
I A sequence of real numbers or a sequence in R
is a mapping f : N→ R.

I Notation: We write xn for f (n), n ∈ N
and the notation for a sequence is (xn).

I Examples:

1. Constant sequence: (a, a, a, ...), where a ∈ R

2. Sequence defined by listing: (1, 4, 8, 11, 52, ...)

3. Sequence defined by rule: (xn), where
xn = 3n2 for all n ∈ N

4. Sequence defined recursively: (xn), where
x1 = 4 and xn+1 = 2xn − 5 for all n ∈ N



I A sequence of real numbers or a sequence in R
is a mapping f : N→ R.

I Notation: We write xn for f (n), n ∈ N
and the notation for a sequence is (xn).

I Examples:

1. Constant sequence: (a, a, a, ...), where a ∈ R

2. Sequence defined by listing: (1, 4, 8, 11, 52, ...)

3. Sequence defined by rule: (xn), where
xn = 3n2 for all n ∈ N

4. Sequence defined recursively: (xn), where
x1 = 4 and xn+1 = 2xn − 5 for all n ∈ N



I A sequence of real numbers or a sequence in R
is a mapping f : N→ R.

I Notation: We write xn for f (n), n ∈ N
and the notation for a sequence is (xn).

I Examples:

1. Constant sequence: (a, a, a, ...), where a ∈ R

2. Sequence defined by listing: (1, 4, 8, 11, 52, ...)

3. Sequence defined by rule: (xn), where
xn = 3n2 for all n ∈ N

4. Sequence defined recursively: (xn), where
x1 = 4 and xn+1 = 2xn − 5 for all n ∈ N



I A sequence of real numbers or a sequence in R
is a mapping f : N→ R.

I Notation: We write xn for f (n), n ∈ N
and the notation for a sequence is (xn).

I Examples:

1. Constant sequence: (a, a, a, ...), where a ∈ R

2. Sequence defined by listing: (1, 4, 8, 11, 52, ...)

3. Sequence defined by rule: (xn), where
xn = 3n2 for all n ∈ N

4. Sequence defined recursively: (xn), where
x1 = 4 and xn+1 = 2xn − 5 for all n ∈ N



I A sequence of real numbers or a sequence in R
is a mapping f : N→ R.

I Notation: We write xn for f (n), n ∈ N
and the notation for a sequence is (xn).

I Examples:

1. Constant sequence: (a, a, a, ...), where a ∈ R

2. Sequence defined by listing: (1, 4, 8, 11, 52, ...)

3. Sequence defined by rule: (xn), where
xn = 3n2 for all n ∈ N

4. Sequence defined recursively: (xn), where
x1 = 4 and xn+1 = 2xn − 5 for all n ∈ N



I A sequence of real numbers or a sequence in R
is a mapping f : N→ R.

I Notation: We write xn for f (n), n ∈ N
and the notation for a sequence is (xn).

I Examples:

1. Constant sequence: (a, a, a, ...), where a ∈ R

2. Sequence defined by listing: (1, 4, 8, 11, 52, ...)

3. Sequence defined by rule: (xn), where
xn = 3n2 for all n ∈ N

4. Sequence defined recursively: (xn), where
x1 = 4 and xn+1 = 2xn − 5 for all n ∈ N



I Convergence: What does it mean?

I Think of the examples:
(2, 2, 2, ...)

( 1
n

)

((−1)n 1
n

)

(1, 2, 1, 2, ...)

((−1)n(1− 1
n

))

(n2 − 1)

Definition: The sequence (xn) is convergent if there exists
` ∈ R such that for every ε > 0, there exists n0 ∈ N
satisfying |xn − `| < ε for all n ≥ n0.

I We say: ` is a limit of (xn): lim
n→∞

xn = ` or xn → `.
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A sequence which is not convergent is called divergent.

Result: The limit of a convergent sequence is unique.

Examples: (a) ( n+1
2n+3

) (b) (1, 2, 1, 2, ...) (c) (n3 + 1)

Definition: The sequence (xn) is bounded if there exists M > 0
such that |xn| ≤ M for all n ∈ N.

Otherwise (xn) is called unbounded (not bounded).

Examples: (a) (3n+2
2n+5

) (b) (1, 2, 1, 3, 1, 4, ...)

Result: Every convergent sequence is bounded.

So, Not bounded implies Not convergent.
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Limit rules for convergent sequences

Let xn → x and yn → y .
Then

(a) xn + yn → x + y .

(b) αxn → αx for all α ∈ R.

(c) |xn| → |x |.
(d) xnyn → xy .

(e) xn
yn
→ x

y
if yn 6= 0 for all n ∈ N and y 6= 0.

Examples: (a) ( 2n2−3n
3n2+5n+3

) (b) (
√
n + 1−

√
n)

Standard examples: (a) (αn), where |α| < 1

(b) (α
1
n ), where α > 0 (c) (n

1
n )
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Sandwich theorem: Let (xn), (yn), (zn) be sequences such that
xn ≤ yn ≤ zn for all n ∈ N.

If both (xn) and (zn) converge to the same limit `, then (yn)
also converges to `.

Examples: (a) ((2n + 3n)
1
n ) (b)

(
1√
n2+1

+ · · ·+ 1√
n2+n

)
Result: Let xn 6= 0 for all n ∈ N and let L = lim

n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ exist.

(a) If L < 1, then xn → 0.

(b) If L > 1, then (xn) is divergent.

Examples: (a) (αn

n!
), α ∈ R (b) (2n

n4
)
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Definition: (xn) is increasing if xn+1 ≥ xn for all n ∈ N.

(xn) is decreasing if xn+1 ≤ xn for all n ∈ N.

(xn) is monotonic if it is either increasing or decreasing.

Examples: (a) (1− 1
n

) (b) (n + 1
n

) (c) (cos nπ
3

)

Definition: Let S(6= ∅) ⊂ R and u ∈ R.

u is an upper bound of S in R if x ≤ u for all x ∈ S .

u is the supremum (least upper bound) of S in R if

(a) u is an upper bound of S in R, and

(b) u is the least among all the upper bounds of S in R, i.e. if
u′ is any upper bound of S in R, then u ≤ u′.

Lower bound and infimum (greatest lower bound) are defined
similarly.



Definition: (xn) is increasing if xn+1 ≥ xn for all n ∈ N.

(xn) is decreasing if xn+1 ≤ xn for all n ∈ N.

(xn) is monotonic if it is either increasing or decreasing.

Examples: (a) (1− 1
n

) (b) (n + 1
n

) (c) (cos nπ
3

)

Definition: Let S(6= ∅) ⊂ R and u ∈ R.

u is an upper bound of S in R if x ≤ u for all x ∈ S .

u is the supremum (least upper bound) of S in R if

(a) u is an upper bound of S in R, and

(b) u is the least among all the upper bounds of S in R, i.e. if
u′ is any upper bound of S in R, then u ≤ u′.

Lower bound and infimum (greatest lower bound) are defined
similarly.



Definition: (xn) is increasing if xn+1 ≥ xn for all n ∈ N.

(xn) is decreasing if xn+1 ≤ xn for all n ∈ N.

(xn) is monotonic if it is either increasing or decreasing.

Examples: (a) (1− 1
n

) (b) (n + 1
n

) (c) (cos nπ
3

)

Definition: Let S(6= ∅) ⊂ R and u ∈ R.

u is an upper bound of S in R if x ≤ u for all x ∈ S .

u is the supremum (least upper bound) of S in R if

(a) u is an upper bound of S in R, and

(b) u is the least among all the upper bounds of S in R, i.e. if
u′ is any upper bound of S in R, then u ≤ u′.

Lower bound and infimum (greatest lower bound) are defined
similarly.



Definition: (xn) is increasing if xn+1 ≥ xn for all n ∈ N.

(xn) is decreasing if xn+1 ≤ xn for all n ∈ N.

(xn) is monotonic if it is either increasing or decreasing.

Examples: (a) (1− 1
n

) (b) (n + 1
n

) (c) (cos nπ
3

)

Definition: Let S(6= ∅) ⊂ R and u ∈ R.

u is an upper bound of S in R if x ≤ u for all x ∈ S .

u is the supremum (least upper bound) of S in R if

(a) u is an upper bound of S in R, and

(b) u is the least among all the upper bounds of S in R, i.e. if
u′ is any upper bound of S in R, then u ≤ u′.

Lower bound and infimum (greatest lower bound) are defined
similarly.



Definition: (xn) is increasing if xn+1 ≥ xn for all n ∈ N.

(xn) is decreasing if xn+1 ≤ xn for all n ∈ N.

(xn) is monotonic if it is either increasing or decreasing.

Examples: (a) (1− 1
n

) (b) (n + 1
n

) (c) (cos nπ
3

)

Definition: Let S(6= ∅) ⊂ R and u ∈ R.

u is an upper bound of S in R if x ≤ u for all x ∈ S .

u is the supremum (least upper bound) of S in R if

(a) u is an upper bound of S in R, and

(b) u is the least among all the upper bounds of S in R, i.e. if
u′ is any upper bound of S in R, then u ≤ u′.

Lower bound and infimum (greatest lower bound) are defined
similarly.



Result: An increasing sequence (xn) which is bounded above
converges to sup{xn : n ∈ N}.
A decreasing sequence (xn) which is bounded below converges
to inf{xn : n ∈ N}.

So a monotonic sequence converges iff it is bounded.

Example: Let x1 = 1, xn+1 = 1
3
(xn + 1) for all n ∈ N. Then

(xn) is convergent and lim
n→∞

xn = 1
2
.

Cauchy sequence: A sequence (xn) is called a Cauchy
sequence if for each ε > 0, there exists n0 ∈ N such that
|xm − xn| < ε for all m, n ≥ n0.

Result: A sequence in R is convergent iff it is a Cauchy
sequence.
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Example: Let xn = 1 + 1
1!

+ 1
2!

+ · · ·+ 1
n!

for all n ∈ N. Then
(xn) is convergent.

Example: Let (xn) satisfy either of the following conditions:

(a) |xn+1 − xn| ≤ αn for all n ∈ N,

(b) |xn+2 − xn+1| ≤ α|xn+1 − xn| for all n ∈ N,

where 0 < α < 1.

Then (xn) is a Cauchy sequence.

Example: Let x1 = 1 and let xn+1 = 1
xn+2

for all n ∈ N. Then

(xn) is convergent and lim
n→∞

xn =
√

2− 1.

Subsequence: Let (xn) be a sequence in R. If (nk) is a
sequence of positive integers such that n1 < n2 < n3 < · · · ,
then (xnk ) is called a subsequence of (xn).
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n→∞

xn =
√

2− 1.

Subsequence: Let (xn) be a sequence in R. If (nk) is a
sequence of positive integers such that n1 < n2 < n3 < · · · ,
then (xnk ) is called a subsequence of (xn).
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Examples: Think of some divergent sequences and their
convergent subsequences.

Result: If a sequence (xn) converges to `, then every
subsequence of (xn) must converge to `.

So, if (xn) has a subsequence (xnk ) such that xnk 6→ `, then
xn 6→ `.

Also, if (xn) has two subsequences converging to two different
limits, then (xn) cannot be convergent.

Example: Let xn = (−1)n(1− 1
n

) for all n ∈ N. Then xn 6→ 1.

In fact, (xn) is not convergent.
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Remark: Let (xn) be a sequence such that x2n → ` and
x2n−1 → `. Then xn → `.

Example: The sequence (1, 1
2
, 1, 2

3
, 1, 3

4
, ...) converges to 1.

Bolzano-Weierstrass Theorem: Every bounded sequence in R
has a convergent subsequence.

Examples: If x ∈ R, then there exists a sequence (rn) of
rationals converging to x .

Similarly, if x ∈ R, then there exists a sequence (tn) of
irrationals converging to x .
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