MA 101 (Mathematics I)
Hints/Solutions for Practice Problem Set - 2

Ex.1(a) State TRUE or FALSE giving proper justification: If (x,) is a sequence in R which
converges to 0, then the sequence (z]') must converge to 0.

Solution: The given statement is TRUE. If x,, — 0, then there exists ny € N such that |z, | < %
for all n > ng and so 0 < [27| < (3)" for all n > ng. Since (3)" — 0, by sandwich theorem, it

2
follows that |z]!| — 0 and consequently x" — 0.

Ex.1(b) State TRUE or FALSE giving proper justification: There exists a non-convergent se-
quence (z,,) in R such that the sequence (z, + +z,) is convergent.

Solution: The given statement is FALSE. If possible, let there exist a non-convergent sequence
(z,,) such that the sequence (y,) is convergent, where y, = z, + =z, = (1 + %)z, for all n € N.

Then, since z,, = {#*r for all n € N and since (1 + 1) converges to 1 # 0, it follows that (x,,) must

n
be convergent, which is a contradiction.

Ex.1(c) State TRUE or FALSE giving proper justification: There exists a non-convergent se-
quence (z,,) in R such that the sequence (22 + z,,) is convergent.

Solution: The given statement is TRUE, because if x, = (—1)" for all n € N, then (z,) is not
convergent, but (22 + +z,) = (1 + %) is convergent (with limit 1), since % — 0.

Ex.1(d) State TRUE or FALSE giving proper justification: If (z,) is a sequence of positive
real numbers such that the sequence ((—1)"x,) converges to ¢ € R, then ¢ must be equal to 0.
Solution: The given statement is TRUE. Since (—1)"x,, — ¢, the subsequences ((—1)*"x,) = (x2,)
and ((—=1)*" "2y, 1) = (=22,_1) of ((=1)"z,) must also converge to £. Since z, > 0 for all n € N,
¢ >0 and since —x9,_; < 0 for alln € N, £ < 0. Hence £ = 0.

Ex.1(e) State TRUE or FALSE giving proper justification: If an increasing sequence (x,) in
R has a convergent subsequence, then (z,) must be convergent.

Solution: The given statement is TRUE. Let (z,,) be a convergent subsequence of (z,). Then
(2n,) is bounded above, i.e. there exists M > 0 such that x,, < M for all k € N. For each k € N,
k < nj and since (z,) is increasing, we get z, < z,, < M. Thus (z,) is bounded above and
consequently (z,) is convergent.

Ex.1(f) State TRUE or FALSE giving proper justification: If (x,) is a sequence of positive
real numbers such that lim (n2z,) = 3, then the series ) @, must be convergent.

n—oo n=1
Solution: The given statement is TRUE. Since the sequence (n%xn) is convergent, it is bounded
and so there exists M > 0 such that 0 < n%xn < M for all n € N. Hence 0 < z,, < % for all

o0 (o]
n € N. Since ) % is convergent, by comparison test, Y z, is convergent.
n=1 n=1

Ex.1(g) State TRUE or FALSE giving proper justification: If (z,) is a sequence of positive

oo
real numbers such that the series > n?z? converges, then the series Y x, must converge.

n=1 n=1

Solution: For each n € N, we have Yz = > 1 - kzy < (Y k%)%(z k222)2 (using Cauchy-
k=1 k=1 k=1 k=1

o0 o
Schwarz inequality). Since both the series # and > n%z? are convergent, their sequences of
n=1

o0

n=1
n o0
partial sums are bounded. Hence the sequence (Z xk) of partial sums of the series ) z,, is
k=1 n=1 n=1



o0
bounded above. Therefore by monotonic criterion for series, the series » x,, is convergent.
n=1

Ex.1(h) State TRUE or FALSE giving proper justification: If (x,) is a sequence in R such

[e.e]
that the series Y. 3 is convergent, then the series > x? must be convergent.

n=1 n=1
[e.e]

Solution: The given statement is FALSE. If x,, = (;11/)471 for all n € N, then Y 23 = Y (;31/): is

n=1 n=1
convergent by Leibniz’s test (we note that the sequence (#) is decreasing and converges to 0),

o0 o0
but > x2 = > 1 is not convergent.
n=1 n=1
Ex.1(i) State TRUE or FALSE giving proper justification: If (z,) is a sequence of positive
o0 o0
real numbers such that the series > 23 is convergent, then the series > #2 must be convergent.

n=1 n=1

Solution: The given statement is TRUE. If > x2 is convergent, then 3 — 0. So there exists
n=1

no € N such that 23 < 1 for all n > ng. Hence z,, < 1 for all n > ng and therefore 0 < xfl <

o o
for all n > ng. Since Y. x3 is convergent, by comparison test, > z* must be convergent.
n=1 n=1

Ex.1(j) State TRUE or FALSE giving proper justification: If (z,) is a sequence of positive

o0 [&.°]
real numbers such that the series Y z is convergent, then the series Y x3 must be convergent.
n=1 n=1 oo o
Solution: The given statement is FALSE. If z,, = —L5 for all n € N, then n;l 1= 1;::1 —i75 s

convergent, but > 23 = >~ 1 is not convergent.
n=1 n=1

Ex.1(k) State TRUE or FALSE giving proper justification: If f : R — R is continuous at
both 2 and 4, then f must be continuous at some ¢ € (2,4).
Solution: The given statement is FALSE. Let f(x) = (zr-2)(@—4) ifreQ

' ' 0 ifreR\Q.
Let (z,) be any sequence in R such that z,, — 2. Since |f(z,)| < [(z, — 2)(x, — 4)] — 0,
f(z,) = 0= f(2). This shows that f: R — R is continuous at 2. Similarly f is continuous at 4.
Let ¢ € (2,4). Then there exist sequences (r,,) in Q and (¢,) in R\ Q such that r,, — c and ¢, — c.
Since f(r,) = (rn, — 2)(r, —4) — (¢ — 2)(c — 4) # 0 and since f(t,) — 0, it follows that f cannot
be continuous at c.

Ex.1(1) State TRUE or FALSE giving proper justification: There exists a continuous function
f:R — R such that f(z) € Qforall z € R\ Q and f(z) €e R\ Q for all z € Q.

Solution: The given statement is FALSE. If possible, let there exist a continuous function f : R —
R such that f(z) € Q for all z € R\ Q and f(z) € R\ Q for all z € Q. Let g(z) = 2 — f(z) for
all x € R. Then g : R — R is continuous and g(z) € R\ Q for all x € R. By the intermediate
value theorem, it follows that g must be a constant function. Hence g(z) = ¢(0) for all x € R and
so f(x) =z + f(0) for all z € R. In particular, we get f(f(0)) = 2f(0), which is a contradiction,

since f(0) = —g(0) e R\ Q.

Ex.1(m) State TRUE or FALSE giving proper justification: If f : [1,2] — R is a differen-
tiable function, then the derivative f’ must be bounded on [1,2].

—1)2 ; ifl<z<2
Solution: The given statement is FALSE. Let f(z) = { (z-1) gln -1 ;f . _Zf -
Clearly f:[1,2] — R is differentiable on (1, 2] with f’(:p) =2(x — 1) sin ﬁ — -2 cos ﬁ for

all z € (1,2]. Also, since —f(xi:{(l)

|z 1||sm 2| < |z —1| for all z € (1,2], it follows that



xlgﬂ% = 0 and hence f is differentiable at 1 (with f'(1) = 0). If z,, = 1 + \/ﬁ for all

n € N, then z,, € [1,2] for all n € N and f'(z,,) = —2v2nm — —o0, which shows that f’ is not
bounded on [1, 2].

Ex.1(n) State TRUE or FALSE giving proper justification: If f : [0,00) — R is differentiable
such that f(0) = 0= lim f(x), then there must exist ¢ € (0, c0) such that f’(c) = 0.
T—r 00

Solution: The given statement is TRUE. If possible, let f'(x) # 0 for all x € (0,00). Then by
the intermediate value property of derivatives, either f'(z) > 0 for all = € (0,00) or f’(x) < 0 for
all z € (0,00). We assume that f'(z) > 0 for all z € (0,00). (The other case is almost similar.)
Then f is strictly increasing on [0,00) and so f(z) > f(1) > f(0) = 0 for all € (1,00). This
contradicts the given fact that le f(z) = 0. Hence there exists ¢ € (0,00) such that f'(c) = 0.

Ex.1(o) State TRUE or FALSE giving proper justification: If f : R — R is differentiable,
then for each ¢ € R, there must exist a,b € R with a < ¢ < b such that f(b) — f(a) = (b—a)f'(c).
Solution: The given statement is FALSE. Let f(x) = 2® for all x € R, so that f : R — R is differ-
entiable. If possible, let there exist a,b € R with a < 0 < b such that f(b) — f(a) = (b —a)f'(0).
Then b3 —a® = (b—a) - 0 =0 = b3 = a3, which is not true, since a < 0 and b > 0.

Ex.1(p) State TRUE or FALSE giving proper justification: The function f : R — R, defined by
f(x) =z +sinz for all z € R, is strictly increasing on R.

Solution: The given statement is TRUE. Since f'(z) =1+ cosx > 0 for all x € R, f is increasing
on R. If possible, let there exist x1,xs € R with x1 < x such that f(z1) = f(x2). Then f must
be constant on [z, 5] and so f'(xz) = 0 for all x € [z, 25]. This implies that cosz = —1 for all
x € [x1, 5], which is not true. Therefore f is strictly increasing on R.

Ex.1(r) State TRUE or FALSE giving proper justification: If f : [0,1] — R is a bounded
function such that lim 1 > f(%) exists (in R), then f must be Riemann integrable on [0, 1].
0 ifzel0,1]NnQ,

1 ifze[0,1]N(R\Q),
then f :[0,1] — R is a bounded function and we know that f is not Riemann integrable on [0, 1].

However, since f(£) =0 for k=1,..,n and for all n € N, lim 1 3~ f(£) =o0.

Solution: The given statement is FALSE. If f(x) = {

Ex.2(a) For all n € N, let a, = n+ + and z, = 5(ay + --- + a,). Examine whether the
sequence (z,) is convergent. Also, find the limit if it is convergent.

Solution: Foralln € N, 2, = H[(14+2+---+n)+(1+5+---+3)] = %(1+%)+%# Since
% — 0, by the solution of Ex.4 of Practice Problem Set - 2, we get %(1—1— % +-- +%) — 0. It follows
(by limit rules for algebraic operations) that (z,) is convergent with limit (1 + 0) 4+ 0.0 = 3.

Alternative solution: We can show that lim =5(1+ 1 4 ---+ 1) = 0 even without using Ex.4 of
n—oo

Practice Problem Set - 2. We have 0 < (1454 +2) < H(1+---+1) =1 foralln € N.

n

Since £ — 0, by sandwich theorem, it follows that 25 (143 +---+ 1) = 0.

Ex.2(b) Let #, = (n* +1)s — (n + 1)7 for all n € N. Examine whether the sequence (z,)
is convergent. Also, find the limit if it is convergent.
Hint: We have z,, = (n® + 1)§ — (n%)s +ni — (n + 1)3 for all n € N. Now consider the first two

terms together and the last two terms together. The limit is 0.

Ex.2(c) Let 2, = (n®> +n)n for all n € N. Examine whether the sequence (z,) is conver-
gent. Also, find the limit if it is convergent.
Solution: We have 1 < z,, < (277,2)% for all n € N. Since 2% — 1 and n» — 1, it follows that



(2n2)n = 2w (nw)® — 1. Hence by sandwich theorem, (z,) is convergent with limit 1.

Ex.2(d) Let x, = 5"(J5 — &) for all n € N. Examine whether the sequence (z,) is conver-
gent. Also, find the limit if it is convergent

Solution: Let a, = 25 and b, = 2 for all n € N. Since lim |2 = hm m =5>1 and
n—0o0

lim ]b”“\ = hm ? =0<1, the sequence (a,) is not convergent and the sequence (by,) is con-

n—00

vergent (Wlth hnnt 0). Since (z,,) = (an) — (by), it follows that (See Ex.1(c) of Practice Problem
Set - 1) (z,) is not convergent.

Ex.2(e) Let 7, = - + 2(1 y + 3‘(711_2) + -+ + - for all n € N. Examine whether the se-

1.n (n—1
quence (x,) is convergent. Also, ﬁnd the limit if it is convergent
Solution: We have z,, = n+1[<1 + )+ G+HA) o+ (E+1)) = n+1 L1454+ 1) forall
n € N. Since < —> 0, £(1+1+---+1) = 0 (using the solution of Ex.4 of Practlce Problem Set -

2) and an1 =1 +1 — 2 Hence by limit rule for product, (x,) is convergent and lim x, = 0.
o n—oo
Ex.2(f) Let z, = § — [§] for all n € N. Examine whether the sequence (z,) is convergent.

Also, find the limit if it is convergent.

Solution: We have x3, = 0 and 3,1 = % for all n € N. Thus (x,) has two subsequences (z3,)
and (z3,41) converging to two different limits, viz. 0 and g respectively. Therefore (z,) is not
convergent.

Ex.2(g) Let z; = 1 and 2,11 = (;37)z; for all n € N. Examine whether the sequence (z,)
is convergent. Also, find the limit if it is convergent.

Solution: Clearly z,, > 0 for all n € N. Also, we have 7 = 1 and if we assume that z, < 1
for some k € N, then 2441, = ( kf_l)xi < 1. Hence by the principle of mathematical induc-
tion, z, < 1 for all n € N. This gives x,,1 = (n+1$n)xn < x, for all n € N. Thus (z,)

is decreasing and bounded below and hence (z,) is convergent. If ¢/ = lim z,, then we have
n—oo
1

lim z,,1 = hm ?(hm 1) = (== {(=0o0r1. Since { = inf{x, :n € N} < x5 = 2, We
n—oo

must have 5 = 0

Ex.2(h) Let a,b € R, z; = a, x2 = b and x,40 = %(wn + x,41) for all n € N. Examine
whether the sequence (z,,) is convergent. Also, find the limit if it is convergent.

Solution: We have zn41 — 2 = (—3)(@n — Ty 1) == (=2)" (2 — z) for all n € N. Hence
Ty = 21 (Tn = o) 4ot (@2 = 20) = at [(5)" 74 Al (@—m) = at 5= (—5)" ] (b-a)
for all n € N. Since (—3)" — 0, (z,) is convergent and nh_%lo Ty =a+3(1— O)(b —a) = 5(a+20).

Alternative solution: The convergence of (z,) can also be shown as follows.
We have 19 — Zn1 = (—3)(@ns1 — @) for all n € N, so that |[z,40 — Tpy1| = 2|@ny1 — 2, for all
n € N. Hence it follows that (x,) is a Cauchy sequence in R and therefore (z,,) converges.

Ex.2(i) Let 0 < 2, < 1 and z,(1 — z,41) > 3 for all n € N. Examine whether the sequence (z,,)
is convergent. Also, find the limit if it is convergent.

Solution Using the A.M. > G.M. inequality, we have M > an(1 = 2p11) > 5 for all
n € N. Hence z,, > x,41 for all n € N and so (z,) is decreasing. Since x, > 0 for all n € N,

() is bounded below. Therefore (x,) is convergent. If lim x,, = ¢, then hm Tpp1 = L. Since
n—oo

Tn(l = 2pi1) > 1 forall n € N, we get £(1 —€) > 1 = (20— 1) §0=>(2€—1) =0=(=1

Ex.3 Let (z,) be any non-constant sequence in R such that z,; =
Show that (x,) cannot converge.

Solution: For each n € N, 2x,,11 = 2, + Tpio = Tpio — Tpal = Tpy1 — Tp. If d = x9 — 21, then
xn, = x1 + (n — 1)d for all n € N. Since (z,,) is not a constant sequence, d # 0. Given any M > 0,

%(mn + x42) for all n € N.



choosing n € N satisfying n > 1 + M?;l'fl', we find that |x,| > M. Thus (z,) is unbounded and

consequently (z,) cannot converge.

Ex.4 Let (z,) be a sequence in R and let y, = 2(zy + -+ 4+ x,) for all n € N. If (z,) is
convergent, then show that (y,,) is also convergent.

If (y,) is convergent, is it necessary that (z,) is (i) convergent? (ii) bounded?

Solution: Let r, — ¢ € Rand let € > 0. Then there exists N € N such that |z, —¢| < § for alln >

N n
N. Now for all n > N, we have |y, —{| = 2[(z1 =€)+ -+ (2, — )| < L 3 |oi— L]+ > |z —1].
i=1 i=N+1

We choose K € N such that 4 Z lz; — 4] < 5. Let ng = max{N, K}. Then ny € N and for all

n > ng, we have |y, — 0| <5+ (” N) < £+ 5 =e¢. Hence (y,) is convergent (with limit £).

If (y,) is convergent, then 11; is not necessary that (x,,) is convergent. For example, let (z,,) be the

sequence (1,—1,1,—1,...), which is not convergent. But since |y,| < % for all n € N, we see that

Yn — 0.

If (y,) is convergent, then it is not even necessary that (z,) is bounded. For example, let (z,) be
1

the sequence (1, —1,v/2, —v/2,v/3, —/3, ...), which is not bounded. But 35, = 0 and ya,_; = Vn

2n—
for all n € N, so that |y,| < an; —% L 4+ & — 0. Hence y, — 0.

Ex.5 If (z,,) is a sequence in R such that lim (2,41 — ) = 5, then determine lim Z=.
n—oo n—0o0

Solution: Let y, = x,41 — x, for all n € N. Since lim ¥, = 5, by the solution of Ex.4 of Practice
n—oo
Problem Set - 2, we have lim (y;+---+y,) =5. Since y1+- - 4y, = (T2— 1)+ -+ (Tps1—2p) =
n—0o0

Ty — ap for all n € N, we get nh_)rgo il = 5. Now I”jll = Indl"H, 5 + oo for all n € N and

hence by applying the limit rules, we obtaln lim L =514+0=5. It follows that lim %2 =5,

n—oo n+l n—oo

Ex.6 If xr = %
convergent.

Solution: We have 0 < x; < 1 and if we assume that 0 < z, < 1 for some k£ € N, then
0 < w41 = 21(1 — 2§) < 1. Hence by the principle of mathematical induction 0 < x,, < 1 for all
n € N. Also, 2,41 = 2,(1 — 2) < z,, (since 1 — 27 < 1 and x,, > 0) for all n € N. Thus the
sequence (z,) is decreasing and bounded below and so it is convergent.

and z,,1 = x, — 2" for all n € N, then examine whether the sequence (x,,) is

Ex.7 Let a > 0 and let x; = 0, x,4; = 22 4+ a for all n € N. Show that the sequence (x,)
is convergent iff a < %.

Solution: If (z,,) is convergent, then there exists ¢ € R such that lim z, = £. Since 2,1, = 22 +a
n—oo

for all n € N, we get lim z,,; = (lim z,)* + a, which gives {* — {+a = 0. Since £ € R, we must
n—oo n—o0

have 1 —4a > 0, i.e. a < %.

Conversely, let a < }1. We note that 1 = 0 and z,,.1 = xi +a>0foralln € N. Now x93 =a > 2
and if we assume that x;.1 > x; for some k € N, then x40 = xiﬂ +a > xi +a = xp+1. Hence by
the principle of mathematical induction, z,,1 > x, for all n € N. Also, z; < % and if z, < % for
some k € N, then x;.; < 27 + }L < i + }L = % Hence by the principle of mathematical induction,
z, < 3 for all n € N. Thus (z,) is increasing and bounded above and therefore (z,) is convergent.

Ex.8 For @ € R, let ;1 = a and z,41 = }l(xi + 3) for all n € N. Examine the convergence

of the sequence (z,,) for different values of a. Also, find lim xz,, whenever it exists.
n—oo

Solution: If ¢ = lim z, exists (in R), then the only possible values of ¢ are 1 and 3 (since
n—oo

(= 3(?+3), e ({—1)(—3)=0). Wehave z, > 0 and Zp40 — Tpi1 = 3(a2,, — 22) for all
n € N. Also 25 — 21 = 1(a — 1)(a — 3).
Let a > 3. Then x5 > x; and if we assume that z;1 > x; for some k£ € N then from above, we get



Trao > Tpy1. Hence by the principle of mathematical induction, x,, .1 > z,, for all n € N. It follows
that (x,) cannot converge. (Because if (z,) converges, then lim z,, = sup{x, : n € N} > z; > 3,
n—oo

which is not possible as we have seen above that the only possible values of lim z,, are 1 and 3.)
n—oo

If a = 3, then x, = 3 for all n € N, and hence (z,,) converges to 3.

Let 1 <a < 3. Then x5 < z; and if we assume that ;1 < x for some k£ € N, then from above,
we get 1o < xpy1. Hence by the principle of mathematical induction, x,.; < =, for all n € N.
Also, by the principle of mathematical induction, we can show that in this case x,, > 1 for all
n € N. (Because z,,11 — 1 = (22 — 1) for all n € N and z; > 1.) Hence (z,) converges to 1.
(xn #» 3 because 7}1—{20 z, =inf{z, :n e N} <z <3.)

Let 0 <a < 1. Then x5 > x; and if we assume that x; 1 > x; for some k£ € N, then from above,
we get xp.o > xpy1. Hence by the principle of mathematical induction, x,; > z, for all n € N.
Also, by the principle of mathematical induction, we can show that in this case z,, < 1 for all
n € N. (Because 2,41 —1 = (22 — 1) for all n € N and 27 < 1.) Hence (z,) converges to 1.
(Since z,, <1 for all n € N, h_)ngO T, # 3.)

The case for a < 0 is treateg by considering —a in place of a, because x5 is same irrespective of

whether we choose 1 = a or 1 = —a. Hence we can say that for -1 < a < 0, z, — 1, for
-3<a<-1,x, — 1, fora= -3, z,, - 3 and for a < —3, (z,,) does not converge.

Ex.9 If 2, = (1+ )" and y,, = (1 4+ 2)"*! for all n € N, then show that the sequence ()
is increasing, the sequence (y,,) is decreasing and both (z,) and (y,) are bounded.
Solution: For each n € N, applying the A.M. > G.M. inequality for the numbers a; = 1, ay =

1 n
az =+ =ap1 = 1+%, we get %if") > (1+ )7+, From this, we get (1+ %H)"“ > (1+4)"
for all n € N. Therefore the sequence (z,,) is increasing.

Again, for each n € N, applying A.M. > G.M. inequality for the numbers a; = - -+ = a1 = 15,
anio = 1, we get er%?“ > (#1)% From this, we get (1+—5)"* < (142)"™ foralln € N.

Therefore the sequence (y,,) is decreasing.
It is now clear that 0 < 2, < (1+ 2)"(1+ 2) = y,, <y = 4 for all n € N and so both () and
(yn) are bounded.

Alternative solution: The boundedness of (x,,) can also be proved as follows.
For all n € N, we have 0 < z, = 1+n-%+"(7;!_1)-#+w-n—g+---+i <

nn

1+1+501-D)+50 -0 =23+ +5<2+5+5m+ -+ =2+(1—-5) <3

Ex.10 Let (z,) be a sequence in R. If for every ¢ > 0, there exists a convergent sequence
(yn) in R such that |z, — y,| < € for all n € N, then show that (z,) is convergent.

Solution: Let ¢ > 0. Then there exists a convergent sequence (y,) in R such that |z, — y,| < 3
for all n € N. Since (y,) is a Cauchy sequence, there exists ny € N such that [y, — ym| < § for
all n,m > ng. Hence for all n,m > ng, we have |, — 2| < |20 — Yol + [Un — Ym| + |[Ym — Tm| <
$+ 5+ 5 =c¢. Thus (z,) is a Cauchy sequence in R and therefore (z,) is convergent.

Ex.11 Let (x,) be a sequence in R. Which of the following conditions ensure(s) that (z,) is
a Cauchy sequence (and hence convergent)?

(a) lim |z,41 — 2, = 0.

n— oo
(b) |@n41 — xn| < £ for all m e N.
(¢) |Tns1 — x,| < 5 for all n € N.

Solution: Let x, =1+ % —|—---+% for all n € N. Then |z,41 — z,| = n+r1 < % for all n € N and

so lim |z, — x,| = 0. Thus both the conditions (a) and (b) are satisfied for the sequence (z,,).
n—oo

oo

However, (z,) is not a Cauchy sequence, since we know that the series Y = is not convergent and
n=1

so its sequence of partial sums, which is (x,), is not a Cauchy sequence.



Now, let (xn) be a sequence in R such that |z, — z,| < % for all n € N. Let € > 0. Since

the series Z is convergent, by Cauchy’s criterion for convergence of series, there exists ny € N
n=1

such that n%—{—m—{—---%—(m_;l)g < ¢ for all m > n > ng. Hence for all m > n > ng, we get
Ixm_xn‘ = |$n_$n+1+xn+1_xn+2+' : '+:Bm—1_xm| S ‘xn_xn+1’+|xn+1_$n+2|+‘ : '—|-|[Em_1—517m| S
=+ (n_,’_;l)z +-+ m < e. Therefore (z,,) is a Cauchy sequence.

Ex.12 Let (z,) be a sequence in R such that each of the subsequences (xs,), (x2,_1) and (x3,)
converges. Show that (z,,) is convergent.

Solution: Let xo, — x, X9, 1 — y and x3, — z, where x,y, z € R. Clearly (zg,) is a subsequence
of each of the sequences (z2,) and (x3,). So zg, — = and g, — 2. This implies that = = z.
Again, (73(2,—1) is a subsequence of each of the sequences (z,-1) and (3,). So T32n,—1) — ¥ and
T3(2n—1) — 2. This implies that y = z. Thus each of the subsequences (r2,) and (22,-1) of (z,)
converges to the same limit © = y. Therefore it follows that (z,,) is convergent (with limit x = y).

is convergent.

logn

Ex.13(a) Examine whether the series Z W

Solution: We have (logn)oe" = (elog(log”))log” = (elogm)logllogn) — plogllogn) for 3]l n > 2. Also,
log(logn) > 2 for all n > e¢*. We choose ng € N such that ng > e¢". Then : L

1 — —_
logn)logn  plog(logn) — p2

for all n > ng. Since Z is convergent, by comparison test, the given series is convergent.
n=1

Solution: Since lim 2= .22 =2 > 1, the sequence ( 2 ) is not convergent. Also, since - L 5 0, the

n—oo (17 2%
sequence ( 5™) is not convergent (being the difference of a divergent and a convergent sequence)
Hence the glven series is not convergent.

1 n

Ex.13(c) Examine whether the series Z 2t is convergent.

Solution: We know that the series Z - is divergent. Also, since (%) is a decreasing sequence

(="

is convergent. Since the
(=n"
n

of positive real numbers with 1 i O, by Leibniz’s test, the series

oo oo
given series is the sum of the divergent series Y 5- and the convergent series Y , it is not
n=1 n=1

convergent.

Ex.13(d) Examine whether the series \% -3+ \/Lg -1+ \/Lg — ¢+ -+ is convergent.

Solution: For each n € N, let s,, denote the nth partial sum of the given series. Since \/27117_1 —

1 1

n 2n

w o =gy foralln €N, weget sy, = J=— 5+ = — g+t 5= -5 > 31+ 5+

3|
S T ¢|\/

1
2n
+
for all n € N. Again, the sequence (1 + % + ot %) of partial sums of the divergent series Z
s

is not bounded above and hence the sequence (s,) is not bounded above. Thus the sequence
is not convergent and consequently the given series is not convergent.

Ex.13(e) Examine whether the series 1 + 2z + 2? + 223 + 2* + 22° + 2% + 22" + .-+ is con-
vergent, where x € R.

Solution: Taking the given series as Y a,, we have ay, = 22*"~! and ay,_; = 2*"~2 for all n € N.
n=1

Since lim |ag,|=n = |z| = lim |a2n_1|ﬁ, we get lim |ap|» = |#|. Hence by the root test, the
n—oo n—oo n—oo

given series is absolutely convergent (and hence convergent) if |z| < 1 and is not convergent if
|z| > 1. If |z| = 1, then lim |ag,| = lim 2|z|*"~! =2 # 0 and so a,, / 0. Consequently the given



series is not convergent if |z| = 1.

Ex.14 If (z,) is a sequence in R such that lim z,, = 0, then show that the series Z

n—00 2+”2
is absolutely convergent.

Solution: Since lim x,, = 0, there exists ny € N such that |z,| < 1 for all n > ny. Hence for
n—oo

Tn
2 +’I’L2

all n > ny, is

_ Tn
z2+4n? — z2 +n?2

oo oo

|x | 1 . 1 - .
3 < o5 Since -2 1s convergent, by comparison test, » 1
n—=

convergent. Consequently Z Qﬁ‘HQ is absolutely convergent.

Ex.15 Let the series Z x, be convergent, where z, > 0 for all n € N. Examine whether

n=1
the following series are convergent.

(0) 3

b > o
Solution: (a) For all n € N, 0 < (y/z, — 2)* =z, — 2‘/? + 2. Hence ‘/? < 3wy + ) for
all n € N. Since both Y z, and ). % converge, > (z, + =) also converges. Therefore by

n=1 n=1 n=1

o0 \/T
comparison test, Y *=" converges.
n=1

(b) Let a, = izigz and b, = (%)" for all n € N. Since 21 x, converges, x,, — 0, and so

1 S o0
Tn+1 . o .
lim ¢= = lim #~"— = 1. Since ) b, converges, by limit comparison test, ) a, also converges.
n—oo ’n n—oo gmentl nel nel

oo
Alternative solution for (b): Since Y x, converges, x,, — 0, and so there exists ny € N such that
n=1

|z,| < 1 for all n > ngy. Hence for all n > nq, jz”n < Lot (3)" + (3)". Since both Z(%)"

37 3" .
n=
oo (o9}
and Zl(g)” converge, Zl[(é)" + (2)"] converges. Hence by comparison test, Zl i:ig: converges.
n= n= n=

o0
Ex.16 If ) z, is a convergent series, where x, > 0 for all n € N, then show that it is pos-

n=1

oo
sible for the series ) /%= to converge as well as not to converge.

n=1
o o o0
Hint: If z, = & for all n € N, then }_ x, is convergent and Z N Z —7 is also convergent.
n=1
On the other hand, if x1 = 0 and z,, = wllogm)? for all n > 2, then by Cauchy s condensation test,

n(l
0o

o0

_ 1 : Tn _
> 1 Ty =) nllogmZ 18 convergent, but § 1 Vo= § . nlogn is not convergent.
= n= n—=

Ex.17 Let (x,) be a sequence in R with lim z,, = 0. Show that there exists a subsequence

n—oo
oo
(@n,) of (z,) such that the series Y x,, is absolutely convergent.
k=1
Solution: Since lim z,, = 0, for each k € N, there exists n; € N such that |z,| < 5 L for all n > ny.
n—oo
We can choose (n) such that . < ng < ---. Then (z,,) is a subsequence of (x,) satisfying

|zn, | < 55 for all £ € N. Since kZl ¢ is convergent, by comparison test, kzl |z, | is convergent,

i.e. Y. X, is absolutely convergent.
k=1



Ex.18 If f : R — R is continuous, then show that there exist non-negative continuous func-
tions g, h : R — R such that f =g — h.

Solution: Let g = %(|f| + f) and h = 1(|f] — f). Then both g,h : R — R are non-negative
continuous functions and g — h = f.

Ex.19 Give an example (with justification) of a function from R onto R which is not contin-
uous at any point of R.
x ifzxeqQ,

Solution: Let f: R — R be defined by f(z) = r+1 ifzeR\Q

If y € Q, then f(y) =yandif y e R\ Q, theny —1 € R\ Q and f(y — 1) = y. Hence f is onto.
Let x € R. Then there exist sequences (r,) in Q and (¢,) in R\ Q such that r,, — = and t,, — x.
Now f(r,) =rn, = x and f(t,) =t, +1 = 2« + 1. Since x # z + 1, it follows that f cannot be
continuous at z. Since x € R was arbitrary, f is not continuous at any point of R.

Ex.20 Let f : R — R satisfy f(z +y) = f(z) + f(y) for all z,y € R. If f is continuous at
0, then show that f(x) = f(1)x for all z € R.

Solution: It n € N, then f(n) = f(1+---+1) = f(1)+---+ f(1) =nf(1). Also f(0) = f(04+0) =
f(0) + f(0) = f(0) =0. If m = —n, where n € N, then 0 = f(0) = f(m+n) = f(m)+ f(n) =
f(m)=—f(n) =—nf(1) = mf(1 ) If r € Q, then r = ™ for some m € Z, n € N. So mf(1) =
Fm) = f(B et ) = f(0) oo f(2) = nf(2) = f(2) = mf(1), de. f(r) =rf(1). Let
x € R. Then there exists a sequence (r,,) in Q such that r,, — z. So r,, —x — 0 and since f is con-
tinuous at 0, 0 = £(0) = lmn f(r, —2) = lmn [F(r) = £(2)] = lim r, f(1) = f(x) = 2 (1) — f(x).
Consequently f(z) = f(1)z.

Ex.21 Let f : R — R be continuous such that f(3(z+y)) = 5(f(z)+ f(y)) for all z,y € R. Show
that there exist a,b € R such that f(z) =ax +b for all z € ]R

Solution: Let g(z) = f(z) — f(O) for all z € R. The given condition gives 3(f(z) + f(y)) =
fGa+y) = f(5a+y+0)) = 5(f(z+y)+ f(0)) for all z,y € R. So g(v+y) = f(z+y) - f(0) =
f(x)+ fly) — 2f( ) = g(x )+g( ) for all z,y € R. Since f is continuous, ¢ : R — R is also
continuous and hence by Ex.20 of Practice Problem Set-2, g(z) = g(1)x for all z € R. Thus for
all z € R, f(xz) — f(0) = z(f(1) — f(0)). Taking a = f(1) — f(0) € R and b = f(0) € R, we get
f(z) =ax 4+ for all z € R.

Ex.22 Let f : R — R be continuous such that for each z € Q, f(z) is an integer. If f(1) = 2,
then find f(3).

Solution: Let € R\ Q. Then there exists a sequence (r,) in Q such that r, — x. Since f is
continuous at z, f(r,) — f(x). If f(x) is not an integer, then f(z) — [f(x)] > 0 and so there
exists ng € N such that |f(r,,) — f(z)| < 5(f(z) — [f(2)]), which is not possible, because f(ry,) is
an integer (by hypothesis). Therefore f(z) is an integer. Thus f(x) is an integer for each x € R
and by the intermediate value theorem, f : R — R must be a constant function. Consequently
F3)=1G) =2

Alternative method for showing that f(x) is an integer: The sequence (f(r,)), being convergent, is
a Cauchy sequence. Hence there exists ng € N such that |f(r,,) — f(ry,)| < 3 for all n > ng. Since
f(ry) is an integer for each n € N (by hypothesis), we must have f(r,) = f(r,,) for all n € N.
Consequently f(r,) — f(r,,) and therefore f(x) = f(r,,), which is an integer.

Ex.23 Let f : R — R be continuous such that f(z) = f(z?) for all z € R. Show that f is

a constant function.

Solution: Let x > 0. By hypothesis f(x) = f(z'/?) = f(z'/*) = --- = f(z"/?") for all n € N.

Since z'/2" — 1 (as (z'/?") is a subsequence of (#'/") and x'/® — 1) and since f is continuous
f(D).

at 1, f(2'/?") — f(1). It follows that f(z) = Also f(—x) = f((—2)?) = f(2®) = f(2).



Hence f(z) = f(1) for all x(# 0) € R. Since f is continuous at 0, f(0) = liH(l) f(z) = f(1). Thus
T—
f(x) = f(1) for all x € R. Consequently f: R — R is a constant function.

Ex.24 If f : [0,1] — R is continuous, then show that

(a) there exist a,b € [0,1] such that a — b= 3 and f(a) — f(b) = 3(f(1) — f(0)).

F) =5
(b) there exist a,b € [0,1] such that a —b =% and f(a) — f(b) = 5(f(1) — £(0)).

Solution: (a) Let g(z) = f(z+ %) — f(x) for all z € [0, 3]. Since f is continuous, g : [0,3] — R
is continuous. If g(0) = g(3), then f(%) f(0) = 3(f(1) — f(0)) and so we get the result by
taking a = 5 and b = 0. If g(0) # g(3), then (f(1) — £(0)) = 1(g(0) + g(3)) lies (strictly)
between ¢(0) and g(3). Hence by the intermediate value theorem, there exists ¢ € (0, 1) such that

g(c) = %(f(l) — f(0)), i.e. flc+ %) — f(e) = %(f(l) — f(0)). Taking a = c+% and b = ¢, we get
the result.

Alternative solution: Let g(z) = f(z + 3) — f(z) — 2(f(1) — f(O)) for all z € [0,3]. Since f

2 72

is continuous, g : [0,3] — R is continuous. Also, g(0) = f(3) — 3/(0) — /(1) and g(3) =
() = f(3) + 3 7(0) = —g(0). If g(0) = 0, then we get the result by taking a=1and b=0.If
g(0) # 0, then g(%) and ¢(0) are of opposite signs and hence by the intermediate value theorem,

there exists ¢ € (0, 1) such that g(c) =0, i.e. f(c+3)— f(c)=3(f(1) — f(0)). Taking a = c+ 3
and b = ¢, we get the result.

(b) Let g(z) = f(xz+3)— f(x) —3(f(1) = f(0)) for all 2 € [0, 2]. Since f : [0,1] — R is continuous,

g :[0,2] — R is continuous. Also, g(0) + g(3) + g(%) = 0. If at least one of g(0), g(3) and g(3)
is 0, then the result follows immediately. Otherwise, at least two of g(0), g(3) and g(3) are of
opposite signs and hence by the intermediate value property of continuous functions, there ex-
ists ¢ € (0, 2) such that g(c) = 0, i.e. f(c+3)—f(c) = 5(f(1)—f(0)). We take a = c+3 and b = c.
Ex.25 Let f : [a,b] — R be continuous. For n € N, let xq,...,2, € [a,b] and let a,...,q,

be nonzero real numbers having same sign. Show that there exists ¢ € [a, b] such that

fle )Zaz— > oif ().

=1
(In partlcular this shows that if f : [a, b] % R is continuous and if for n € N, x4, ..., z, € [a,}],

then there exists & € [a b] such that f(§) = £(f(z1) + -+ f(2,)).)
Solution: Let a = Zaz Then o # 0 and <¢ > 0 for ¢ = 1,...,n. Since f : [a,b] — R is
continuous, there ex1st Y,z € [a,b] such that f (y) < f(x) < f(z) for all x E [a

) ,
fly) < fw) < f(2) for i = 1,..,n and so Z( Df(y) < ;(j) (z:) < Z(%) (2) = fly) <

izlai f(z;) < f(z). By the intermediate value theorem, there exists ¢ between y and z (both

b]. In particular,

n

inclusive) and so ¢ € [a, b] such that f(c) =1 i a; f(x;), ie. flco)a=> a;f(x;).

i=1 i=1
n

(If we take g = -+ = a,, = %, then Y  «a; = 1 and so applying the above result, we get the
i=1

required conclusion.)

Ex.26 Let f:[0,1] — R and g : [0, 1] — R be continuous such that sup{f(z) : z € [0,1]} =
sup{g(z) : x € [0,1]}. Show that there exists ¢ € [0, 1] such that f(c) = g(c).

Solution: Since f :[0,1] — R and g : [0,1] — R are continuous, there exist xy,xs € [0,1] such
that f(z1) = sup{f(z) : x € [0,1]} and g(x2) = sup{g(z) : € [0,1]}. Since f(z1) = g(z2) (by
hypothesis), we get f(z1) > g(z1) and f(xq2) < g(z2). If f(z1) = g(x1) or f(x2) = g(x3), then the
result follows immediately. So we may now assume that f(z1) > g(x;) and f(z9) < g(x2). Let
o(x) = f(x) — g(x) for all z € [0,1]. Since f and g are continuous, ¢ : [0,1] — R is continuous.
Also ¢(z1) > 0 and ¢(z2) < 0. Hence by the intermediate value theorem, there exists ¢ between



x1 and x9 such that p(c) =0, i.e. f(c) = g(c).

Ex.27 Let f : (0,00) — R be continuous such that lim f(z) = 0 and lim f(x) = 1. Show

r—04 T—00

that there exists ¢ € (0, 00) such that f(c) = ‘/73

Hint: Since lim f(z) =0 < § and lim flz)=1> =
z—0+

10, there exist x1,x9 € (0,00) with 71 < x5

such that f(z1) < § and f(z2) > % Slnce 7 < ﬁ by the intermediate value theorem, there

10
exists ¢ € (z1,x2) such that f(c) = %g

Ex.28 Let f : (a,b) — R be continuous. If both lim f(x) and hril f(z) exist (in R), then
T—rb—

IE—)(Z
show that f is bounded.
Solution: Let lim f(x) = ¢; and lirgl f(x) = by, where ¢1,05 € R. Then there exist d1,dy > 0
x—b—

r—a+

such that |f(z) — (1] < 1 for all z € (a,a+ d1) and |f(z) — €3] < 1 for all x € (b — d2,b). Hence
|f(x)] < 1+ 6] for all x 6 (a,a 4+ 1) and |f(x) < 1+ |ly| for all x € (b — d2,b). Since f is
continuous on [a + &, b — 2], fis bounded on [a+ %,b— 2]. So there exists M > 0 such that
|f(z)] < M for all x E la+ 3 Kl ,b—%2]. Choosing K = maX{M 1+ |61],1 4+ |5]} > 0, we find that
|f(x)| < K for all z € (a,b). Consequently f is bounded.

Ex.29 Consider the continuous function f : (0,1] — R, where f(z) = 1 — (1 — z)sin + for
all z € (0,1]. Does there exist xy € (0,1] such that f(x¢) = sup{f(z) : = € (0,1]}? Justify.

Solution: For all x € (0,1], we have f(z) < 1+ (1 —x) < 2. Hence 2 is an upper bound of
{f(x) : x € (0,1]}. Therefore there exists u € R such that u = sup{f(z) : x € (0,1]} < 2. Now

Mn+1)7r (0,1] forallneN:>u>f<4n—1)7r> =2- Wforalln€N$u>2(since
lim W = 0). Thus u = 2 and so (as seen at the beginning) f(z) < u for all x € (0,1], i.e
n—oo

there cannot exist any x¢ € (0, 1] such that f(zo) = sup{f(z) : z € (0,1]}.

Ex.30 Let f : [a,b] — R be continuous such that f(a) = f(b). Show that for each ¢ > 0,
there exist distinct z,y € [a, b] such that |z —y| < e and f(x) = f(y).

Solution: We first show that there exist x1,y; € [a,b] such that |z, — y| = 1(b — a) and
f(@1) = f(yr). Let g(z) = flz + 5%) — f(z) for all z € [a,%F2]. Since f is continuous,
g : la, 2] — R is continuous. Also g(a) = f(%E) — f(a) and g(£2) = f(b) — (<) = —g(a),
since f(a) = f(b). If g(a) = 0, then we can take 21 = %2 and y; = a. Otherwise, g(“*b) and g(a)
are of opposite signs and hence by the intermediate Value theorem, there exists ¢ € (a, “H’) such
that g(c) =0, i.e. f(c+5%) = f(c). We take 21 = c+ 5% and y; = c.

Repeating the same procedure as above we get x9,ys € [a,b] such that |zy — yo| = %|:1:1 —y| =
2%(() —a) and f(z9) = f(yg). Continuing in this way, for each n € N, there exist x,,y, € |[a, b
such that |2, — yn| = 5= (b — a) and f(z,) = f(ys). If € > 0, then there exists ng € N such that

5n5 (b —a) < e. Hence the result follows by choosing * = ,,, and y = ¥, .

Alternative solution: By continuity of f on [a,b], there exist zg,yo € [a,b] such that f(yy) <
f(z) < f(xo) for all x € [a,b]. If both zg,yo € {a,b}, then f must be a constant function and so
the result is obvious. Hence we assume that xy € (a,b). (The case of yy € (a,b) is similar.) Let
e > 0. Then there exists ng € N such that (zo— =, 2o+ ;=) C [a,b]. If any two of the three values
f(xo — 75-), f(wo) and f(zo + ;) are equal, then the result follows immediately. Otherwise, we
assume without loss of generality that f(xg — ﬁ) < f(zo + ﬁ) < f(xg). By the intermediate
value theorem, there exists ¢ € (g o) such that f(c) = f(zo + 75-). We get the result by
taking x = z¢ + ﬁ and y = c.

&
4ng’

Ex.31 Give an example (with justification) of a function f : R — R which is differentiable
only at 2.



(x—2)? ifzeqQ,
0 ifx e R\ Q.
% < |z — 2| for all x(# 2) € R. Hence f is differen-

Solution: Let f: R — R be defined by f(z) =

f(@)—1(2)

== = lim f(z) = 0, since

We have lim

T—2
tiable at 2.
Again, let z(# 2) € R. Then there exist sequences (r,) in Q and (¢,) in R\ Q such that r, — «
and t, — . Now f(r,) = (r, —2)* = (z — 2)? and f(t,) — 0 (since f(t,) = 0 for all n € N).
Since (z — 2)? # 0, it follows that f cannot be continuous at x and consequently f cannot be
differentiable at x. Therefore f is differentiable only at 2.

Ex.32 Let f : R — R be such that f(z) — f(y) < (z — y)? for all z,y € R. Show that f is
a constant function.
Solution: The given condition implies that |f(x) = f(y)] < |z —y]? for all z,y € R. Let y € R.

Then for all z(# y) € R, we have |f(z W) < |z —y| = hm f(z) f( L =0, i.e. f'(y)=0. Thus
—y
f'(y) =0 for all y € R. Consequently f : ]R —Ris a constant functlon.

Ex.33 If m, k € N, then evaluate lim ((”H)MH"H)TT"’HTLM)M — kn)

n—00 n’
m k m k
Solution: The given limit equals lim Z ZM = > i lim M Z L (1+2)™|,m0 (us-
TL—)OOZ 1 n i=1 n—oo n i=1
ing sequential criterion of limit) = @m.

Ex.34 Let f : (a,b) — R and ¢ : (a,b) — R be differentiable at ¢ € (a,b) such that f(c) = g(c)
and f(x) < g(z) for all z € (a,b). Show that f'(c) = ¢'(c).
Solution: The given conditions imply that L&=/) < 9@=9() o 41 2 € (¢,b) and L x) f(c)

% forallz € (a,c). Since f is dlfferentlable at ¢, we get f’( ) = hm+ (2_5( < hm+ % =
Tr—cC Tr—rC
g'(c) and f'(c) = Ih_gl_ —f(xiif(c) > mligl_ —g(”’ﬁii(c) = ¢'(¢). Consequently f'(c) = ¢'(c).

Ex.35 Let f : [0,1] — R be differentiable such that f(0) = f(1) = 0. Show that there ex-
ists ¢ € (0,1) such that f'(c) = f(c).

Solution: Let g(x) = e *f(x) for all x € [0,1]. Then g : [0,1] — R is differentiable and
g (z) = e *(f'(z) — f(x)) for all z € [0,1]. Also, since g(0) = 0 = g(1), by Rolle’s theorem,
there exists ¢ € (0,1) such that ¢’(¢) = 0. Since e=¢ # 0, we get f'(c) = f(c).

Ex.36 Let f : R — R be differentiable such that f(0) = 0 and f'(z) > f(x) for all x € R.
Show that f(x) > 0 for all x > 0.

Solution: If g(x) = e *f(z) for all z € R, then g : R — R is differentiable and ¢'(z) =
e *(f'(x) — f(z)) > 0 for all x € R. Hence g is strictly increasing on R and so g(z) > ¢(0)
for all z > 0. This implies that f(z) > 0 for all = > 0.

Ex.37 Let f : [a,b] — R be a differentiable function such that f(z) # 0 for all x € [a,b].
Show that there exists ¢ € (a, b) such that J;/((CC)) =-L 4+.L.

Solution: Let g(z) = (x — a)(x — b) f(z) for all x € [a,b]. Since f : [a,b] — R is differentiable,
g : la,b] — R is differentiable (and hence continuous) and ¢'(z) = (z — a)(z — b) f'(x) + (x —
b)f(x) + (x —a)f(z) for all x € [a,b]. Also, g(a) =0 = g(b). Therefore by Rolle’s theorem, there
exists ¢ € (a,b) such that ¢'(c) =0, i.e. (c—a)(c—"0)f'(c) =—(c—0b)f(c)—(c—a)f(c). Dividing
by (¢ —a)(c —b)f(c) # 0, we obtain (()) L4+ L

Ex.38 Let f : [0,1] — R be differentiable such that f(0) =0 and f(1) = 1. Show that there exist
c1, ¢ € [0,1] with ¢; # ¢y such that f'(c1) + f'(c2) = 2.

Solution: By the mean value theorem, there exist ¢; € (0, 5) and ¢, € (3, 1) such that f(3)—f(0) =
2f'(e1) and f(1) — f(3) = 1f'(c2). Hence c1, ¢ € [0,1] with ¢; # ¢y such that f/(c1) + f'(c2) =



2[f(1) = f(O)] =2

Ex.39 Show that for each a € (0,1) and for each b € R, the equation asinz +b = x has a
unique root in R.

Solution: Let a € (0,1), b € R and let f(z) = x —asinz — b for all z € R. Then f: R — R
is differentiable (and also continuous) and f'(z) = 1 — acosz for all x € R. Since a € (0,1),
acosx < a < 1forall x € Randso f'(x) # 0 for all x € R. As a consequence of Rolle’s theorem,
the equation f(x) = 0 has at most one root in R. Again, f(b+ 1) =1 —asin(b+ 1) > 0 (since
asin(b+1) <a<1)and f(b—1)=—1—asin(b—1) <0 (since asin(b— 1) > —a > —1). Hence
by the intermediate value property of continuous functions, the equation f(x) = 0 has at least
one root in (b — 1,b+ 1). Thus the equation f(z) = 0, i.e. the equation asinx + b = x has a
unique root in R.

Ex.40(a) Find the number of (distinct) real roots of the equation 3% 4 4% = 57.

Solution: 1f f(z) = (2)* + (3)* — 1 for all z € R, then f : R — R is differentiable and
fl(@) = (2)"log(2) + (£)"log(s) < 0 for all z € R. As a consequence of Rolle’s theorem, the
equation f(z) = 0 has at most one real root and hence the given equation has at most one real
root. Clearly 2 is a root of the given equation. Therefore the given equation has exactly one

(distinct) real root.

Ex.40(b) Find the number of (distinct) real roots of the equation z'® + 72% — 5 = 0.

Solution: Let f(z) = ' + 723 — 5 for all x € R. Then f : R — R is differentiable with
f'(z) = 132'2 + 212% > 0 for all z > 0. As a consequence of Rolle’s theorem, the equation
f(z) = 0 has at most one root in (0,00). Also, since f(0) = =5 < 0 and f(1) = 3 > 0, by the
intermediate value property of continuous functions, the equation f(x) = 0 has least one root in
(0,1). Since f(z) < 0 for all < 0, it follows that the given equation has exactly one (distinct)
real root.

Ex.41 Show that for each n € N, the equation 2" + x — 1 = 0 has a unique root in [0, 1].

If for each n € N, z,, denotes this root, then show that the sequence (z,) converges to 1.
Solution: Let n € N and let f,(z) = 2" + 2 — 1 for all x € [0,1]. Then f, : [0,1] — R is differ-
entiable and f/(x) = nz" ' 4+ 1 > 0 for all z € [0,1]. This shows that f, is a strictly increasing
function on [0, 1] and so the equation f,(x) = 0 can have at most one root in [0, 1]. Again, since
fn(0) = =1 < 0 and f,(1) =1 > 0, by the intermediate value theorem, the equation f,(z) =0
has at least one root in (0,1). Thus the equation f,(z) = 0 has a unique root in [0, 1], which is
denoted by x,,.

Foreachn e N, O <z, <1= foa(lz,) =" 4z, -1 <a"+2,—1=0= fr1(zn) =
T, < Tpy1, since as shown above, f, 1 is strictly increasing on [0,1]. Also z, € (0,1) for all
n € N. Thus the sequence (z,) is increasing and bounded and consequently (x,) is convergent.
If ¢ = lim z,, then 0 < ¢ < 1 (since 0 < z,, < 1 for all n € N). If possible, let ¢ < 1. Then

n—oo
there exists ng € N such that |z, — | < (1 — ¢) for all n > ng. This gives 0 < 27 < ()" for
all n > ng. Since 0 < £ <1, ()" —» 0 and so 27 — 0. Now 2 + z, — 1 =0foralln € N
= lim (2} +2,—1)=0={(—1=0= ¢ =1, which is a contradiction. Hence ¢ = 1.

n—oo

Ex.42 Let f : (0,1) — R be differentiable and let |f’(z)| < 3 for all x € (0,1). Show that
the sequence (f(-7)) converges.
1

Solution: For all m,n € N with m # n, by the mean value theorem, there exists ¢ between

and n+r1 such that |f(m;ﬂ>_f(%ﬂ)| = |f(c)| m;ﬂ_n%l < 3(%—1—%) Thus if € > 0, then choosing

nog € N such that ny > ¢, we find that |f(m+r1) — f(%ﬂ)\ < 7% < ¢ for all m,n > ny. Hence

(f (n—il)) is a Cauchy sequence in R and therefore (f(-17)) converges.

Ex.43 Let f : R — R be differentiable and lim f’(z) = 1. Show that f is unbounded.

T—00



Solution: Since lim f’(z) = 1, there exists M > 0 such that |f/(z) — 1| < § for all z > M and so

Tr—r+00
T < f(z)<3forall z > M. If g(z) = f(z) — £ for all z € R, then ¢'(z) = f'(z) — 3 > 0 for all
x> M = g is strictly increasing on [M, 00) = g(z) > g(M) forallz > M = f(z) > 2+ f(M)-2
for all z > M = lim f(x) = 0o = f is unbounded.
T—00

Ex.44 Let f : [a,b] — R be twice differentiable and let f(a) = f(b) = 0 and f(c) > 0, where
€ (a,b). Show that there exists £ € (a,b) such that f”(£) < 0.

Solution: By the mean value theorem, there exist x; € (a,c) and x2 € (¢, b) such that f'(z) =

! (Ci g (@ — f(—ca and f'(zq) = % = —%. Again, by the mean value theorem, there exists
¢ € (x1,72) (and so £ € (a,b)) such that f"(§) = % = —(m_ibl_)?b)fs)(c_a) < 0, since
f(c) > 0.

Ex.45 If f:]0,4] — R is differentiable, then show that there exists ¢ € [0,4] such that

f1(e) = 5(f'(1) +2f'(2) + 3f'(3)).

Solution: Let f'(a) = mln{f’( ), f(2), f'(3)} and f'(B) = max{f'(1), f(2), f'(3)}, where o, 8 €
{1,2,3}. Then f'(o) < 2(f'(1) +2f'(2) + 3f'(3)) < f(8) and hence by the intermediate value
property of derivatives, there exists ¢ € [0, 4] such that f'(c) = £(f(1) +2/'(2) + 3//(3))-

Ex.46 Let f(x) —{ 0 ifze [0,1] ﬂ(R\Q

1
Examine whether f is Riemann integrable on [0,1]. Also, find [ f, if it exists (in R).

0
Solution: Clearly f is bounded on [0, 1]. Let P = {xg,x1, ..., z,} be any partition of [0, 1]. Since
between any two distinct real numbers, there exist a rational as well as an irrational number, it
follows that M; = z; and m; = 0 for i = 1,...,n. (Note that M; cannot be less than x;, because
otherwise we can find a rational number 7; between M; and x; and so f (7",) =7r; > ]\/[Z7 Wthh is not

possible.) Hence L(f, P) =0and U(f, P) = i (T, —xi1) = Z x?— Z TiTiq Z(% —x2 )

=1

1
(since a7 + a7 | > 2x;a;_; for i = 1,...,n) = . Consequently ff(x) de > 1 and [ f(z)dz = 0.
0 0
1 1
Since [ f(z)dx # ff(m) dz, f is not Riemann integrable on [0, 1].
0

Ex.47 If f : [0,1] — R is Riemann integrable, then find lim fx”f
n—oo 0
Solution: Since f is Riemann integrable on [0, 1], f is bounded on [0, 1]. So there exists M > 0 such
1 1 1
that |f(z)] < M for all z € [0,1]. Now | [ 2" f(x)dz| < [|2"f(z)|de < M [2"dx = nﬁﬂ — 0 as
0 0 0

1
n — oo. Hence it follows that lim [2"f(z)dz = 0.

n—o0 0

Ex.48 If f : [0,27] — R is continuous such that [ f(z)dx = 0, then show that there exists
0

c € (0, %) such that f( ) = 2cos 2c.

Solution: Let g(x ff t) dt—sin 2z for all x € [0, 27]. Since f : [0, 27] — R is continuous, by the

first fundamental theorem of calculus, g : [0, 27] - R is differentiable and ¢'(z) = f(x) — 2 cos 2z

for all z € [0, 27]. Also, g(0) = 0 = g(5) (since f f(z)dx = 0). Hence by Rolle’s theorem, there
exists ¢ € (0, §) such that ¢'(c) =0, i.e. f( )= 2COS 2c.



b
Ex.49 Prove that for each a > 0, there exists a unique b > 0 such that a = f W dx.
0

y
Solution: Let a > 0 and let F(y) = [ W dz for all y > 0. Since 975 is continuous for
0

:v13)

all z € [0, oo) by the first fundamental theorem of calculus, F' : [0,00) — R is differentiable and
F'(y) = W > 0 for all y € [0,00). Hence F is strictly increasing on [0, 00) and so there can
be at most one b > 0 satlsfylng F(b) =a. If a = 0, we take b = 0. We now assume that a > 0.

We have F(y) > f 1+ T dr > f o 3)1/5 dr = 26%(y% — 1) — oo as y — oco. Hence there exists

y1 > 0 such that F 0) <a<F (yl) Since F' is continuous, by the intermediate value theorem,
there exists b € (0,y;) such that F(b) =

™
Ex.50 Show that there exists a positive real number « such that [ 2®sinzdx = 3.
0

Hint: The function f : [0,1] — R, defined by f(\ fa: sinzdx for all A € [0,1], can be

shown to be continuous. Also, f(0 fsmxda: =2 < 3and f(1) = fmsinxdx =7 > 3.
0
Hence by the intermediate value property of continuous functions, there exists o € (0,1) such

that f(a fx sinx dx = 3.

Ex.51 Determine all real values of p for which the integral f ¢ —1 dx is convergent.

Solution: The given integral is convergent iff both f 1=¢% dx and f 1—¢* dx are convergent. If

rz—0+
1

p <0, then { 1=¢ " dz exists (in R) as a Riemann integral. For p > 0, since lim (1=~ . 2771) =

1
lim (e™*-<=1) =1 by the limit ison test, [ =5
g i}I(I)l_i_(e ~ ) # 0, by the limit comparison test, f <

dx converges 1H

f 1=c” dx converges iff p < 2.

Again, since lim( I . 4P) = lim (1 — ™) = 1 # 0, by the limit comparison test, [ 1=2—
T—>00 T—00 1

converges iff f dx converges. We know that f

1
converges iff p > 1. Therefore the given integral i 1s convergent iff 1 < p < 2.



