
MA 101 (Mathematics I)

Hints/Solutions for Practice Problem Set - 2

Ex.1(a) State TRUE or FALSE giving proper justification: If (xn) is a sequence in R which
converges to 0, then the sequence (xnn) must converge to 0.
Solution: The given statement is TRUE. If xn → 0, then there exists n0 ∈ N such that |xn| < 1

2

for all n ≥ n0 and so 0 ≤ |xnn| < (1
2
)n for all n ≥ n0. Since (1

2
)n → 0, by sandwich theorem, it

follows that |xnn| → 0 and consequently xnn → 0.

Ex.1(b) State TRUE or FALSE giving proper justification: There exists a non-convergent se-
quence (xn) in R such that the sequence (xn + 1

n
xn) is convergent.

Solution: The given statement is FALSE. If possible, let there exist a non-convergent sequence
(xn) such that the sequence (yn) is convergent, where yn = xn + 1

n
xn = (1 + 1

n
)xn for all n ∈ N.

Then, since xn = yn
1+ 1

n

for all n ∈ N and since (1 + 1
n
) converges to 1 6= 0, it follows that (xn) must

be convergent, which is a contradiction.

Ex.1(c) State TRUE or FALSE giving proper justification: There exists a non-convergent se-
quence (xn) in R such that the sequence (x2n + 1

n
xn) is convergent.

Solution: The given statement is TRUE, because if xn = (−1)n for all n ∈ N, then (xn) is not

convergent, but (x2n + 1
n
xn) = (1 + (−1)n

n
) is convergent (with limit 1), since (−1)n

n
→ 0.

Ex.1(d) State TRUE or FALSE giving proper justification: If (xn) is a sequence of positive
real numbers such that the sequence ((−1)nxn) converges to ` ∈ R, then ` must be equal to 0.
Solution: The given statement is TRUE. Since (−1)nxn → `, the subsequences ((−1)2nx2n) = (x2n)
and ((−1)2n−1x2n−1) = (−x2n−1) of ((−1)nxn) must also converge to `. Since x2n > 0 for all n ∈ N,
` ≥ 0 and since −x2n−1 < 0 for all n ∈ N, ` ≤ 0. Hence ` = 0.

Ex.1(e) State TRUE or FALSE giving proper justification: If an increasing sequence (xn) in
R has a convergent subsequence, then (xn) must be convergent.
Solution: The given statement is TRUE. Let (xnk) be a convergent subsequence of (xn). Then
(xnk) is bounded above, i.e. there exists M > 0 such that xnk ≤M for all k ∈ N. For each k ∈ N,
k ≤ nk and since (xn) is increasing, we get xk ≤ xnk ≤ M . Thus (xn) is bounded above and
consequently (xn) is convergent.

Ex.1(f) State TRUE or FALSE giving proper justification: If (xn) is a sequence of positive

real numbers such that lim
n→∞

(n
3
2xn) = 3

2
, then the series

∞∑
n=1

xn must be convergent.

Solution: The given statement is TRUE. Since the sequence (n
3
2xn) is convergent, it is bounded

and so there exists M > 0 such that 0 ≤ n
3
2xn ≤ M for all n ∈ N. Hence 0 ≤ xn ≤ M

n3/2 for all

n ∈ N. Since
∞∑
n=1

M
n3/2 is convergent, by comparison test,

∞∑
n=1

xn is convergent.

Ex.1(g) State TRUE or FALSE giving proper justification: If (xn) is a sequence of positive

real numbers such that the series
∞∑
n=1

n2x2n converges, then the series
∞∑
n=1

xn must converge.

Solution: For each n ∈ N, we have
n∑
k=1

xk =
n∑
k=1

1
k
· kxk ≤ (

n∑
k=1

1
k2

)
1
2 (

n∑
k=1

k2x2k)
1
2 (using Cauchy-

Schwarz inequality). Since both the series
∞∑
n=1

1
n2 and

∞∑
n=1

n2x2n are convergent, their sequences of

partial sums are bounded. Hence the sequence

(
n∑
k=1

xk

)∞
n=1

of partial sums of the series
∞∑
n=1

xn is



bounded above. Therefore by monotonic criterion for series, the series
∞∑
n=1

xn is convergent.

Ex.1(h) State TRUE or FALSE giving proper justification: If (xn) is a sequence in R such

that the series
∞∑
n=1

x3n is convergent, then the series
∞∑
n=1

x4n must be convergent.

Solution: The given statement is FALSE. If xn = (−1)n
n1/4 for all n ∈ N, then

∞∑
n=1

x3n =
∞∑
n=1

(−1)n
n3/4 is

convergent by Leibniz’s test (we note that the sequence ( 1
n3/4 ) is decreasing and converges to 0),

but
∞∑
n=1

x4n =
∞∑
n=1

1
n

is not convergent.

Ex.1(i) State TRUE or FALSE giving proper justification: If (xn) is a sequence of positive

real numbers such that the series
∞∑
n=1

x3n is convergent, then the series
∞∑
n=1

x4n must be convergent.

Solution: The given statement is TRUE. If
∞∑
n=1

x3n is convergent, then x3n → 0. So there exists

n0 ∈ N such that x3n < 1 for all n ≥ n0. Hence xn < 1 for all n ≥ n0 and therefore 0 < x4n < x3n

for all n ≥ n0. Since
∞∑
n=1

x3n is convergent, by comparison test,
∞∑
n=1

x4n must be convergent.

Ex.1(j) State TRUE or FALSE giving proper justification: If (xn) is a sequence of positive

real numbers such that the series
∞∑
n=1

x4n is convergent, then the series
∞∑
n=1

x3n must be convergent.

Solution: The given statement is FALSE. If xn = 1
n1/3 for all n ∈ N, then

∞∑
n=1

x4n =
∞∑
n=1

1
n4/3 is

convergent, but
∞∑
n=1

x3n =
∞∑
n=1

1
n

is not convergent.

Ex.1(k) State TRUE or FALSE giving proper justification: If f : R → R is continuous at
both 2 and 4, then f must be continuous at some c ∈ (2, 4).

Solution: The given statement is FALSE. Let f(x) =

{
(x− 2)(x− 4) if x ∈ Q,

0 if x ∈ R \Q.
Let (xn) be any sequence in R such that xn → 2. Since |f(xn)| ≤ |(xn − 2)(xn − 4)| → 0,
f(xn)→ 0 = f(2). This shows that f : R→ R is continuous at 2. Similarly f is continuous at 4.
Let c ∈ (2, 4). Then there exist sequences (rn) in Q and (tn) in R\Q such that rn → c and tn → c.
Since f(rn) = (rn − 2)(rn − 4)→ (c− 2)(c− 4) 6= 0 and since f(tn)→ 0, it follows that f cannot
be continuous at c.

Ex.1(l) State TRUE or FALSE giving proper justification: There exists a continuous function
f : R→ R such that f(x) ∈ Q for all x ∈ R \Q and f(x) ∈ R \Q for all x ∈ Q.
Solution: The given statement is FALSE. If possible, let there exist a continuous function f : R→
R such that f(x) ∈ Q for all x ∈ R \Q and f(x) ∈ R \Q for all x ∈ Q. Let g(x) = x− f(x) for
all x ∈ R. Then g : R → R is continuous and g(x) ∈ R \ Q for all x ∈ R. By the intermediate
value theorem, it follows that g must be a constant function. Hence g(x) = g(0) for all x ∈ R and
so f(x) = x+ f(0) for all x ∈ R. In particular, we get f(f(0)) = 2f(0), which is a contradiction,
since f(0) = −g(0) ∈ R \Q.

Ex.1(m) State TRUE or FALSE giving proper justification: If f : [1, 2] → R is a differen-
tiable function, then the derivative f ′ must be bounded on [1, 2].

Solution: The given statement is FALSE. Let f(x) =

{
(x− 1)2 sin 1

(x−1)2 if 1 < x ≤ 2,

0 if x = 1.

Clearly f : [1, 2]→ R is differentiable on (1, 2] with f ′(x) = 2(x− 1) sin 1
(x−1)2 −

2
x−1 cos 1

(x−1)2 for

all x ∈ (1, 2]. Also, since
∣∣∣f(x)−f(1)x−1

∣∣∣ = |x− 1|| sin 1
(x−1)2 | ≤ |x− 1| for all x ∈ (1, 2], it follows that



lim
x→1+

f(x)−f(1)
x−1 = 0 and hence f is differentiable at 1 (with f ′(1) = 0). If xn = 1 + 1√

2nπ
for all

n ∈ N, then xn ∈ [1, 2] for all n ∈ N and f ′(xn) = −2
√

2nπ → −∞, which shows that f ′ is not
bounded on [1, 2].

Ex.1(n) State TRUE or FALSE giving proper justification: If f : [0,∞) → R is differentiable
such that f(0) = 0 = lim

x→∞
f(x), then there must exist c ∈ (0,∞) such that f ′(c) = 0.

Solution: The given statement is TRUE. If possible, let f ′(x) 6= 0 for all x ∈ (0,∞). Then by
the intermediate value property of derivatives, either f ′(x) > 0 for all x ∈ (0,∞) or f ′(x) < 0 for
all x ∈ (0,∞). We assume that f ′(x) > 0 for all x ∈ (0,∞). (The other case is almost similar.)
Then f is strictly increasing on [0,∞) and so f(x) > f(1) > f(0) = 0 for all x ∈ (1,∞). This
contradicts the given fact that lim

x→∞
f(x) = 0. Hence there exists c ∈ (0,∞) such that f ′(c) = 0.

Ex.1(o) State TRUE or FALSE giving proper justification: If f : R → R is differentiable,
then for each c ∈ R, there must exist a, b ∈ R with a < c < b such that f(b)− f(a) = (b− a)f ′(c).
Solution: The given statement is FALSE. Let f(x) = x3 for all x ∈ R, so that f : R→ R is differ-
entiable. If possible, let there exist a, b ∈ R with a < 0 < b such that f(b)− f(a) = (b− a)f ′(0).
Then b3 − a3 = (b− a) · 0 = 0⇒ b3 = a3, which is not true, since a < 0 and b > 0.

Ex.1(p) State TRUE or FALSE giving proper justification: The function f : R→ R, defined by
f(x) = x+ sinx for all x ∈ R, is strictly increasing on R.
Solution: The given statement is TRUE. Since f ′(x) = 1 + cosx ≥ 0 for all x ∈ R, f is increasing
on R. If possible, let there exist x1, x2 ∈ R with x1 < x2 such that f(x1) = f(x2). Then f must
be constant on [x1, x2] and so f ′(x) = 0 for all x ∈ [x1, x2]. This implies that cosx = −1 for all
x ∈ [x1, x2], which is not true. Therefore f is strictly increasing on R.

Ex.1(r) State TRUE or FALSE giving proper justification: If f : [0, 1] → R is a bounded

function such that lim
n→∞

1
n

n∑
k=1

f( k
n
) exists (in R), then f must be Riemann integrable on [0, 1].

Solution: The given statement is FALSE. If f(x) =

{
0 if x ∈ [0, 1] ∩Q,
1 if x ∈ [0, 1] ∩ (R \Q),

then f : [0, 1]→ R is a bounded function and we know that f is not Riemann integrable on [0, 1].

However, since f( k
n
) = 0 for k = 1, ..., n and for all n ∈ N, lim

n→∞
1
n

n∑
k=1

f( k
n
) = 0.

Ex.2(a) For all n ∈ N, let an = n + 1
n

and xn = 1
n2 (a1 + · · · + an). Examine whether the

sequence (xn) is convergent. Also, find the limit if it is convergent.

Solution: For all n ∈ N, xn = 1
n2 [(1+2+ · · ·+n)+(1+ 1

2
+ · · ·+ 1

n
)] = 1

2
(1+ 1

n
)+ 1

n
· 1+

1
2
+···+ 1

n

n
. Since

1
n
→ 0, by the solution of Ex.4 of Practice Problem Set - 2, we get 1

n
(1+ 1

2
+ · · ·+ 1

n
)→ 0. It follows

(by limit rules for algebraic operations) that (xn) is convergent with limit 1
2
(1 + 0) + 0.0 = 1

2
.

Alternative solution: We can show that lim
n→∞

1
n2 (1 + 1

2
+ · · · + 1

n
) = 0 even without using Ex.4 of

Practice Problem Set - 2. We have 0 ≤ 1
n2 (1 + 1

2
+ · · · + 1

n
) ≤ 1

n2 (1 + · · · + 1) = 1
n

for all n ∈ N.

Since 1
n
→ 0, by sandwich theorem, it follows that 1

n2 (1 + 1
2

+ · · ·+ 1
n
)→ 0.

Ex.2(b) Let xn = (n2 + 1)
1
8 − (n + 1)

1
4 for all n ∈ N. Examine whether the sequence (xn)

is convergent. Also, find the limit if it is convergent.
Hint: We have xn = (n2 + 1)

1
8 − (n2)

1
8 + n

1
4 − (n + 1)

1
4 for all n ∈ N. Now consider the first two

terms together and the last two terms together. The limit is 0.

Ex.2(c) Let xn = (n2 + n)
1
n for all n ∈ N. Examine whether the sequence (xn) is conver-

gent. Also, find the limit if it is convergent.
Solution: We have 1 ≤ xn ≤ (2n2)

1
n for all n ∈ N. Since 2

1
n → 1 and n

1
n → 1, it follows that



(2n2)
1
n = 2

1
n (n

1
n )2 → 1. Hence by sandwich theorem, (xn) is convergent with limit 1.

Ex.2(d) Let xn = 5n( 1
n3 − 1

n!
) for all n ∈ N. Examine whether the sequence (xn) is conver-

gent. Also, find the limit if it is convergent.
Solution: Let an = 5n

n3 and bn = 5n

n!
for all n ∈ N. Since lim

n→∞
|an+1

an
| = lim

n→∞
5

(1+ 1
n
)3

= 5 > 1 and

lim
n→∞

| bn+1

bn
| = lim

n→∞
5

n+1
= 0 < 1, the sequence (an) is not convergent and the sequence (bn) is con-

vergent (with limit 0). Since (xn) = (an)− (bn), it follows that (See Ex.1(c) of Practice Problem
Set - 1) (xn) is not convergent.

Ex.2(e) Let xn = 1
1.n

+ 1
2.(n−1) + 1

3.(n−2) + · · · + 1
n.1

for all n ∈ N. Examine whether the se-

quence (xn) is convergent. Also, find the limit if it is convergent.
Solution: We have xn = 1

n+1
[(1 + 1

n
) + (1

2
+ 1

n−1) + · · ·+ ( 1
n

+ 1)] = 2n
n+1
· 1
n
(1 + 1

2
+ · · ·+ 1

n
) for all

n ∈ N. Since 1
n
→ 0, 1

n
(1 + 1

2
+ · · ·+ 1

n
)→ 0 (using the solution of Ex.4 of Practice Problem Set -

2) and 2n
n+1

= 2
1+ 1

n

→ 2. Hence by limit rule for product, (xn) is convergent and lim
n→∞

xn = 0.

Ex.2(f) Let xn = n
3
− [n

3
] for all n ∈ N. Examine whether the sequence (xn) is convergent.

Also, find the limit if it is convergent.
Solution: We have x3n = 0 and x3n+1 = 1

3
for all n ∈ N. Thus (xn) has two subsequences (x3n)

and (x3n+1) converging to two different limits, viz. 0 and 1
3

respectively. Therefore (xn) is not
convergent.

Ex.2(g) Let x1 = 1 and xn+1 = ( n
n+1

)x2n for all n ∈ N. Examine whether the sequence (xn)
is convergent. Also, find the limit if it is convergent.
Solution: Clearly xn ≥ 0 for all n ∈ N. Also, we have x1 = 1 and if we assume that xk ≤ 1
for some k ∈ N, then xk+1 = ( k

k+1
)x2k ≤ 1. Hence by the principle of mathematical induc-

tion, xn ≤ 1 for all n ∈ N. This gives xn+1 = ( n
n+1

xn)xn ≤ xn for all n ∈ N. Thus (xn)
is decreasing and bounded below and hence (xn) is convergent. If ` = lim

n→∞
xn, then we have

lim
n→∞

xn+1 = lim
n→∞

n
n+1

( lim
n→∞

xn)2 ⇒ ` = `2 ⇒ ` = 0 or 1. Since ` = inf{xn : n ∈ N} ≤ x2 = 1
2
, we

must have ` = 0.

Ex.2(h) Let a, b ∈ R, x1 = a, x2 = b and xn+2 = 1
2
(xn + xn+1) for all n ∈ N. Examine

whether the sequence (xn) is convergent. Also, find the limit if it is convergent.
Solution: We have xn+1 − xn = (−1

2
)(xn − xn−1) = · · · = (−1

2
)n−1(x2 − x1) for all n ∈ N. Hence

xn = x1 +(xn−xn−1)+ · · ·+(x2−x1) = a+[(−1
2
)n−2 + · · ·+1](x2−x1) = a+ 2

3
[1−(−1

2
)n−1](b−a)

for all n ∈ N. Since (−1
2
)n → 0, (xn) is convergent and lim

n→∞
xn = a+ 2

3
(1− 0)(b− a) = 1

3
(a+ 2b).

Alternative solution: The convergence of (xn) can also be shown as follows.
We have xn+2− xn+1 = (−1

2
)(xn+1− xn) for all n ∈ N, so that |xn+2− xn+1| = 1

2
|xn+1− xn| for all

n ∈ N. Hence it follows that (xn) is a Cauchy sequence in R and therefore (xn) converges.

Ex.2(i) Let 0 < xn < 1 and xn(1− xn+1) >
1
4

for all n ∈ N. Examine whether the sequence (xn)
is convergent. Also, find the limit if it is convergent.

Solution Using the A.M. > G.M. inequality, we have xn+(1−xn+1)
2

≥
√
xn(1− xn+1) >

1
2

for all
n ∈ N. Hence xn > xn+1 for all n ∈ N and so (xn) is decreasing. Since xn > 0 for all n ∈ N,
(xn) is bounded below. Therefore (xn) is convergent. If lim

n→∞
xn = `, then lim

n→∞
xn+1 = `. Since

xn(1− xn+1) >
1
4

for all n ∈ N, we get `(1− `) ≥ 1
4
⇒ (2`− 1)2 ≤ 0⇒ (2`− 1)2 = 0⇒ ` = 1

2
.

Ex.3 Let (xn) be any non-constant sequence in R such that xn+1 = 1
2
(xn + xn+2) for all n ∈ N.

Show that (xn) cannot converge.
Solution: For each n ∈ N, 2xn+1 = xn + xn+2 ⇒ xn+2 − xn+1 = xn+1 − xn. If d = x2 − x1, then
xn = x1 + (n− 1)d for all n ∈ N. Since (xn) is not a constant sequence, d 6= 0. Given any M > 0,



choosing n ∈ N satisfying n > 1 + M+|x1|
|d| , we find that |xn| > M . Thus (xn) is unbounded and

consequently (xn) cannot converge.

Ex.4 Let (xn) be a sequence in R and let yn = 1
n
(x1 + · · · + xn) for all n ∈ N. If (xn) is

convergent, then show that (yn) is also convergent.
If (yn) is convergent, is it necessary that (xn) is (i) convergent? (ii) bounded?
Solution: Let xn → ` ∈ R and let ε > 0. Then there exists N ∈ N such that |xn−`| < ε

2
for all n >

N . Now for all n > N , we have |yn−`| = 1
n
|(x1−`)+ · · ·+(xn−`)| ≤ 1

n

N∑
i=1

|xi−`|+ 1
n

n∑
i=N+1

|xi−`|.

We choose K ∈ N such that 1
K

N∑
i=1

|xi − `| < ε
2
. Let n0 = max{N,K}. Then n0 ∈ N and for all

n > n0, we have |yn − `| < ε
2

+ (n−N
n

) ε
2
< ε

2
+ ε

2
= ε. Hence (yn) is convergent (with limit `).

If (yn) is convergent, then it is not necessary that (xn) is convergent. For example, let (xn) be the
sequence (1,−1, 1,−1, ...), which is not convergent. But since |yn| ≤ 1

n
for all n ∈ N, we see that

yn → 0.
If (yn) is convergent, then it is not even necessary that (xn) is bounded. For example, let (xn) be

the sequence (1,−1,
√

2,−
√

2,
√

3,−
√

3, ...), which is not bounded. But y2n = 0 and y2n−1 =
√
n

2n−1

for all n ∈ N, so that |yn| ≤
√
n+1√
2n

= 1√
2

√
1
n

+ 1
n2 → 0. Hence yn → 0.

Ex.5 If (xn) is a sequence in R such that lim
n→∞

(xn+1 − xn) = 5, then determine lim
n→∞

xn
n

.

Solution: Let yn = xn+1 − xn for all n ∈ N. Since lim
n→∞

yn = 5, by the solution of Ex.4 of Practice

Problem Set - 2, we have lim
n→∞

1
n
(y1+· · ·+yn) = 5. Since y1+· · ·+yn = (x2−x1)+· · ·+(xn+1−xn) =

xn+1−x1 for all n ∈ N, we get lim
n→∞

xn+1−x1
n

= 5. Now xn+1

n+1
= xn+1−x1

n
· n
n+1

+ x1
n+1

for all n ∈ N and

hence by applying the limit rules, we obtain lim
n→∞

xn+1

n+1
= 5.1 + 0 = 5. It follows that lim

n→∞
xn
n

= 5.

Ex.6 If x1 = 3
4

and xn+1 = xn − xn+1
n for all n ∈ N, then examine whether the sequence (xn) is

convergent.
Solution: We have 0 < x1 < 1 and if we assume that 0 < xk < 1 for some k ∈ N, then
0 < xk+1 = xk(1− xkk) < 1. Hence by the principle of mathematical induction 0 < xn < 1 for all
n ∈ N. Also, xn+1 = xn(1 − xnn) < xn (since 1 − xnn < 1 and xn > 0) for all n ∈ N. Thus the
sequence (xn) is decreasing and bounded below and so it is convergent.

Ex.7 Let a > 0 and let x1 = 0, xn+1 = x2n + a for all n ∈ N. Show that the sequence (xn)
is convergent iff a ≤ 1

4
.

Solution: If (xn) is convergent, then there exists ` ∈ R such that lim
n→∞

xn = `. Since xn+1 = x2n + a

for all n ∈ N, we get lim
n→∞

xn+1 = ( lim
n→∞

xn)2 + a, which gives `2 − `+ a = 0. Since ` ∈ R, we must

have 1− 4a ≥ 0, i.e. a ≤ 1
4
.

Conversely, let a ≤ 1
4
. We note that x1 = 0 and xn+1 = x2n+a ≥ 0 for all n ∈ N. Now x2 = a > x1

and if we assume that xk+1 > xk for some k ∈ N, then xk+2 = x2k+1 +a > x2k +a = xk+1. Hence by
the principle of mathematical induction, xn+1 > xn for all n ∈ N. Also, x1 <

1
2

and if xk <
1
2

for

some k ∈ N, then xk+1 ≤ x2k + 1
4
< 1

4
+ 1

4
= 1

2
. Hence by the principle of mathematical induction,

xn <
1
2

for all n ∈ N. Thus (xn) is increasing and bounded above and therefore (xn) is convergent.

Ex.8 For a ∈ R, let x1 = a and xn+1 = 1
4
(x2n + 3) for all n ∈ N. Examine the convergence

of the sequence (xn) for different values of a. Also, find lim
n→∞

xn whenever it exists.

Solution: If ` = lim
n→∞

xn exists (in R), then the only possible values of ` are 1 and 3 (since

` = 1
4
(`2 + 3), i.e. (` − 1)(` − 3) = 0). We have xn > 0 and xn+2 − xn+1 = 1

4
(x2n+1 − x2n) for all

n ∈ N. Also x2 − x1 = 1
4
(a− 1)(a− 3).

Let a > 3. Then x2 > x1 and if we assume that xk+1 > xk for some k ∈ N, then from above, we get



xk+2 > xk+1. Hence by the principle of mathematical induction, xn+1 > xn for all n ∈ N. It follows
that (xn) cannot converge. (Because if (xn) converges, then lim

n→∞
xn = sup{xn : n ∈ N} ≥ x1 > 3,

which is not possible as we have seen above that the only possible values of lim
n→∞

xn are 1 and 3.)

If a = 3, then xn = 3 for all n ∈ N, and hence (xn) converges to 3.
Let 1 < a < 3. Then x2 < x1 and if we assume that xk+1 < xk for some k ∈ N, then from above,
we get xk+2 < xk+1. Hence by the principle of mathematical induction, xn+1 < xn for all n ∈ N.
Also, by the principle of mathematical induction, we can show that in this case xn > 1 for all
n ∈ N. (Because xn+1 − 1 = 1

4
(x2n − 1) for all n ∈ N and x1 > 1.) Hence (xn) converges to 1.

(xn 6→ 3 because lim
n→∞

xn = inf{xn : n ∈ N} ≤ x1 < 3.)

Let 0 ≤ a ≤ 1. Then x2 ≥ x1 and if we assume that xk+1 ≥ xk for some k ∈ N, then from above,
we get xk+2 ≥ xk+1. Hence by the principle of mathematical induction, xn+1 ≥ xn for all n ∈ N.
Also, by the principle of mathematical induction, we can show that in this case xn ≤ 1 for all
n ∈ N. (Because xn+1 − 1 = 1

4
(x2n − 1) for all n ∈ N and x1 ≤ 1.) Hence (xn) converges to 1.

(Since xn ≤ 1 for all n ∈ N, lim
n→∞

xn 6= 3.)

The case for a < 0 is treated by considering −a in place of a, because x2 is same irrespective of
whether we choose x1 = a or x1 = −a. Hence we can say that for −1 ≤ a < 0, xn → 1, for
−3 < a < −1, xn → 1, for a = −3, xn → 3 and for a < −3, (xn) does not converge.

Ex.9 If xn = (1 + 1
n
)n and yn = (1 + 1

n
)n+1 for all n ∈ N, then show that the sequence (xn)

is increasing, the sequence (yn) is decreasing and both (xn) and (yn) are bounded.
Solution: For each n ∈ N, applying the A.M. ≥ G.M. inequality for the numbers a1 = 1, a2 =

a3 = · · · = an+1 = 1 + 1
n
, we get

1+n(1+ 1
n
)

n+1
≥ (1 + 1

n
)

n
n+1 . From this, we get (1 + 1

n+1
)n+1 ≥ (1 + 1

n
)n

for all n ∈ N. Therefore the sequence (xn) is increasing.
Again, for each n ∈ N, applying A.M. ≥ G.M. inequality for the numbers a1 = · · · = an+1 = n

n+1
,

an+2 = 1, we get
(n+1) n

n+1
+1

n+2
≥ ( n

n+1
)
n+1
n+2 . From this, we get (1+ 1

n+1
)n+2 ≤ (1+ 1

n
)n+1 for all n ∈ N.

Therefore the sequence (yn) is decreasing.
It is now clear that 0 < xn ≤ (1 + 1

n
)n(1 + 1

n
) = yn ≤ y1 = 4 for all n ∈ N and so both (xn) and

(yn) are bounded.

Alternative solution: The boundedness of (xn) can also be proved as follows.

For all n ∈ N, we have 0 < xn = 1 + n · 1
n

+ n(n−1)
2!
· 1
n2 + n(n−1)(n−2)

3!
· 1
n3 + · · · + 1

nn
≤

1 + 1 + 1
2!

(1− 1
n
) + 1

22
(1− 1

n
)(1− 2

n
) + · · ·+ 1

2n
≤ 2 + 1

2
+ 1

22
+ · · ·+ 1

2n
= 2 + (1− 1

2n
) < 3.

Ex.10 Let (xn) be a sequence in R. If for every ε > 0, there exists a convergent sequence
(yn) in R such that |xn − yn| < ε for all n ∈ N, then show that (xn) is convergent.
Solution: Let ε > 0. Then there exists a convergent sequence (yn) in R such that |xn − yn| < ε

3

for all n ∈ N. Since (yn) is a Cauchy sequence, there exists n0 ∈ N such that |yn − ym| < ε
3

for
all n,m ≥ n0. Hence for all n,m ≥ n0, we have |xn − xm| ≤ |xn − yn| + |yn − ym| + |ym − xm| <
ε
3

+ ε
3

+ ε
3

= ε. Thus (xn) is a Cauchy sequence in R and therefore (xn) is convergent.

Ex.11 Let (xn) be a sequence in R. Which of the following conditions ensure(s) that (xn) is
a Cauchy sequence (and hence convergent)?

(a) lim
n→∞

|xn+1 − xn| = 0.

(b) |xn+1 − xn| ≤ 1
n

for all n ∈ N.

(c) |xn+1 − xn| ≤ 1
n2 for all n ∈ N.

Solution: Let xn = 1 + 1
2

+ · · · + 1
n

for all n ∈ N. Then |xn+1 − xn| = 1
n+1

< 1
n

for all n ∈ N and
so lim

n→∞
|xn+1 − xn| = 0. Thus both the conditions (a) and (b) are satisfied for the sequence (xn).

However, (xn) is not a Cauchy sequence, since we know that the series
∞∑
n=1

1
n

is not convergent and

so its sequence of partial sums, which is (xn), is not a Cauchy sequence.



Now, let (xn) be a sequence in R such that |xn+1 − xn| ≤ 1
n2 for all n ∈ N. Let ε > 0. Since

the series
∞∑
n=1

1
n2 is convergent, by Cauchy’s criterion for convergence of series, there exists n0 ∈ N

such that 1
n2 + 1

(n+1)2
+ · · · + 1

(m−1)2 < ε for all m > n > n0. Hence for all m > n > n0, we get

|xm−xn| = |xn−xn+1+xn+1−xn+2+· · ·+xm−1−xm| ≤ |xn−xn+1|+|xn+1−xn+2|+· · ·+|xm−1−xm| ≤
1
n2 + 1

(n+1)2
+ · · ·+ 1

(m−1)2 < ε. Therefore (xn) is a Cauchy sequence.

Ex.12 Let (xn) be a sequence in R such that each of the subsequences (x2n), (x2n−1) and (x3n)
converges. Show that (xn) is convergent.
Solution: Let x2n → x, x2n−1 → y and x3n → z, where x, y, z ∈ R. Clearly (x6n) is a subsequence
of each of the sequences (x2n) and (x3n). So x6n → x and x6n → z. This implies that x = z.
Again, (x3(2n−1)) is a subsequence of each of the sequences (x2n−1) and (x3n). So x3(2n−1) → y and
x3(2n−1) → z. This implies that y = z. Thus each of the subsequences (x2n) and (x2n−1) of (xn)
converges to the same limit x = y. Therefore it follows that (xn) is convergent (with limit x = y).

Ex.13(a) Examine whether the series
∞∑
n=2

1
(logn)logn

is convergent.

Solution: We have (log n)logn = (elog(logn))logn = (elogn)log(logn) = nlog(logn) for all n ≥ 2. Also,

log(log n) > 2 for all n > ee
2
. We choose n0 ∈ N such that n0 > ee

2
. Then 1

(logn)logn
= 1

nlog(logn) ≤ 1
n2

for all n ≥ n0. Since
∞∑
n=1

1
n2 is convergent, by comparison test, the given series is convergent.

Ex.13(b) Examine whether the series
∞∑
n=1

2n−n
n2 is convergent.

Solution: Since lim
n→∞

2n+1

(n+1)2
· n2

2n
= 2 > 1, the sequence (2

n

n2 ) is not convergent. Also, since 1
n
→ 0, the

sequence (2
n−n
n2 ) is not convergent (being the difference of a divergent and a convergent sequence).

Hence the given series is not convergent.

Ex.13(c) Examine whether the series
∞∑
n=1

1
2
+(−1)n

n
is convergent.

Solution: We know that the series
∞∑
n=1

1
2n

is divergent. Also, since ( 1
n
) is a decreasing sequence

of positive real numbers with 1
n
→ 0, by Leibniz’s test, the series (−1)n

n
is convergent. Since the

given series is the sum of the divergent series
∞∑
n=1

1
2n

and the convergent series
∞∑
n=1

(−1)n
n

, it is not

convergent.

Ex.13(d) Examine whether the series 1√
1
− 1

2
+ 1√

3
− 1

4
+ 1√

5
− 1

6
+ · · · is convergent.

Solution: For each n ∈ N, let sn denote the nth partial sum of the given series. Since 1√
2n−1−

1
2n
≥

1
n
− 1

2n
= 1

2n
for all n ∈ N, we get s2n = 1√

1
− 1

2
+ 1√

3
− 1

4
+ · · ·+ 1√

2n−1 −
1
2n
≥ 1

2
(1 + 1

2
+ · · ·+ 1

n
)

for all n ∈ N. Again, the sequence (1 + 1
2

+ · · · + 1
n
) of partial sums of the divergent series

∞∑
n=1

1
n

is not bounded above and hence the sequence (sn) is not bounded above. Thus the sequence (sn)
is not convergent and consequently the given series is not convergent.

Ex.13(e) Examine whether the series 1 + 2x + x2 + 2x3 + x4 + 2x5 + x6 + 2x7 + · · · is con-
vergent, where x ∈ R.

Solution: Taking the given series as
∞∑
n=1

an, we have a2n = 2x2n−1 and a2n−1 = x2n−2 for all n ∈ N.

Since lim
n→∞

|a2n|
1
2n = |x| = lim

n→∞
|a2n−1|

1
2n−1 , we get lim

n→∞
|an|

1
n = |x|. Hence by the root test, the

given series is absolutely convergent (and hence convergent) if |x| < 1 and is not convergent if
|x| > 1. If |x| = 1, then lim

n→∞
|a2n| = lim

n→∞
2|x|2n−1 = 2 6= 0 and so an 6→ 0. Consequently the given



series is not convergent if |x| = 1.

Ex.14 If (xn) is a sequence in R such that lim
n→∞

xn = 0, then show that the series
∞∑
n=1

xn
x2n+n

2

is absolutely convergent.
Solution: Since lim

n→∞
xn = 0, there exists n0 ∈ N such that |xn| < 1 for all n ≥ n0. Hence for

all n ≥ n0,
∣∣∣ xn
x2n+n

2

∣∣∣ = |xn|
x2n+n

2 ≤ 1
n2 . Since

∞∑
n=1

1
n2 is convergent, by comparison test,

∞∑
n=1

∣∣∣ xn
x2n+n

2

∣∣∣ is

convergent. Consequently
∞∑
n=1

xn
x2n+n

2 is absolutely convergent.

Ex.15 Let the series
∞∑
n=1

xn be convergent, where xn > 0 for all n ∈ N. Examine whether

the following series are convergent.

(a)
∞∑
n=1

√
xn
n

(b)
∞∑
n=1

xn+2n

xn+3n

Solution: (a) For all n ∈ N, 0 ≤ (
√
xn − 1

n
)2 = xn − 2

√
xn
n

+ 1
n2 . Hence

√
xn
n
≤ 1

2
(xn + 1

n2 ) for

all n ∈ N. Since both
∞∑
n=1

xn and
∞∑
n=1

1
n2 converge,

∞∑
n=1

1
2
(xn + 1

n2 ) also converges. Therefore by

comparison test,
∞∑
n=1

√
xn
n

converges.

(b) Let an = xn+2n

xn+3n
and bn = (2

3
)n for all n ∈ N. Since

∞∑
n=1

xn converges, xn → 0, and so

lim
n→∞

an
bn

= lim
n→∞

1
2n
xn+1

1
3n
xn+1

= 1. Since
∞∑
n=1

bn converges, by limit comparison test,
∞∑
n=1

an also converges.

Alternative solution for (b): Since
∞∑
n=1

xn converges, xn → 0, and so there exists n0 ∈ N such that

|xn| < 1 for all n ≥ n0. Hence for all n ≥ n0,
xn+2n

xn+3n
< xn+2n

3n
< (1

3
)n + (2

3
)n. Since both

∞∑
n=1

(1
3
)n

and
∞∑
n=1

(2
3
)n converge,

∞∑
n=1

[(1
3
)n + (2

3
)n] converges. Hence by comparison test,

∞∑
n=1

xn+2n

xn+3n
converges.

Ex.16 If
∞∑
n=1

xn is a convergent series, where xn > 0 for all n ∈ N, then show that it is pos-

sible for the series
∞∑
n=1

√
xn
n

to converge as well as not to converge.

Hint: If xn = 1
n2 for all n ∈ N, then

∞∑
n=1

xn is convergent and
∞∑
n=1

√
xn
n

=
∞∑
n=1

1
n3/2 is also convergent.

On the other hand, if x1 = 0 and xn = 1
n(logn)2

for all n ≥ 2, then by Cauchy’s condensation test,
∞∑
n=1

xn =
∞∑
n=2

1
n(logn)2

is convergent but
∞∑
n=1

√
xn
n

=
∞∑
n=2

1
n logn

is not convergent.

Ex.17 Let (xn) be a sequence in R with lim
n→∞

xn = 0. Show that there exists a subsequence

(xnk) of (xn) such that the series
∞∑
k=1

xnk is absolutely convergent.

Solution: Since lim
n→∞

xn = 0, for each k ∈ N, there exists nk ∈ N such that |xn| < 1
2k

for all n ≥ nk.

We can choose (nk) such that n1 < n2 < · · · . Then (xnk) is a subsequence of (xn) satisfying

|xnk | < 1
2k

for all k ∈ N. Since
∞∑
k=1

1
2k

is convergent, by comparison test,
∞∑
k=1

|xnk | is convergent,

i.e.
∞∑
k=1

xnk is absolutely convergent.



Ex.18 If f : R → R is continuous, then show that there exist non-negative continuous func-
tions g, h : R→ R such that f = g − h.
Solution: Let g = 1

2
(|f | + f) and h = 1

2
(|f | − f). Then both g, h : R → R are non-negative

continuous functions and g − h = f .

Ex.19 Give an example (with justification) of a function from R onto R which is not contin-
uous at any point of R.

Solution: Let f : R→ R be defined by f(x) =

{
x if x ∈ Q,

x+ 1 if x ∈ R \Q.
If y ∈ Q, then f(y) = y and if y ∈ R \Q, then y − 1 ∈ R \Q and f(y − 1) = y. Hence f is onto.
Let x ∈ R. Then there exist sequences (rn) in Q and (tn) in R \Q such that rn → x and tn → x.
Now f(rn) = rn → x and f(tn) = tn + 1 → x + 1. Since x 6= x + 1, it follows that f cannot be
continuous at x. Since x ∈ R was arbitrary, f is not continuous at any point of R.

Ex.20 Let f : R → R satisfy f(x + y) = f(x) + f(y) for all x, y ∈ R. If f is continuous at
0, then show that f(x) = f(1)x for all x ∈ R.
Solution: If n ∈ N, then f(n) = f(1+ · · ·+1) = f(1)+ · · ·+f(1) = nf(1). Also f(0) = f(0+0) =
f(0) + f(0)⇒ f(0) = 0. If m = −n, where n ∈ N, then 0 = f(0) = f(m + n) = f(m) + f(n)⇒
f(m) = −f(n) = −nf(1) = mf(1). If r ∈ Q, then r = m

n
for some m ∈ Z, n ∈ N. So mf(1) =

f(m) = f(m
n

+ · · · + m
n

) = f(m
n

) + · · · + f(m
n

) = nf(m
n

)⇒ f(m
n

) = m
n
f(1), i.e. f(r) = rf(1). Let

x ∈ R. Then there exists a sequence (rn) in Q such that rn → x. So rn−x→ 0 and since f is con-
tinuous at 0, 0 = f(0) = lim

n→∞
f(rn−x) = lim

n→∞
[f(rn)− f(x)] = lim

n→∞
rnf(1)− f(x) = xf(1)− f(x).

Consequently f(x) = f(1)x.

Ex.21 Let f : R→ R be continuous such that f(1
2
(x+y)) = 1

2
(f(x)+f(y)) for all x, y ∈ R. Show

that there exist a, b ∈ R such that f(x) = ax+ b for all x ∈ R.
Solution: Let g(x) = f(x) − f(0) for all x ∈ R. The given condition gives 1

2
(f(x) + f(y)) =

f(1
2
(x+y)) = f(1

2
(x+y+0)) = 1

2
(f(x+y)+f(0)) for all x, y ∈ R. So g(x+y) = f(x+y)−f(0) =

f(x) + f(y) − 2f(0) = g(x) + g(y) for all x, y ∈ R. Since f is continuous, g : R → R is also
continuous and hence by Ex.20 of Practice Problem Set-2, g(x) = g(1)x for all x ∈ R. Thus for
all x ∈ R, f(x) − f(0) = x(f(1) − f(0)). Taking a = f(1) − f(0) ∈ R and b = f(0) ∈ R, we get
f(x) = ax+ b for all x ∈ R.

Ex.22 Let f : R → R be continuous such that for each x ∈ Q, f(x) is an integer. If f(1
2
) = 2,

then find f(1
3
).

Solution: Let x ∈ R \ Q. Then there exists a sequence (rn) in Q such that rn → x. Since f is
continuous at x, f(rn) → f(x). If f(x) is not an integer, then f(x) − [f(x)] > 0 and so there
exists n0 ∈ N such that |f(rn0)− f(x)| < 1

2
(f(x)− [f(x)]), which is not possible, because f(rn0) is

an integer (by hypothesis). Therefore f(x) is an integer. Thus f(x) is an integer for each x ∈ R
and by the intermediate value theorem, f : R → R must be a constant function. Consequently
f(1

3
) = f(1

2
) = 2.

Alternative method for showing that f(x) is an integer: The sequence (f(rn)), being convergent, is
a Cauchy sequence. Hence there exists n0 ∈ N such that |f(rn)− f(rn0)| < 1

2
for all n ≥ n0. Since

f(rn) is an integer for each n ∈ N (by hypothesis), we must have f(rn) = f(rn0) for all n ∈ N.
Consequently f(rn)→ f(rn0) and therefore f(x) = f(rn0), which is an integer.

Ex.23 Let f : R → R be continuous such that f(x) = f(x2) for all x ∈ R. Show that f is
a constant function.
Solution: Let x > 0. By hypothesis f(x) = f(x1/2) = f(x1/4) = · · · = f(x1/2

n
) for all n ∈ N.

Since x1/2
n → 1 (as (x1/2

n
) is a subsequence of (x1/n) and x1/n → 1) and since f is continuous

at 1, f(x1/2
n
) → f(1). It follows that f(x) = f(1). Also f(−x) = f((−x)2) = f(x2) = f(x).



Hence f(x) = f(1) for all x(6= 0) ∈ R. Since f is continuous at 0, f(0) = lim
x→0

f(x) = f(1). Thus

f(x) = f(1) for all x ∈ R. Consequently f : R→ R is a constant function.

Ex.24 If f : [0, 1]→ R is continuous, then show that

(a) there exist a, b ∈ [0, 1] such that a− b = 1
2

and f(a)− f(b) = 1
2
(f(1)− f(0)).

(b) there exist a, b ∈ [0, 1] such that a− b = 1
3

and f(a)− f(b) = 1
3
(f(1)− f(0)).

Solution: (a) Let g(x) = f(x + 1
2
) − f(x) for all x ∈ [0, 1

2
]. Since f is continuous, g : [0, 1

2
] → R

is continuous. If g(0) = g(1
2
), then f(1

2
) − f(0) = 1

2
(f(1) − f(0)) and so we get the result by

taking a = 1
2

and b = 0. If g(0) 6= g(1
2
), then 1

2
(f(1) − f(0)) = 1

2
(g(0) + g(1

2
)) lies (strictly)

between g(0) and g(1
2
). Hence by the intermediate value theorem, there exists c ∈ (0, 1

2
) such that

g(c) = 1
2
(f(1)− f(0)), i.e. f(c+ 1

2
)− f(c) = 1

2
(f(1)− f(0)). Taking a = c+ 1

2
and b = c, we get

the result.

Alternative solution: Let g(x) = f(x + 1
2
) − f(x) − 1

2
(f(1) − f(0)) for all x ∈ [0, 1

2
]. Since f

is continuous, g : [0, 1
2
] → R is continuous. Also, g(0) = f(1

2
) − 1

2
f(0) − 1

2
f(1) and g(1

2
) =

1
2
f(1)− f(1

2
) + 1

2
f(0) = −g(0). If g(0) = 0, then we get the result by taking a = 1

2
and b = 0. If

g(0) 6= 0, then g(1
2
) and g(0) are of opposite signs and hence by the intermediate value theorem,

there exists c ∈ (0, 1
2
) such that g(c) = 0, i.e. f(c+ 1

2
)− f(c) = 1

2
(f(1)− f(0)). Taking a = c+ 1

2
and b = c, we get the result.

(b) Let g(x) = f(x+ 1
3
)−f(x)− 1

3
(f(1)−f(0)) for all x ∈ [0, 2

3
]. Since f : [0, 1]→ R is continuous,

g : [0, 2
3
] → R is continuous. Also, g(0) + g(1

3
) + g(2

3
) = 0. If at least one of g(0), g(1

3
) and g(2

3
)

is 0, then the result follows immediately. Otherwise, at least two of g(0), g(1
3
) and g(2

3
) are of

opposite signs and hence by the intermediate value property of continuous functions, there ex-
ists c ∈ (0, 2

3
) such that g(c) = 0, i.e. f(c+ 1

3
)−f(c) = 1

3
(f(1)−f(0)). We take a = c+ 1

3
and b = c.

Ex.25 Let f : [a, b] → R be continuous. For n ∈ N, let x1, ..., xn ∈ [a, b] and let α1, ..., αn
be nonzero real numbers having same sign. Show that there exists c ∈ [a, b] such that

f(c)
n∑
i=1

αi =
n∑
i=1

αif(xi).

(In particular, this shows that if f : [a, b] → R is continuous and if for n ∈ N, x1, ..., xn ∈ [a, b],
then there exists ξ ∈ [a, b] such that f(ξ) = 1

n
(f(x1) + · · ·+ f(xn)).)

Solution: Let α =
n∑
i=1

αi. Then α 6= 0 and αi
α
> 0 for i = 1, ..., n. Since f : [a, b] → R is

continuous, there exist y, z ∈ [a, b] such that f(y) ≤ f(x) ≤ f(z) for all x ∈ [a, b]. In particular,

f(y) ≤ f(xi) ≤ f(z) for i = 1, ..., n and so
n∑
i=1

(αi
α

)f(y) ≤
n∑
i=1

(αi
α

)f(xi) ≤
n∑
i=1

(αi
α

)f(z) ⇒ f(y) ≤

1
α

n∑
i=1

αif(xi) ≤ f(z). By the intermediate value theorem, there exists c between y and z (both

inclusive) and so c ∈ [a, b] such that f(c) = 1
α

n∑
i=1

αif(xi), i.e. f(c)α =
n∑
i=1

αif(xi).

(If we take α1 = · · · = αn = 1
n
, then

n∑
i=1

αi = 1 and so applying the above result, we get the

required conclusion.)

Ex.26 Let f : [0, 1]→ R and g : [0, 1]→ R be continuous such that sup{f(x) : x ∈ [0, 1]} =
sup{g(x) : x ∈ [0, 1]}. Show that there exists c ∈ [0, 1] such that f(c) = g(c).
Solution: Since f : [0, 1] → R and g : [0, 1] → R are continuous, there exist x1, x2 ∈ [0, 1] such
that f(x1) = sup{f(x) : x ∈ [0, 1]} and g(x2) = sup{g(x) : x ∈ [0, 1]}. Since f(x1) = g(x2) (by
hypothesis), we get f(x1) ≥ g(x1) and f(x2) ≤ g(x2). If f(x1) = g(x1) or f(x2) = g(x2), then the
result follows immediately. So we may now assume that f(x1) > g(x1) and f(x2) < g(x2). Let
ϕ(x) = f(x) − g(x) for all x ∈ [0, 1]. Since f and g are continuous, ϕ : [0, 1] → R is continuous.
Also ϕ(x1) > 0 and ϕ(x2) < 0. Hence by the intermediate value theorem, there exists c between



x1 and x2 such that ϕ(c) = 0, i.e. f(c) = g(c).

Ex.27 Let f : (0,∞) → R be continuous such that lim
x→0+

f(x) = 0 and lim
x→∞

f(x) = 1. Show

that there exists c ∈ (0,∞) such that f(c) =
√
3
2

.

Hint: Since lim
x→0+

f(x) = 0 < 1
4

and lim
x→∞

f(x) = 1 > 9
10

, there exist x1, x2 ∈ (0,∞) with x1 < x2

such that f(x1) <
1
4

and f(x2) >
9
10

. Since 1
4
<
√
3
2
< 9

10
, by the intermediate value theorem, there

exists c ∈ (x1, x2) such that f(c) =
√
3
2

.

Ex.28 Let f : (a, b) → R be continuous. If both lim
x→a+

f(x) and lim
x→b−

f(x) exist (in R), then

show that f is bounded.
Solution: Let lim

x→a+
f(x) = `1 and lim

x→b−
f(x) = `2, where `1, `2 ∈ R. Then there exist δ1, δ2 > 0

such that |f(x) − `1| < 1 for all x ∈ (a, a + δ1) and |f(x) − `2| < 1 for all x ∈ (b − δ2, b). Hence
|f(x)| < 1 + |`1| for all x ∈ (a, a + δ1) and |f(x) < 1 + |`2| for all x ∈ (b − δ2, b). Since f is
continuous on [a + δ1

2
, b − δ2

2
], f is bounded on [a + δ1

2
, b − δ2

2
]. So there exists M > 0 such that

|f(x)| ≤M for all x ∈ [a+ δ1
2
, b− δ2

2
]. Choosing K = max{M, 1 + |`1|, 1 + |`2|} > 0, we find that

|f(x)| ≤ K for all x ∈ (a, b). Consequently f is bounded.

Ex.29 Consider the continuous function f : (0, 1] → R, where f(x) = 1 − (1 − x) sin 1
x

for
all x ∈ (0, 1]. Does there exist x0 ∈ (0, 1] such that f(x0) = sup{f(x) : x ∈ (0, 1]}? Justify.
Solution: For all x ∈ (0, 1], we have f(x) ≤ 1 + (1 − x) < 2. Hence 2 is an upper bound of
{f(x) : x ∈ (0, 1]}. Therefore there exists u ∈ R such that u = sup{f(x) : x ∈ (0, 1]} ≤ 2. Now

2
(4n−1)π ∈ (0, 1] for all n ∈ N ⇒ u ≥ f

(
2

(4n−1)π

)
= 2 − 2

(4n−1)π for all n ∈ N ⇒ u ≥ 2 (since

lim
n→∞

2
(4n−1)π = 0). Thus u = 2 and so (as seen at the beginning) f(x) < u for all x ∈ (0, 1], i.e.

there cannot exist any x0 ∈ (0, 1] such that f(x0) = sup{f(x) : x ∈ (0, 1]}.

Ex.30 Let f : [a, b] → R be continuous such that f(a) = f(b). Show that for each ε > 0,
there exist distinct x, y ∈ [a, b] such that |x− y| < ε and f(x) = f(y).
Solution: We first show that there exist x1, y1 ∈ [a, b] such that |x1 − y1| = 1

2
(b − a) and

f(x1) = f(y1). Let g(x) = f(x + b−a
2

) − f(x) for all x ∈ [a, a+b
2

]. Since f is continuous,

g : [a, a+b
2

] → R is continuous. Also g(a) = f(a+b
2

) − f(a) and g(a+b
2

) = f(b) − f(a+b
2

) = −g(a),

since f(a) = f(b). If g(a) = 0, then we can take x1 = a+b
2

and y1 = a. Otherwise, g(a+b
2

) and g(a)

are of opposite signs and hence by the intermediate value theorem, there exists c ∈ (a, a+b
2

) such

that g(c) = 0, i.e. f(c+ b−a
2

) = f(c). We take x1 = c+ b−a
2

and y1 = c.

Repeating the same procedure as above we get x2, y2 ∈ [a, b] such that |x2 − y2| = 1
2
|x1 − y1| =

1
22

(b − a) and f(x2) = f(y2). Continuing in this way, for each n ∈ N, there exist xn, yn ∈ [a, b]

such that |xn − yn| = 1
2n

(b − a) and f(xn) = f(yn). If ε > 0, then there exists n0 ∈ N such that
1

2n0
(b− a) < ε. Hence the result follows by choosing x = xn0 and y = yn0 .

Alternative solution: By continuity of f on [a, b], there exist x0, y0 ∈ [a, b] such that f(y0) ≤
f(x) ≤ f(x0) for all x ∈ [a, b]. If both x0, y0 ∈ {a, b}, then f must be a constant function and so
the result is obvious. Hence we assume that x0 ∈ (a, b). (The case of y0 ∈ (a, b) is similar.) Let
ε > 0. Then there exists n0 ∈ N such that (x0− ε

n0
, x0 + ε

n0
) ⊂ [a, b]. If any two of the three values

f(x0 − ε
4n0

), f(x0) and f(x0 + ε
4n0

) are equal, then the result follows immediately. Otherwise, we

assume without loss of generality that f(x0 − ε
4n0

) < f(x0 + ε
4n0

) < f(x0). By the intermediate

value theorem, there exists c ∈ (x0 − ε
4n0
, x0) such that f(c) = f(x0 + ε

4n0
). We get the result by

taking x = x0 + ε
4n0

and y = c.

Ex.31 Give an example (with justification) of a function f : R → R which is differentiable
only at 2.



Solution: Let f : R→ R be defined by f(x) =

{
(x− 2)2 if x ∈ Q,

0 if x ∈ R \Q.
We have lim

x→2

f(x)−f(2)
x−2 = lim

x→2

f(x)
x−2 = 0, since

∣∣∣f(x)x−2

∣∣∣ ≤ |x− 2| for all x( 6= 2) ∈ R. Hence f is differen-

tiable at 2.
Again, let x(6= 2) ∈ R. Then there exist sequences (rn) in Q and (tn) in R \Q such that rn → x
and tn → x. Now f(rn) = (rn − 2)2 → (x − 2)2 and f(tn) → 0 (since f(tn) = 0 for all n ∈ N).
Since (x − 2)2 6= 0, it follows that f cannot be continuous at x and consequently f cannot be
differentiable at x. Therefore f is differentiable only at 2.

Ex.32 Let f : R → R be such that f(x) − f(y) ≤ (x − y)2 for all x, y ∈ R. Show that f is
a constant function.
Solution: The given condition implies that |f(x) − f(y)| ≤ |x − y|2 for all x, y ∈ R. Let y ∈ R.

Then for all x( 6= y) ∈ R, we have |f(x)−f(y)
x−y | ≤ |x − y| ⇒ lim

x→y
f(x)−f(y)

x−y = 0, i.e. f ′(y) = 0. Thus

f ′(y) = 0 for all y ∈ R. Consequently f : R→ R is a constant function.

Ex.33 If m, k ∈ N, then evaluate lim
n→∞

(
(n+1)m+(n+2)m+···+(n+k)m

nm−1 − kn
)

.

Solution: The given limit equals lim
n→∞

k∑
i=1

i
(1+ i

n
)m−1
i
n

=
k∑
i=1

i lim
n→∞

(1+ i
n
)m−1
i
n

=
k∑
i=1

i d
dx

(1 + x)m|x=0 (us-

ing sequential criterion of limit) = k(k+1)
2

m.

Ex.34 Let f : (a, b) → R and g : (a, b) → R be differentiable at c ∈ (a, b) such that f(c) = g(c)
and f(x) ≤ g(x) for all x ∈ (a, b). Show that f ′(c) = g′(c).

Solution: The given conditions imply that f(x)−f(c)
x−c ≤ g(x)−g(c)

x−c for all x ∈ (c, b) and f(x)−f(c)
x−c ≥

g(x)−g(c)
x−c for all x ∈ (a, c). Since f is differentiable at c, we get f ′(c) = lim

x→c+
f(x)−f(c)

x−c ≤ lim
x→c+

g(x)−g(c)
x−c =

g′(c) and f ′(c) = lim
x→c−

f(x)−f(c)
x−c ≥ lim

x→c−
g(x)−g(c)
x−c = g′(c). Consequently f ′(c) = g′(c).

Ex.35 Let f : [0, 1] → R be differentiable such that f(0) = f(1) = 0. Show that there ex-
ists c ∈ (0, 1) such that f ′(c) = f(c).
Solution: Let g(x) = e−xf(x) for all x ∈ [0, 1]. Then g : [0, 1] → R is differentiable and
g′(x) = e−x(f ′(x) − f(x)) for all x ∈ [0, 1]. Also, since g(0) = 0 = g(1), by Rolle’s theorem,
there exists c ∈ (0, 1) such that g′(c) = 0. Since e−c 6= 0, we get f ′(c) = f(c).

Ex.36 Let f : R → R be differentiable such that f(0) = 0 and f ′(x) > f(x) for all x ∈ R.
Show that f(x) > 0 for all x > 0.
Solution: If g(x) = e−xf(x) for all x ∈ R, then g : R → R is differentiable and g′(x) =
e−x(f ′(x) − f(x)) > 0 for all x ∈ R. Hence g is strictly increasing on R and so g(x) > g(0)
for all x > 0. This implies that f(x) > 0 for all x > 0.

Ex.37 Let f : [a, b] → R be a differentiable function such that f(x) 6= 0 for all x ∈ [a, b].

Show that there exists c ∈ (a, b) such that f ′(c)
f(c)

= 1
a−c + 1

b−c .

Solution: Let g(x) = (x − a)(x − b)f(x) for all x ∈ [a, b]. Since f : [a, b] → R is differentiable,
g : [a, b] → R is differentiable (and hence continuous) and g′(x) = (x − a)(x − b)f ′(x) + (x −
b)f(x) + (x− a)f(x) for all x ∈ [a, b]. Also, g(a) = 0 = g(b). Therefore by Rolle’s theorem, there
exists c ∈ (a, b) such that g′(c) = 0, i.e. (c− a)(c− b)f ′(c) = −(c− b)f(c)− (c− a)f(c). Dividing

by (c− a)(c− b)f(c) 6= 0, we obtain f ′(c)
f(c)

= 1
a−c + 1

b−c .

Ex.38 Let f : [0, 1]→ R be differentiable such that f(0) = 0 and f(1) = 1. Show that there exist
c1, c2 ∈ [0, 1] with c1 6= c2 such that f ′(c1) + f ′(c2) = 2.
Solution: By the mean value theorem, there exist c1 ∈ (0, 1

2
) and c2 ∈ (1

2
, 1) such that f(1

2
)−f(0) =

1
2
f ′(c1) and f(1) − f(1

2
) = 1

2
f ′(c2). Hence c1, c2 ∈ [0, 1] with c1 6= c2 such that f ′(c1) + f ′(c2) =



2[f(1)− f(0)] = 2.

Ex.39 Show that for each a ∈ (0, 1) and for each b ∈ R, the equation a sinx + b = x has a
unique root in R.
Solution: Let a ∈ (0, 1), b ∈ R and let f(x) = x − a sinx − b for all x ∈ R. Then f : R → R
is differentiable (and also continuous) and f ′(x) = 1 − a cosx for all x ∈ R. Since a ∈ (0, 1),
a cosx ≤ a < 1 for all x ∈ R and so f ′(x) 6= 0 for all x ∈ R. As a consequence of Rolle’s theorem,
the equation f(x) = 0 has at most one root in R. Again, f(b + 1) = 1 − a sin(b + 1) > 0 (since
a sin(b+ 1) ≤ a < 1) and f(b− 1) = −1− a sin(b− 1) < 0 (since a sin(b− 1) ≥ −a > −1). Hence
by the intermediate value property of continuous functions, the equation f(x) = 0 has at least
one root in (b − 1, b + 1). Thus the equation f(x) = 0, i.e. the equation a sinx + b = x has a
unique root in R.

Ex.40(a) Find the number of (distinct) real roots of the equation 3x + 4x = 5x.
Solution: If f(x) = (3

5
)x + (4

5
)x − 1 for all x ∈ R, then f : R → R is differentiable and

f ′(x) = (3
5
)x log(3

5
) + (4

5
)x log(4

5
) < 0 for all x ∈ R. As a consequence of Rolle’s theorem, the

equation f(x) = 0 has at most one real root and hence the given equation has at most one real
root. Clearly 2 is a root of the given equation. Therefore the given equation has exactly one
(distinct) real root.

Ex.40(b) Find the number of (distinct) real roots of the equation x13 + 7x3 − 5 = 0.
Solution: Let f(x) = x13 + 7x3 − 5 for all x ∈ R. Then f : R → R is differentiable with
f ′(x) = 13x12 + 21x2 > 0 for all x > 0. As a consequence of Rolle’s theorem, the equation
f(x) = 0 has at most one root in (0,∞). Also, since f(0) = −5 < 0 and f(1) = 3 > 0, by the
intermediate value property of continuous functions, the equation f(x) = 0 has least one root in
(0, 1). Since f(x) < 0 for all x ≤ 0, it follows that the given equation has exactly one (distinct)
real root.

Ex.41 Show that for each n ∈ N, the equation xn + x− 1 = 0 has a unique root in [0, 1].
If for each n ∈ N, xn denotes this root, then show that the sequence (xn) converges to 1.
Solution: Let n ∈ N and let fn(x) = xn + x − 1 for all x ∈ [0, 1]. Then fn : [0, 1] → R is differ-
entiable and f ′n(x) = nxn−1 + 1 > 0 for all x ∈ [0, 1]. This shows that fn is a strictly increasing
function on [0, 1] and so the equation fn(x) = 0 can have at most one root in [0, 1]. Again, since
fn(0) = −1 < 0 and fn(1) = 1 > 0, by the intermediate value theorem, the equation fn(x) = 0
has at least one root in (0, 1). Thus the equation fn(x) = 0 has a unique root in [0, 1], which is
denoted by xn.
For each n ∈ N, 0 < xn < 1 ⇒ fn+1(xn) = xn+1

n + xn − 1 < xnn + xn − 1 = 0 = fn+1(xn+1) ⇒
xn < xn+1, since as shown above, fn+1 is strictly increasing on [0, 1]. Also xn ∈ (0, 1) for all
n ∈ N. Thus the sequence (xn) is increasing and bounded and consequently (xn) is convergent.
If ` = lim

n→∞
xn, then 0 ≤ ` ≤ 1 (since 0 < xn < 1 for all n ∈ N). If possible, let ` < 1. Then

there exists n0 ∈ N such that |xn − `| < 1
2
(1 − `) for all n ≥ n0. This gives 0 < xnn < (1+`

2
)n for

all n ≥ n0. Since 0 < 1+`
2
< 1, (1+`

2
)n → 0 and so xnn → 0. Now xnn + xn − 1 = 0 for all n ∈ N

⇒ lim
n→∞

(xnn + xn − 1) = 0⇒ `− 1 = 0⇒ ` = 1, which is a contradiction. Hence ` = 1.

Ex.42 Let f : (0, 1) → R be differentiable and let |f ′(x)| ≤ 3 for all x ∈ (0, 1). Show that
the sequence (f( 1

n+1
)) converges.

Solution: For all m,n ∈ N with m 6= n, by the mean value theorem, there exists c between 1
m+1

and 1
n+1

such that |f( 1
m+1

)−f( 1
n+1

)| = |f ′(c)|| 1
m+1
− 1

n+1
| ≤ 3( 1

m
+ 1

n
). Thus if ε > 0, then choosing

n0 ∈ N such that n0 >
6
ε
, we find that |f( 1

m+1
) − f( 1

n+1
)| ≤ 6

n0
< ε for all m,n ≥ n0. Hence

(f( 1
n+1

)) is a Cauchy sequence in R and therefore (f( 1
n+1

)) converges.

Ex.43 Let f : R→ R be differentiable and lim
x→∞

f ′(x) = 1. Show that f is unbounded.



Solution: Since lim
x→+∞

f ′(x) = 1, there exists M > 0 such that |f ′(x)− 1| < 1
2

for all x > M and so

1
2
< f ′(x) < 3

2
for all x > M . If g(x) = f(x)− x

2
for all x ∈ R, then g′(x) = f ′(x)− 1

2
> 0 for all

x > M ⇒ g is strictly increasing on [M,∞)⇒ g(x) > g(M) for all x > M ⇒ f(x) > x
2
+f(M)−M

2

for all x > M ⇒ lim
x→∞

f(x) =∞⇒ f is unbounded.

Ex.44 Let f : [a, b] → R be twice differentiable and let f(a) = f(b) = 0 and f(c) > 0, where
c ∈ (a, b). Show that there exists ξ ∈ (a, b) such that f ′′(ξ) < 0.
Solution: By the mean value theorem, there exist x1 ∈ (a, c) and x2 ∈ (c, b) such that f ′(x1) =
f(c)−f(a)

c−a = f(c)
c−a and f ′(x2) = f(b)−f(c)

b−c = −f(c)
b−c . Again, by the mean value theorem, there exists

ξ ∈ (x1, x2) (and so ξ ∈ (a, b)) such that f ′′(ξ) = f ′(x2)−f ′(x1)
x2−x1 = − (b−a)f(c)

(x2−x1)(b−c)(c−a) < 0, since

f(c) > 0.

Ex.45 If f : [0, 4]→ R is differentiable, then show that there exists c ∈ [0, 4] such that
f ′(c) = 1

6
(f ′(1) + 2f ′(2) + 3f ′(3)).

Solution: Let f ′(α) = min{f ′(1), f ′(2), f ′(3)} and f ′(β) = max{f ′(1), f ′(2), f ′(3)}, where α, β ∈
{1, 2, 3}. Then f ′(α) ≤ 1

6
(f ′(1) + 2f ′(2) + 3f ′(3)) ≤ f ′(β) and hence by the intermediate value

property of derivatives, there exists c ∈ [0, 4] such that f ′(c) = 1
6
(f ′(1) + 2f ′(2) + 3f ′(3)).

Ex.46 Let f(x) =

{
x if x ∈ [0, 1] ∩Q,
0 if x ∈ [0, 1] ∩ (R \Q.

Examine whether f is Riemann integrable on [0, 1]. Also, find
1∫
0

f , if it exists (in R).

Solution: Clearly f is bounded on [0, 1]. Let P = {x0, x1, ..., xn} be any partition of [0, 1]. Since
between any two distinct real numbers, there exist a rational as well as an irrational number, it
follows that Mi = xi and mi = 0 for i = 1, ..., n. (Note that Mi cannot be less than xi, because
otherwise we can find a rational number ri between Mi and xi and so f(ri) = ri > Mi, which is not

possible.) Hence L(f, P ) = 0 and U(f, P ) =
n∑
i=1

xi(xi−xi−1) =
n∑
i=1

x2i −
n∑
i=1

xixi−1 ≥ 1
2

n∑
i=1

(x2i −x2i−1)

(since x2i + x2i−1 ≥ 2xixi−1 for i = 1, ..., n) = 1
2
. Consequently

1∫
0

f(x) dx ≥ 1
2

and
1∫
0

f(x) dx = 0.

Since
1∫
0

f(x) dx 6=
1∫
0

f(x) dx, f is not Riemann integrable on [0, 1].

Ex.47 If f : [0, 1]→ R is Riemann integrable, then find lim
n→∞

1∫
0

xnf(x) dx.

Solution: Since f is Riemann integrable on [0, 1], f is bounded on [0, 1]. So there exists M > 0 such

that |f(x)| ≤ M for all x ∈ [0, 1]. Now |
1∫
0

xnf(x) dx| ≤
1∫
0

|xnf(x)| dx ≤ M
1∫
0

xn dx = M
n+1
→ 0 as

n→∞. Hence it follows that lim
n→∞

1∫
0

xnf(x) dx = 0.

Ex.48 If f : [0, 2π] → R is continuous such that

π
2∫
0

f(x) dx = 0, then show that there exists

c ∈ (0, π
2
) such that f(c) = 2 cos 2c.

Solution: Let g(x) =
x∫
0

f(t) dt−sin 2x for all x ∈ [0, 2π]. Since f : [0, 2π]→ R is continuous, by the

first fundamental theorem of calculus, g : [0, 2π]→ R is differentiable and g′(x) = f(x)− 2 cos 2x

for all x ∈ [0, 2π]. Also, g(0) = 0 = g(π
2
) (since

π
2∫
0

f(x) dx = 0). Hence by Rolle’s theorem, there

exists c ∈ (0, π
2
) such that g′(c) = 0, i.e. f(c) = 2 cos 2c.



Ex.49 Prove that for each a ≥ 0, there exists a unique b ≥ 0 such that a =
b∫
0

1
(1+x3)1/5

dx.

Solution: Let a ≥ 0 and let F (y) =
y∫
0

1
(1+x3)1/5

dx for all y ≥ 0. Since 1
(1+x3)1/5

is continuous for

all x ∈ [0,∞), by the first fundamental theorem of calculus, F : [0,∞) → R is differentiable and
F ′(y) = 1

(1+y3)1/5
> 0 for all y ∈ [0,∞). Hence F is strictly increasing on [0,∞) and so there can

be at most one b ≥ 0 satisfying F (b) = a. If a = 0, we take b = 0. We now assume that a > 0.

We have F (y) ≥
y∫
1

1
(1+x3)1/5

dx ≥
y∫
1

1
(2x3)1/5

dx = 5
26/5

(y
2
5 − 1) → ∞ as y → ∞. Hence there exists

y1 > 0 such that F (0) < a < F (y1). Since F is continuous, by the intermediate value theorem,
there exists b ∈ (0, y1) such that F (b) = a.

Ex.50 Show that there exists a positive real number α such that
π∫
0

xα sinx dx = 3.

Hint: The function f : [0, 1] → R, defined by f(λ) =
π∫
0

xλ sinx dx for all λ ∈ [0, 1], can be

shown to be continuous. Also, f(0) =
π∫
0

sinx dx = 2 < 3 and f(1) =
π∫
0

x sinx dx = π > 3.

Hence by the intermediate value property of continuous functions, there exists α ∈ (0, 1) such

that f(α) =
π∫
0

xα sinx dx = 3.

Ex.51 Determine all real values of p for which the integral
∞∫
0

e−x−1
xp

dx is convergent.

Solution: The given integral is convergent iff both
1∫
0

1−e−x
xp

dx and
∞∫
1

1−e−x
xp

dx are convergent. If

p ≤ 0, then
1∫
0

1−e−x
xp

dx exists (in R) as a Riemann integral. For p > 0, since lim
x→0+

(1−e
−x

xp
· xp−1) =

lim
x→0+

(e−x · ex−1
x

) = 1 6= 0, by the limit comparison test,
1∫
0

1−e−x
xp

dx converges iff
1∫
0

1
xp−1 dx converges.

We know that
1∫
0

1
xp−1 dx converges iff p−1 < 1, i.e. iff p < 2. Hence

1∫
0

1−e−x
xp

dx converges iff p < 2.

Again, since lim
x→∞

(1−e
−x

xp
· xp) = lim

x→∞
(1 − e−x) = 1 6= 0, by the limit comparison test,

∞∫
1

1−e−x
xp

dx

converges iff
∞∫
1

1
xp
dx converges. We know that

∞∫
1

1
xp
dx converges iff p > 1. Hence

∞∫
1

1−e−x
xp

dx

converges iff p > 1. Therefore the given integral is convergent iff 1 < p < 2.


