wuis an upper bound of S in R, and

(b) wu is the least among all the upper bounds of S in R, i.e. if
v’ is any upper bound of S in R, then u < v/

Lower bound and infimum (greatest lower bound) are defined
similarly.
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Result: An increasing sequence (x,) which is bounded above
converges to sup{x, : n € N}.

A decreasing sequence (x,) which is bounded below converges
to inf{x, : n € N}.

So a monotonic sequence converges iff it is bounded.

Example: Let x; = 1, xp41 = %(xn + 1) for all n € N. Then

(xn) is convergent and lim x, = 1.
n—oo

Cauchy sequence: A sequence (x,) is called a Cauchy

sequence if for each € > 0, there exists ng € N such that

|Xm — Xn| < € for all m,n > ny.

Result: A sequence in R is convergent iff it is a Cauchy
sequence.
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Example: Letxn:1+%+%+---+% for all n € N. Then
(x,) is convergent.

Example: Let (x,) satisfy either of the following conditions:
(@) |Xnt1 — xn] < @" forall n €N,

(b) |Xni2 — Xne1] < alxpe1 — xp| for all n € N,

where 0 < o < 1.

Then (x,) is a Cauchy sequence.

Example: Let x; = 1 and let x,.; = Tiﬂ for all n € N. Then
(x,) is convergent and lim x, = v/2 — 1.
n—oo

Subsequence: Let (x,) be a sequence in R. If (n) is a
sequence of positive integers such that ny < nmy < nz3 < ---,
then (x,, ) is called a subsequence of (x,).
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Result: If a sequence (x,) converges to ¢, then every
subsequence of (x,) must converge to /.

So, if (x,) has a subsequence (x,,) such that x,, # ¢, then

X, > L.

Also, if (x,) has two subsequences converging to two different
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Examples: Think of some divergent sequences and their
convergent subsequences.

Result: If a sequence (x,) converges to ¢, then every
subsequence of (x,) must converge to /.

So, if (x,) has a subsequence (x,,) such that x,, # ¢, then

X, > L.

Also, if (x,) has two subsequences converging to two different
limits, then (x,) cannot be convergent.

Example: Let x, = (—=1)"(1 — 1) for all n € N. Then x, /4 1.
In fact, (x,) is not convergent.
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Remark: Let (x,) be a sequence such that x,, — ¢ and
Xon—1 — £. Then x, — /.

Example: The sequence (1,2,1,2,1,3,..) converges to 1.

Bolzano-Weierstrass Theorem: Every bounded sequence in R
has a convergent subsequence.

Examples: If x € R, then there exists a sequence (r,) of
rationals converging to x.

Similarly, if x € R, then there exists a sequence (t,) of
irrationals converging to x.



