
MA 101 (Mathematics I)

Hints/Solutions for Practice Problem Set - 1

Ex.1(a) State TRUE or FALSE giving proper justification: If both (xn) and (yn) are unbounded
sequences in R, then the sequence (xnyn) cannot be convergent.
Solution: The given statement is FALSE, since both (xn) = (1, 0, 2, 0, 3, 0, ...) and
(yn) = (0, 1, 0, 2, 0, 3, ...) are unbounded sequences in R but the sequence (xnyn) = (0, 0, 0, ...) is
convergent.

Ex.1(b) State TRUE or FALSE giving proper justification: If both (xn) and (yn) are increasing
sequences in R, then the sequence (xnyn) must be increasing.
Solution: The given statement is FALSE, since both (xn) = (− 1

n
) and (yn) = (n2) are increasing

sequences in R but the sequence (xnyn) = (−n) is not increasing.

Ex.1(c) State TRUE or FALSE giving proper justification: If (xn), (yn) are sequences in R
such that (xn) is convergent and (yn) is not convergent, then the sequence (xn + yn) cannot be
convergent.
Solution: The given statement is TRUE. If (xn + yn) is convergent, then since (xn) is also conver-
gent, (yn) = (xn + yn)− (xn) must be convergent, which is not true.

Ex.1(d) State TRUE or FALSE giving proper justification: A monotonic sequence (xn) in R
is convergent iff the sequence (x2n) is convergent.
Solution: The given statement is TRUE. If (xn) is convergent, then by the product rule, (x2n) =
(xnxn) is also convergent. Conversely, let (x2n) be convergent. Then (x2n) is bounded, i.e. there

exists M > 0 such that |x2n| ≤ M for all n ∈ N. This gives |xn| ≤
√
M for all n ∈ N. So (xn) is

bounded. Since it is given that (xn) is monotonic, we can conclude that (xn) is convergent.

Ex.1(e) State TRUE or FALSE giving proper justification: If (xn) is an unbounded sequence
of nonzero real numbers, then the sequence ( 1

xn
) must converge to 0.

Solution: The given statement is FALSE. The sequence (xn) = (1, 2, 1, 3, 1, 4, ...) is not bounded,
but 1

xn
6→ 0, because ( 1

xn
) has a subsequence (1, 1, ...) converging to 1.

Ex.1(f) State TRUE or FALSE giving proper justification: If xn = (1 − 1
n
) sin nπ

2
for all n ∈ N,

then the sequence (xn) is not convergent although it has a convergent subsequence.
Solution: The given statement is TRUE. We have x2n = (1− 1

2n
) sinnπ = 0 and

x4n+1 = (1 − 1
4n+1

) sin(2nπ + π
2
) = 1 − 1

4n+1
for all n ∈ N. Hence x2n → 0 and x4n+1 → 1. Thus

(xn) has two convergent subsequences (x2n) and (x4n+1) with different limits and therefore (xn) is
not convergent.

Ex.1(g) State TRUE or FALSE giving proper justification: If both the series
∞∑
n=1

xn and
∞∑
n=1

yn

of real numbers are convergent, then the series
∞∑
n=1

xnyn must be convergent.

Solution: The given statement is FALSE. Taking xn = yn = (−1)n√
n

for all n ∈ N, we find that both

the series
∞∑
n=1

xn and
∞∑
n=1

yn are convergent by Leibniz’s test (since ( 1√
n
) is a decreasing sequence

of positive real numbers with lim
n→∞

1√
n

= 0), but we know that the series
∞∑
n=1

xnyn =
∞∑
n=1

1
n

is not

convergent.

Ex.1(h) State TRUE or FALSE giving proper justification: If f : R → R is continuous and



f(x) > 0 for all x ∈ Q, then it is necessary that f(x) > 0 for all x ∈ R.
Solution: The given statement is FALSE, because if f(x) = |x−

√
2| for all x ∈ R, then f : R→ R

is continuous and f(x) > 0 for all x ∈ Q, but f(
√

2) = 0.

Ex.1(i) State TRUE or FALSE giving proper justification: There exists a continuous function
from (0, 1) onto (0,∞).
Solution: The given statement is TRUE. The function f : (0, 1)→ (0,∞), defined by f(x) = x

1−x
for all x ∈ (0, 1), is continuous. Also, f is onto, because if y ∈ (0,∞), then x = y

1+y
∈ (0, 1) such

that f(x) = y.

Ex.1(j) State TRUE or FALSE giving proper justification: There exists a continuous function
from [0, 1] onto (0, 1).
Solution: The given statement is FALSE. If possible, let there exist a continuous function f :
[0, 1]→ (0, 1) which is onto. Then there exists x0 ∈ [0, 1] such that f(x0) ≤ f(x) for all x ∈ [0, 1].
Since 0 < 1

2
f(x0) < 1 and since f is onto, there exists c ∈ [0, 1] such that f(c) = 1

2
f(x0). From

above, we get f(x0) ≤ f(c), i.e. f(x0) ≤ 1
2
f(x0), which is not possible, since f(x0) > 0. Hence

there does not exist any continuous function from [0, 1] onto (0, 1).

Ex.1(k) State TRUE or FALSE giving proper justification: There exists a continuous function
from (0, 1) onto [0, 1].
Solution: The function f : (0, 1) → [0, 1], defined by f(x) = | sin(2πx)| for all x ∈ (0, 1), is
continuous. Since f(1

2
) = 0 and f(1

4
) = 1, by the intermediate value theorem, for each k ∈ (0, 1),

there exists c ∈ (1
4
, 1
2
) such that f(c) = k. Hence f is onto.

Ex.1(l) State TRUE or FALSE giving proper justification: If f : R → R is continuous and
bounded, then there must exist c ∈ R such that f(c) = c.
Solution: The given statement is TRUE. Since f is bounded, there exists M > 0 such that
|f(x)| ≤ M for all x ∈ R. Let g(x) = f(x)− x for all x ∈ R. Since f is continuous, g : R→ R is
continuous. If f(−M) = −M or f(M) = M , then we get the result by taking c = −M or c = M
respectively. Otherwise g(−M) = f(−M) + M > 0 and g(M) = f(M) −M < 0. Hence by the
intermediate value theorem, there exists c ∈ (−M,M) such that g(c) = 0, i.e. f(c) = c.

Ex.1(m) State TRUE or FALSE giving proper justification: If both f : R → R and g : R → R
are continuous at 0, then the composite function g ◦ f : R→ R must be continuous at 0.
Solution: The given statement is FALSE. If f(x) = x+ 1 for all x ∈ R and if

g(x) =

{
2 if x ∈ R \ {1},
3 if x = 1,

then both f : R→ R and g : R→ R are continuous at 0, but g ◦ f : R→ R is not continuous at

0, since (g ◦ f)(x) =

{
2 if x ∈ R \ {0},
3 if x = 0,

so that lim
x→0

(g ◦ f)(x) = 2 6= 3 = (g ◦ f)(0).

Ex.1(n) State TRUE or FALSE giving proper justification: If f : R→ R is not differentiable at
x0 ∈ R and g : R → R is not differentiable at f(x0), then g ◦ f : R → R cannot be differentiable
at x0.

Solution: The given statement is FALSE. If f(x) = |x| for all x ∈ R and if g(x) =

{
1 if x ≥ 0,
−1 if x < 0,

then f : R → R is not differentiable at 0 and g : R → R is not differentiable at f(0) = 0, but
(g ◦ f)(x) = 1 for all x ∈ R, so that g ◦ f is differentiable at 0.

Ex.1(o) State TRUE or FALSE giving proper justification: If f : R→ R is such that lim
h→0

f(x+h)−f(x−h)
h

exists (in R) for every x ∈ R, then f must be differentiable on R.



Solution: The given statement is FALSE. Let f(0) = 1 and f(x) = 0 if x( 6= 0) ∈ R. Then for every

x ∈ R, lim
h→0

f(x+h)−f(x−h)
h

= lim
h→0

0−0
h

= 0, but f (being not continuous at 0) is not differentiable at 0.

Ex.2(a) Using the definition of convergence of sequence, examine whether the sequence
(
n+ 3

2

)
is convergent.
Solution: If possible, let (n + 3

2
) be convergent. Then there exist ` ∈ R and n0 ∈ N such that

|n + 3
2
− `| < 1 for all n ≥ n0 ⇒ n < `− 1

2
for all n ≥ n0, which is not true. Therefore the given

sequence is not convergent.

Ex.2(b) Using the definition of convergence of sequence, examine whether the sequence(
(−1)n 3

n+2

)
is convergent.

Solution: Let ε > 0. For all n ∈ N, we have |(−1)n 3
n+2
− 0| = 3

n+2
< 3

n
. There exists n0 ∈ N such

that n0 >
3
ε
. Hence |(−1)n 3

n+2
−0| < 3

n0
< ε for all n ≥ n0 and so the given sequence is convergent

(with limit 0).

Ex.2(c) Using the definition of convergence of sequence, examine whether the sequence(
(−1)n(1− 1

n
)
)

is convergent.
Solution: If possible, let the given sequence (xn) (say) be convergent with limit `. Then there exists
m ∈ N such that |xn−`| < 1

4
for all n ≥ m⇒ |x2m−`| < 1

4
and |x2m+1−`| < 1

4
⇒ |1− 1

2m
−`| < 1

4

and |1 + ` − 1
2m+1
| < 1

4
⇒ 2 − ( 1

2m
+ 1

2m+1
) < 1

2
⇒ 3

2
< 1

2m
+ 1

2m+1
≤ 1

2
+ 1

2
= 1, which is a

contradiction. Therefore the given sequence is not convergent.

Ex.2(d) Using the definition of convergence of sequence, examine whether the sequence(
3n2+sinn−4

2n2+3

)
is convergent.

Solution: Let ε > 0. For all n ∈ N, we have |3n2+sinn−4
2n2+3

− 3
2
| = |2 sinn−17|

4n2+6
< 19

4n2 . There exists

n0 ∈ N such that n0 >
√
19

2
√
ε
. Hence |3n2+sinn−4

2n2+3
− 3

2
| < 19

4n2
0
< ε for all n ≥ n0 and so the given

sequence is convergent (with limit 3
2
).

Ex.2(e) Using the definition of convergence of sequence, examine whether the sequence
(

2
√
n+3n

2n+3

)
is convergent.

Solution: Let ε > 0. For all n ∈ N, we have |2
√
n+3n

2n+3
− 3

2
| = |4

√
n−9|

4n+6
< 4

√
n+9
4n

< 1√
n

+ 9√
n

= 10√
n
.

There exists n0 ∈ N such that n0 >
100
ε2

. Hence |2
√
n+3n

2n+3
− 3

2
| < 10√

n0
< ε for all n ≥ n0 and so the

given sequence is convergent (with limit 3
2
).

Ex.3(a) Let a, b, c be distinct positive real numbers and let xn = (an + bn + cn)
1
n for all n ∈ N.

Examine whether the sequence (xn) is convergent. Also, find the limit if it is convergent.

Solution: Let α = max{a, b, c}. Then αn ≤ an + bn + cn ≤ 3αn for all n ∈ N. So α ≤ xn ≤ 3
1
nα

for all n ∈ N. Since 3
1
n → 1, 3

1
nα→ α. Hence by sandwich theorem, it follows that the sequence

(xn) is convergent and lim
n→∞

xn = α.

Alternative solution: Let α = max{a, b, c}. Then αn ≤ an + bn + cn = αn[( a
α

)n + ( b
α

)n + ( c
α

)n] ≤
αn[( a

α
)n + ( b

α
)n + ( c

α
)n]n for all n ∈ N. So α ≤ xn ≤ α[( a

α
)n + ( b

α
)n + ( c

α
)n] for all n ∈ N. Since

( a
α

)n + ( b
α

)n + ( c
α

)n → 1, by sandwich theorem, it follows that (xn) is convergent and lim
n→∞

xn = α.

Ex.3(b) Let xn = 1−n+(−1)n
2n+1

for all n ∈ N for all n ∈ N. Examine whether the sequence (xn) is
convergent. Also, find the limit if it is convergent.

Solution: We have xn =
1
n
−1+ (−1)n

n

2+ 1
n

for all n ∈ N. Since 1
n
→ 0 and (−1)n

n
→ 0, by the limit rules

for algebraic operations, (xn) is convergent with lim
n→∞

xn = 0−1+0
2+0

= −1
2
.



Ex.3(c) Let |α| > 1, k > 0 and xn = nk

αn
for all n ∈ N. Examine whether the sequence (xn)

is convergent. Also, find the limit if it is convergent.
Solution: We have lim

n→∞
|xn+1

xn
| = lim

n→∞
(1 + 1

n
)k 1
|α| = 1

|α| < 1. Hence (xn) converges to 0.

Ex.3(d) Let xn = p(n)
2n

for all n ∈ N, where p(x) is a polynomial in the real variable x of de-
gree 5. Examine whether the sequence (xn) is convergent. Also, find the limit if it is convergent.
Solution: The highest power of n in each of p(n) and p(n+ 1) is 5 and the coefficient of n5 in p(n)
and p(n+1) is same. Hence dividing both numerator and denominator by n5 and using the fact that
1
n
→ 0, it follows that lim

n→∞

∣∣∣p(n+1)
p(n)

∣∣∣ = 1 and consequently lim
n→∞

|xn+1

xn
| = lim

n→∞

∣∣∣p(n+1)
2n+1 · 2n

p(n)

∣∣∣ = 1
2
< 1.

This implies that (xn) is convergent with limit 0.

Ex.3(e) Let xn = 3.5.7.··· .(2n+1)
2.5.8.··· .(3n−1) for all n ∈ N. Examine whether the sequence (xn) is conver-

gent. Also, find the limit if it is convergent.

Solution: We have lim
n→∞

|xn+1

xn
| = lim

n→∞
2n+3
3n+2

= lim
n→∞

2+ 3
n

3+ 2
n

= 2
3
< 1. Hence (xn) is convergent and

lim
n→∞

xn = 0.

Ex.3(f) Let xn = 1
n

sin2 n for all n ∈ N. Examine whether the sequence (xn) is convergent.
Also, find the limit if it is convergent.
Solution: Since 0 ≤ 1

n
sin2 n ≤ 1

n
for all n ∈ N and since 1

n
→ 0, by sandwich theorem, (xn) is

convergent with limit 0.

Ex.3(g) Let xn = 1
(n+1)2

+ 1
(n+2)2

+ · · ·+ 1
(n+n)2

for all n ∈ N. Examine whether the sequence (xn)

is convergent. Also, find the limit if it is convergent.

Solution: We have 0 ≤ xn ≤ n
(n+1)2

for all n ∈ N and n
(n+1)2

=
1
n

(1+ 1
n
)2
→ 0

(1+0)2
= 0. Hence by

sandwich theorem, it follows that (xn) is convergent with limit 0.

Ex.3(h) xn = n
n3+1

+ 2n
n3+2

+ · · · + n2

n3+n
for all n ∈ N. Examine whether the sequence (xn)

is convergent. Also, find the limit if it is convergent.
Solution: We have (1 + 2 + · · · + n) n

n3+n
≤ xn ≤ (1 + 2 + · · · + n) n

n3+1
for all n ∈ N. Also,

(1 + 2 + · · ·+ n) n
n3+n

=
1+ 1

n

2(1+ 1
n2

)
→ 1

2
and (1 + 2 + · · ·+ n) n

n3+1
=

1+ 1
n

2(1+ 1
n3

)
→ 1

2
. Hence by sandwich

theorem, (xn) is convergent with limit 1
2
.

Ex.3(i) xn = 1√
n2+1

+ 1√
n2+2

+ · · · + 1√
n2+n+1

for all n ∈ N. Examine whether the sequence

(xn) is convergent. Also, find the limit if it is convergent.

Solution: We have n+1√
n2+n+1

≤ xn ≤ n+1√
n2+1

for all n ∈ N. Also, n+1√
n2+n+1

=
1+ 1

n√
1+ 1

n
+ 1
n2

→ 1 and

n+1√
n2+1

=
1+ 1

n√
1+ 1

n2

→ 1. Hence by sandwich theorem, (xn) is convergent with limit 1.

Ex.3(j) Let xn = 1√
n
( 1√

1+
√
3

+ 1√
3+
√
5

+ · · · + 1√
2n−1+

√
2n+1

) for all n ∈ N. Examine whether

the sequence (xn) is convergent. Also, find the limit if it is convergent.
Solution: Since xn = 1

2
√
n
(
√

3− 1 +
√

5−
√

3 + · · ·+
√

2n+ 1−
√

2n− 1) = 1
2
√
n
(
√

2n+ 1− 1) =

1
2
(
√

2 + 1
n
− 1√

n
) for all n ∈ N and since 1

n
→ 0, by the limit rules for algebraic operations, (xn)

is convergent with lim
n→∞

xn = 1
2
(
√

2 + 0− 0) = 1√
2
.

Ex.3(k) Let xn = ( sinn+cosn
3

)n for all n ∈ N. Examine whether the sequence (xn) is conver-
gent. Also, find the limit if it is convergent.
Solution: We have 0 ≤ |xn| ≤ (2

3
)n for all n ∈ N. Since (2

3
)n → 0, by sandwich theorem, it follows

that |xn| → 0 and consequently (xn) is convergent with limit 0.



Ex.3(l) Let xn =
√

4n2 + n − 2n for all n ∈ N. Examine whether the sequence (xn) is con-
vergent. Also, find the limit if it is convergent.
Solution: For all n ∈ N,

√
4n2 + n− 2n = n√

4n2+n+2n
= 1√

4+ 1
n
+2

. Since 1
n
→ 0, by the limit rules

for algebraic operations, (xn) is convergent and lim
n→∞

xn = 1√
4+0+2

= 1
4
.

Ex.3(m) Let xn =
√
n2 + n −

√
n2 + 1 for all n ∈ N. Examine whether the sequence (xn) is

convergent. Also, find the limit if it is convergent.

Solution: For all n ∈ N, we have xn = n−1√
n2+n+

√
n2+1

=
1− 1

n√
1+ 1

n
+
√

1+ 1
n2

. Since 1
n
→ 0, by the limit

rules for algebraic operations, (xn) is convergent and lim
n→∞

xn = 1−0√
1+0+

√
1+0

= 1
2
.

Ex.3(n) Let x1 = 1 and xn+1 = 1 +
√
xn for all n ∈ N. Examine whether the sequence (xn)

is convergent. Also, find the limit if it is convergent.
Solution: We have x2 = 2 > x1. Also, if xk+1 > xk for some k ∈ N, then xk+2 = 1 +

√
xk+1 >

1 +
√
xk = xk+1. Hence by the principle of mathematical induction, xn+1 > xn for all n ∈ N. So

(xn) is increasing. Again, x1 < 3 and if xk < 3 for some k ∈ N, then xk+1 = 1+
√
xk < 1+

√
3 < 3.

Hence by the principle of mathematical induction, xn < 3 for all n ∈ N. So (xn) is bounded above.
Consequently (xn) is convergent. If ` = lim

n→∞
xn, then xn+1 → ` and since xn+1 = 1 +

√
xn for

all n ∈ N, we get ` = 1+
√
`⇒ ` = 3+

√
5

2
or 3−

√
5

2
. Since xn ≥ 1 for all n ∈ N, ` ≥ 1 and so ` = 3+

√
5

2
.

Ex.3(o) Let x1 = 4 and xn+1 = 3 − 2
xn

for all n ∈ N. Examine whether the sequence (xn)
is convergent. Also, find the limit if it is convergent.
Solution: We have x1 > 2 and if we assume that xk > 2 for some k ∈ N, then xk+1 > 3 − 1 = 2.
Hence by the principle of mathematical induction, xn > 2 for all n ∈ N. Therefore (xn) is
bounded below. Again, x2 = 5

2
< x1 and if we assume that xk+1 < xk for some k ∈ N, then

xk+2−xk+1 = 2( 1
xk
− 1

xk+1
) < 0⇒ xk+2 < xk+1. Hence by the principle of mathematical induction,

xn+1 < xn for all n ∈ N. Therefore (xn) is decreasing. Consequently (xn) is convergent. Let
` = lim

n→∞
xn. Then lim

n→∞
xn+1 = 3 − 2

lim
n→∞

xn
⇒ ` = 3 − 2

`
(since xn > 2 for all n ∈ N, ` 6= 0)

⇒ (`− 1)(`− 2) = 0⇒ ` = 1 or ` = 2. But xn > 2 for all n ∈ N, so ` ≥ 2. Therefore ` = 2.

Alternative solution: For all n ∈ N, we have |xn+2−xn+1| = 2
|xn+1||xn| |xn+1−xn|. Also, as shown in

the above solution, xn > 2 for all n ∈ N. Hence |xn+2 − xn+1| ≤ 1
2
|xn+1 − xn| for all n ∈ N. It fol-

lows that (xn) is a Cauchy sequence in R and hence (xn) is convergent. To show that lim
n→∞

xn = 2,

we proceed as in the above solution.

Ex.3(p) Let x1 = 0 and xn+1 =
√

6 + xn for all n ∈ N. Examine whether the sequence (xn)
is convergent. Also, find the limit if it is convergent.
Solution: We have x2 =

√
6 > x1. Also, if xk+1 > xk for some k ∈ N, then xk+2 =

√
6 + xk+1 >√

6 + xk = xk+1. Hence by the principle of mathematical induction, xn+1 > xn for all n ∈ N. So
(xn) is increasing. Again, x1 < 3 and if xk < 3 for some k ∈ N, then xk+1 =

√
6 + xk <

√
6 + 3 = 3.

Hence by the principle of mathematical induction, xn < 3 for all n ∈ N. So (xn) is bounded above.
Consequently (xn) is convergent. If ` = lim

n→∞
xn, then xn+1 → ` and since xn+1 =

√
6 + xn for all

n ∈ N, we get ` =
√

6 + `⇒ `2 − `− 6 = 0⇒ ` = 3 or −2. Since xn ≥ 0 for all n ∈ N, ` ≥ 0 and
so ` = 3.

Ex.3(q) Let x1 > 1 and xn+1 =
√
xn for all n ∈ N. Examine whether the sequence (xn) is

convergent. Also, find the limit if it is convergent.
Solution: We have x1 > 1 and if we assume that xk > 1 for some k ∈ N, then xk+1 =

√
xk > 1.

Hence by the principle of mathematical induction, xn > 1 for all n ∈ N. Again, x2 =
√
x1 ≤ x1

and if we assume that xk+1 ≤ xk for some k ∈ N, then xk+2 =
√
xk+1 ≤

√
xk = xk+1. Hence by

the principle of mathematical induction, xn+1 ≤ xn for all n ∈ N. Thus (xn) is decreasing and



bounded below. Consequently (xn) is convergent. If ` = lim
n→∞

xn, then lim
n→∞

xn+1 = ` and since

xn+1 =
√
xn for all n ∈ N, we get ` =

√
` ⇒ `2 = ` ⇒ ` = 0 or 1. Since xn > 1 for all n ∈ N,

` ≥ 1 and so we must have ` = 1.

Ex.4 Let (xn), (yn) be sequences in R such that xn → x ∈ R and yn → y ∈ R. Show that
lim
n→∞

max{xn, yn} = max{x, y}.
Solution: We know that max{xn, yn} = 1

2
(xn + yn + |xn − yn|) for all n ∈ N. Since xn → x and

yn → y, xn+yn → x+y and |xn−yn| → |x−y|. Consequently lim
n→∞

max{xn, yn} = 1
2
(x+y+|x−y|) =

max{x, y}.

Ex.5 If a sequence (xn) of positive real numbers converges to ` ∈ R, then show that lim
n→∞

√
xn =

√
`.

Solution: In view of Ex.2 of Tutorial Problem Set, we get ` ≥ 0. If a ≥ 0 and b ≥ 0, then
1
2
(a+ b− |a− b|) = min{a, b} ≤

√
ab and hence it follows that |

√
a−
√
b| ≤

√
|a− b|. Let ε > 0.

Since xn → `, there exists n0 ∈ N such that |xn − `| < ε2 for all n ≥ n0. Therefore using the

inequality obtained above, we get |√xn −
√
`| ≤

√
|xn − `| < ε for all n ≥ n0. Consequently

lim
n→∞

√
xn =

√
`.

Ex.6 Let (xn) be a convergent sequence in R with lim
n→∞

xn = ` 6= 0. Show that there exists

n0 ∈ N such that xn 6= 0 for all n ≥ n0.
Solution: Since xn → ` and |`| > 0, there exists n0 ∈ N such that |xn − `| < 1

2
|`| for all n ≥ n0.

If for some n ≥ n0, xn = 0, then we obtain |`| < 1
2
|`|, which is not possible. Hence xn 6= 0 for all

n ≥ n0.

Ex.7 If xn = 1
n+1

+ 1
n+2

+ · · · + 1
n+n

for all n ∈ N, then show that the sequence (xn) conver-
gent.
Solution: For all n ∈ N, we have xn+1 − xn = 1

2n+1
+ 1

2n+2
− 1

n+1
≥ 2

2n+2
− 1

n+1
= 0 ⇒ xn+1 ≥ xn

for all n ∈ N⇒ (xn) is increasing. Also, xn ≤ 1
n

+ 1
n

+ · · ·+ 1
n

= 1 for all n ∈ N⇒ (xn) is bounded
above. Therefore (xn) is convergent.

Ex.8(a) Let x1 = 1 and xn+1 = 2+xn
1+xn

for all n ∈ N. Show that the sequence (xn) in R is

Cauchy (and hence convergent). Also, find the limit.
Solution: Since xn+1 = 1 + 1

1+xn
for all n ∈ N, we have |xn+2 − xn+1| = | 1

1+xn+1
− 1

1+xn
| =

|xn+1−xn|
|1+xn+1||1+xn| for all n ∈ N. Also, x1 = 1 and if we assume that xk ≥ 1 for some k ∈ N, then

xk+1 = 1 + 1
1+xk

≥ 1. Hence by the principle of mathematical induction, xn ≥ 1 for all n ∈ N.

Consequently |xn+2−xn+1| ≤ 1
4
|xn+1−xn| for all n ∈ N. It follows that (xn) is Cauchy and hence

(xn) converges. Let ` = lim
n→∞

xn. Then lim
n→∞

xn+1 = ` and so we get ` = 1+ 1
1+`
⇒ `2 = 2⇒ ` =

√
2

or −
√

2. Since xn ≥ 1 for all n ∈ N, we must have ` ≥ 1 and so ` =
√

2.

Ex.8(b) Let x1 > 0 and xn+1 = 2 + 1
xn

for all n ∈ N. Show that the sequence (xn) in R is

Cauchy (and hence convergent). Also, find the limit.

Solution: We have |xn+2 − xn+1| = | 1
xn+1
− 1

xn
| = |xn+1−xn|

|xn+1||xn| for all n ∈ N. Also, x2 = 2 + 1
x1
> 2

and if we assume that xk > 2 for some k ≥ 2, then xk+1 = 2 + 1
xk
> 2. Hence by the principle

of mathematical induction, xn > 2 for all n ≥ 2. Consequently |xn+2 − xn+1| ≤ 1
4
|xn+1 − xn|

for all n ≥ 2. It follows that (xn) is Cauchy and hence (xn) converges. Let ` = lim
n→∞

xn. Then

lim
n→∞

xn+1 = ` and so we get ` = 2 + 1
`
⇒ `2 − 2` − 1 = 0 ⇒ ` = 1 ±

√
2. Since xn > 2 for all

n ≥ 2, we must have ` ≥ 2 and so ` = 1 +
√

2.



Ex.9(a) If xn = (−1)nn2 for all n ∈ N, then examine whether the sequence (xn) has a con-
vergent subsequence?
Solution: If possible, let the given sequence have a convergent subsequence ((−1)nkn2

k). Then
((−1)nkn2

k) must be bounded. So there exists M > 0 such that |(−1)nkn2
k| ≤ M for all k ∈ N ⇒

n2
k ≤M for all k ∈ N, which is not possible, since (nk) is a strictly increasing sequence of positive

integers. Therefore the given sequence cannot have any convergent subsequence.

Ex.9(b) If xn = (−1)n 5n sin3 n
3n−2 for all n ∈ N, then examine whether the sequence (xn) has a

convergent subsequence.
Solution: Since |xn| = 5

3− 2
n

| sinn|3 ≤ 5 for all n ∈ N, the sequence (xn) is bounded and hence by

Bolzano-Weierstrass theorem, (xn) has a convergent subsequence.

Ex.10 If a, b ∈ R, then show that the series a + (a + b) + (a + 2b) + · · · is not convergent
unless a = b = 0.
Solution: Let sn = a+(a+b)+ · · ·+a+(n−1)b = n[a+ 1

2
(n−1)b] for all n ∈ N. If b 6= 0, then the

sequence (a + 1
2
(n− 1)b) is not bounded and so the sequence (sn) is not bounded, which implies

that (sn) is not convergent. If b = 0, then the sequence (sn) = (na) is not bounded and hence is
not convergent if a 6= 0. Thus the given series is not convergent (i.e. (sn) is not convergent) if
a 6= 0 or b 6= 0.
If a = b = 0, then the series becomes 0 + 0 + · · · , which is clearly convergent.

Ex.11(a) Examine whether the series
∞∑
n=1

n!
nn

is convergent.

Solution: Taking xn = n!
nn

for all n ∈ N, we find that lim
n→∞

|xn+1

xn
| = lim

n→∞
( n
n+1

)n = lim
n→∞

1
(1+ 1

n
)n

=
1
e
< 1. Hence by the ratio test, the given series is convergent.

Ex.11(b) Examine whether the series
∞∑
n=1

(2n)!
nn

is convergent.

Solution: For all n ∈ N, we have (2n)!
nn

= 2n
n
· 2n−1

n
· · · n+1

n
· n! ≥ 1. Hence lim

n→∞
(2n)!
nn
6= 0 and

consequently the given series is not convergent.

Ex.11(c) Examine whether the series
∞∑
n=1

1
n

sin 1
n

is convergent.

Solution: Since 0 ≤ 1
n

sin 1
n
≤ 1

n2 for all n ∈ N and since the series
∞∑
n=1

1
n2 converges, by comparison

test, the given series is convergent.

Ex.11(d) Examine whether the series
∞∑
n=1

√
2n2+3
5n3+1

is convergent.

Solution: Let xn =
√

2n2+3
5n3+1

and yn = 1√
n

for all n ∈ N. Since lim
n→∞

xn
yn

= lim
n→∞

√
2+ 3

n2

5+ 1
n3

=
√

2
5
6= 0

and since
∞∑
n=1

yn is not convergent, by limit comparison test,
∞∑
n=1

xn is not convergent.

Ex.11(e) Examine whether the series
∞∑
n=1

nn

2n2
is convergent.

Solution: Taking xn = nn

2n2
for all n ∈ N, we have lim

n→∞
|xn|

1
n = lim

n→∞
n
2n

= 0 < 1 (since

lim
n→∞

n+1
2n+1 · 2

n

n
= 1

2
< 1). Hence by the root test, the given series is convergent.

Ex.11(f) Examine whether the series
∞∑
n=1

((n3 + 1)
1
3 − n) is convergent.

Solution: Taking xn = (n3 + 1)
1
3 − n ≥ 0 and yn = 1

n2 for all n ∈ N, we have



lim
n→∞

xn
yn

= lim
n→∞

n2(n3+1−n3)

(n3+1)2/3+n(n3+1)1/3+n2 = lim
n→∞

1
(1+ 1

n3
)2/3+(1+ 1

n3
)1/3+1

= 1
3
. Since

∞∑
n=1

yn is convergent,

∞∑
n=1

xn is also convergent by limit comparison test.

Ex.11(g) Examine whether the series
∞∑
n=1

√
n+1−

√
n

n
is convergent.

Solution: Let xn =
√
n+1−

√
n

n
= 1

n(
√
n+1+

√
n)

and yn = 1
n3/2 for all n ∈ N. Since lim

n→∞
xn
yn

=

lim
n→∞

1√
1+ 1

n
+1

= 1
2

and since
∞∑
n=1

yn is convergent, by limit comparison test,
∞∑
n=1

xn is convergent.

Ex.11(h) Examine whether the series
∞∑
n=1

( n
n+1

)n
2

is convergent.

Proof: Taking xn = ( n
n+1

)n
2

for all n ∈ N, we have lim
n→∞

|xn|
1
n = lim

n→∞
1

(1+ 1
n
)n

= 1
e
< 1. Hence by

the root test, the given series is convergent.

Ex.11(i) Examine whether the series
∞∑
n=1

(−1)n+1
√
n+1
n+1

is convergent.

Solution: For n ∈ N, the inequality
√
n+1+1
n+2

<
√
n+1
n+1

is equivalent to the inequality (n + 1)
3
2 <

(n+2)
√
n+1. Since n(n+2)2−(n+1)3 = n2+n−1 > 0 for all n ∈ N, we get (n+1)

3
2 < (n+2)

√
n+1

for all n ∈ N and hence
√
n+1+1
n+2

<
√
n+1
n+1

for all n ∈ N. Consequently the sequence
(√

n+1
n+1

)
is de-

creasing. Also,
√
n+1
n+1

=
1√
n
+ 1
n

1+ 1
n

→ 0. Hence by Leibniz’s test, the given series converges.

Alternative method for showing decreasing: Let f(x) =
√
x+1
x+1

for all x ≥ 1. Then f : [1,∞) → R
is differentiable and f ′(x) = 1−x−2

√
x

2
√
x(x+1)2

≤ 0 for all x ≥ 1. Hence f is decreasing on [1,∞) and so

f(n+ 1) ≤ f(n) for all n ∈ N.

Ex.12 Find all x ∈ R for which the series
∞∑
n=1

xn

n!
is convergent.

Solution: For x = 0, the given series becomes 0 + 0 + · · · , which clearly converges. We now

assume that x 6= 0. Then lim
n→∞

| xn+1

(n+1)!
· n!
xn
| = lim

n→∞
|x|
n+1

= 0 < 1. So by the ratio test,
∞∑
n=1

xn

n!
is

absolutely convergent and hence convergent. Therefore the given series is convergent for all x ∈ R.

Ex.13 Find all x ∈ R for which the series
∞∑
n=1

(x+2)n

3n
√
2n+1

is convergent.

Solution: If x = −2, then the given series becomes 0 + 0 + · · · , which is clearly convergent. Let

x(6= −2) ∈ R and let an = (x+2)n

3n
√
2n+1

for all n ∈ N. Then lim
n→∞

|an+1

an
| = 1

3
|x + 2|. Hence by ratio

test,
∞∑
n=1

an is convergent (absolutely) if 1
3
|x + 2| < 1, i.e. if x ∈ (−5, 1) and is not convergent if

1
3
|x + 2| > 1, i.e. if x ∈ (−∞,−5) ∪ (1,∞). If x = −5, then

∞∑
n=1

an =
∞∑
n=1

(−1)n√
2n+1

is convergent by

Leibniz test, since ( 1√
2n+1

) is a decreasing sequence of positive real numbers and lim
n→∞

1√
2n+1

= 0.

Again, if x = 1, then
∞∑
n=1

an =
∞∑
n=1

1√
2n+1

is not convergent by limit comparison test, since
∞∑
n=1

1√
n

is not convergent and lim
n→∞

√
n√

2n+1
= 1√

2
6= 0. Therefore the set of all x ∈ R for which

∞∑
n=1

an is

convergent is [−5, 1).

Ex.14 Show that the series
∞∑
n=1

an

an+n
is convergent if 0 < a < 1 and is not convergent if a > 1.



Solution: If 0 < a < 1, then 0 < an

an+n
< an for all n ∈ N and

∞∑
n=1

an is convergent. Hence by

comparison test,
∞∑
n=1

an

an+n
is convergent if 0 < a < 1. Again, if a > 1, then an

an+n
= 1

1+ n
an
→ 1 6= 0

and hence
∞∑
n=1

an

an+n
is not convergent if a > 1. (We have used that lim

n→∞
n
an

= 0, which follows from

the fact that lim
n→∞

n+1
an+1 · a

n

n
= 1

a
< 1.)

Ex.15 If 0 < xn <
1
2

for all n ∈ N and if the series
∞∑
n=1

xn converges, then show that the se-

ries
∞∑
n=1

xn
1−xn converges.

Solution: Since 0 < xn <
1
2

for all n ∈ N, we have 0 < xn
1−xn < 2xn for all n ∈ N. Also, since

∞∑
n=1

2xn converges, by comparison test,
∞∑
n=1

xn
1−xn converges.

Ex.16 Let (xn), (yn) be sequences in R such that |xn| ≤ |yn| for all n ∈ N. Find out (with
justification) the true statement(s) from the following.

(a) If the series
∞∑
n=1

yn converges, then the series
∞∑
n=1

xn must converge.

(b) If the series
∞∑
n=1

xn converges, then the series
∞∑
n=1

yn must converge.

(c) If the series
∞∑
n=1

yn converges absolutely, then the series
∞∑
n=1

xn must converge absolutely.

(d) If the series
∞∑
n=1

xn converges absolutely, then the series
∞∑
n=1

yn must converge absolutely.

Solution: By comparison test,
∞∑
n=1

|xn| is convergent (i.e.
∞∑
n=1

xn is absolutely convergent) if
∞∑
n=1

|yn|

is convergent (i.e.
∞∑
n=1

yn is absolutely convergent) and so (c) is true. Again, we know that
∞∑
n=1

1
n2

is convergent and
∞∑
n=1

1
n

is not convergent. Also, since ( 1
n
) is a decreasing sequence of positive real

numbers with 1
n
→ 0, by Leibniz’s test,

∞∑
n=1

(−1)n
n

is convergent. Hence to see that (a) is false,

we can take xn = 1
n
, yn = (−1)n

n
for all n ∈ N and to see that (b) and (d) are false, we can take

xn = 1
n2 , yn = 1

n
for all n ∈ N.

Ex.17 If a series
∞∑
n=1

xn is convergent but the series
∞∑
n=1

x2n is not convergent, then show that

the series
∞∑
n=1

xn is conditionally convergent.

Solution: Since
∞∑
n=1

xn is convergent, xn → 0, and so there exists n0 ∈ N such that |xn| < 1 for

all n ≥ n0. Hence x2n ≤ |xn| for all n ≥ n0. Since
∞∑
n=1

x2n is not convergent, by comparison test,

∞∑
n=1

|xn| is not convergent. Consequently
∞∑
n=1

xn is conditionally convergent.

Ex.18(a) Examine whether the series
∞∑
n=1

(−1)n(
√
n2 + 1− n) is conditionally convergent.

Solution: Let xn =
√
n2 + 1 − n for all n ∈ N. Then xn > 0 for all n ∈ N and xn = 1√

n2+1+n
=

1
n√

1+ 1
n2

+1
→ 0. Also, xn+1 = 1√

(n+1)2+1+(n+1)
< 1√

n2+1+n
= xn for all n ∈ N, i.e. the sequence (xn)



is decreasing. Therefore by Leibniz’s test,
∞∑
n=1

(−1)n+1xn is convergent and hence the given series

is convergent.

Again, if yn = 1
n

for all n ∈ N, then lim
n→∞

xn
yn

= lim
n→∞

1√
1+ 1

n2
+1

= 1
2
6= 0. Since

∞∑
n=1

yn is not con-

vergent, by limit comparison test,
∞∑
n=1

xn is not convergent, i.e.
∞∑
n=1

|(−1)n(
√
n2 + 1 − n)| is not

convergent. Thus the given series is conditionally convergent.

Ex.18(b) Examine whether the series
∞∑
n=2

(−1)n
n2+(−1)n is conditionally convergent.

Solution: By comparison test, the series
∞∑
n=2

∣∣∣ (−1)n
n2+(−1)n

∣∣∣ =
∞∑
n=2

1
n2+(−1)n is convergent, since

0 < 1
n2+(−1)n <

2
n2 for all n ≥ 2 and

∞∑
n=2

1
n2 is convergent. Thus the given series is not conditionally

convergent.

Ex.18(c) Examine whether the series
∞∑
n=1

(−1)n a
2+n
n2 (where a ∈ R) is conditionally convergent.

Solution: Let a ∈ R and let xn = a2+n
n2 for all n ∈ N. Then xn > 0 for all n ∈ N and

xn = a2

n2 + 1
n
→ 0. Also, xn+1 = a2

(n+1)2
+ 1

n+1
< a2

n2 + 1
n

= xn for all n ∈ N, i.e. the sequence (xn)

is decreasing. Therefore by Leibniz’s test, it follows that the given series is convergent.

Again, if yn = 1
n

for all n ∈ N, then lim
n→∞

xn
yn

= lim
n→∞

(a
2

n
+1) = 1 6= 0. Since

∞∑
n=1

yn is not convergent,

by limit comparison test,
∞∑
n=1

xn is not convergent, i.e.
∞∑
n=1

|(−1)n a
2+n
n2 | is not convergent. Thus

the given series is conditionally convergent.

Ex.19 Find all x ∈ R for which the series
∞∑
n=1

log(n+1)√
n+1

(x− 5)n is convergent.

Hint: If x = 5, then the given series becomes 0 + 0 + · · · , which is clearly convergent. Let

x(6= 5) ∈ R and let an = log(n+1)√
n+1

(x − 5)n for all n ∈ N. Since lim
x→∞

log(x+2)
log(x+1)

= 1 (using L’Hôpital’s

rule), by sequential criterion of limits, we get lim
n→∞

log(n+2)
log(n+1)

= 1 and so lim
n→∞

∣∣∣an+1

an

∣∣∣ = |x− 5|. Hence

by the ratio test,
∞∑
n=1

an converges (absolutely) if |x − 5| < 1, i.e. if x ∈ (4, 6) and diverges if

|x − 5| > 1, i.e. if x ∈ (−∞, 4) ∪ (6,∞). If f(x) = log x√
x

for all x > 0, then f : (0,∞) → R
is differentiable and f ′(x) < 0 for all x > e2. Hence f is decreasing on (e2,∞). Consequently

the sequence
(

logn√
n

)∞
n=16

is decreasing. If x = 6, then
∞∑
n=1

an =
∞∑
n=1

log(n+1)√
n+1

diverges, by Cauchy’s

condensation test. Again, if x = 4, then
∞∑
n=1

an =
∞∑
n=1

(−1)n log(n+1)√
n+1

converges, by Leibniz’s test.

Therefore the set of all x ∈ R for which the given series converges is [4, 6).

Ex.20 Find all x ∈ R for which the series
∞∑
n=1

(−1)n(x+3)n

n5n
is conditionally convergent.

Solution: If x = −3, then the given series becomes 0 + 0 + · · · , which is clearly absolutely conver-

gent. Let x(6= −3) ∈ R and let an = (−1)n(x+3)n

n5n
for all n ∈ N. Then lim

n→∞

∣∣∣an+1

an

∣∣∣ = 1
5
|x+ 3|. Hence

by the ratio test,
∞∑
n=1

an converges absolutely if 1
5
|x + 3| < 1, i.e. if x ∈ (−8, 2) and diverges if

1
5
|x + 3| > 1, i.e. if x ∈ (−∞,−8) ∪ (2,∞). If x = −8, then

∞∑
n=1

an =
∞∑
n=1

1
n

diverges. If x = 2,



then
∞∑
n=1

an =
∞∑
n=1

(−1)n
n

converges by Leibniz’s test, but
∞∑
n=1

|an| =
∞∑
n=1

1
n

diverges, i.e.
∞∑
n=1

an is con-

ditionally convergent. Therefore the set of all x ∈ R for which
∞∑
n=1

an converges conditionally is {2}.

Ex.21 Let f, g : R → R be such that |f(x)| ≤ |g(x)| for all x ∈ R. If g is continuous at 0
and g(0) = 0, then show that f is continuous at 0.
Solution: Let ε > 0. Since g is continuous at 0, there exists δ > 0 such that |g(x)| = |g(x)−g(0)| <
ε for all x ∈ R with |x− 0| < δ. So |f(x)− f(0)| ≤ |f(x)| + |f(0)| ≤ |g(x)| + |g(0)| = |g(x)| < ε
for all x ∈ R with |x− 0| < δ. Therefore f is continuous at 0.

Ex.22 Let f : R→ R be defined by f(x) =

{
1
x

sin 1
x

if x 6= 0,
0 if x = 0.

Examine whether f is continuous at 0.
Solution: Let xn = 2

(4n+1)π
for all n ∈ N. The sequence (xn) in R converges to 0, but the sequence

(f(xn)) = (2nπ+ π
2
) cannot converge because it is not bounded. Therefore f is not continuous at 0.

Ex.23 Give an example (with justification) of a function f : R → R which is discontinuous
at every point of R but |f | : R→ R is continuous.

Solution: Let f : R→ R be defined by f(x) =

{
1 if x ∈ Q,
−1 if x ∈ R \Q.

If x0 ∈ Q, then there exists a sequence (tn) in R \ Q such that tn → x0. Since f(tn) = −1 for
all n ∈ N, f(tn) → −1 6= 1 = f(x0). Hence f is not continuous at x0. Again, if x0 ∈ R \ Q,
then there exists a sequence (rn) in Q such that rn → x0. Since f(rn) = 1 for all n ∈ N,
f(rn)→ 1 6= −1 = f(x0). Hence f is not continuous at x0. Thus f is discontinuous at every point
of R.
However, |f |(x) = |f(x)| = 1 for all x ∈ R and so |f | : R→ R is continuous.

Ex.24 Let f : R→ R be continuous such that f(x) = x2 + 5 for all x ∈ Q. Find f(
√

2).
Solution: There exists a sequence (rn) in Q such that rn →

√
2. Since f is continuous at

√
2, we

have f(
√

2) = lim
n→∞

f(rn) = lim
n→∞

(r2n + 5) = (
√

2)2 + 5 = 7.

Ex.25 Evaluate lim
n→∞

sin((2nπ + 1
2nπ

) sin(2nπ + 1
2nπ

)).

Solution: We have (2nπ+ 1
2nπ

) sin(2nπ+ 1
2nπ

) = 2nπ sin 1
2nπ

+ 1
2nπ

sin 1
2nπ
→ 1, since | 1

2nπ
sin 1

2nπ
| ≤

1
2nπ
→ 0 ⇒ 1

2nπ
sin 1

2nπ
→ 0 and 2nπ sin 1

2nπ
=

sin 1
2nπ
1

2nπ

→ 1, using lim
x→0

sinx
x

= 1. Since the sine

function is continuous at 1, it follows that lim
n→∞

sin((2nπ + 1
2nπ

) sin(2nπ + 1
2nπ

)) = sin 1.

Ex.26 Let f : R→ R be continuous such that f(0) > f(1) < f(2). Show that f is not one-one.
Solution: We choose k ∈ R such that f(1) < k < min{f(0), f(2)}. Then by the intermediate
value theorem, there exist c1 ∈ (0, 1) and c2 ∈ (1, 2) such that f(c1) = k and f(c2) = k. Since
c1 6= c2, we conclude that f is not one-one.

Ex.27 Let f : [0, 1]→ [0, 1] be continuous. Show that there exists c ∈ [0, 1] such that f(c)+2c5 =
3c7.
Solution: Let g(x) = f(x) + 2x5 − 3x7 for all x ∈ [0, 1]. Since f is continuous, g : [0, 1] → R is
continuous. If f(0) = 0 or f(1) = 1, then we get the result by taking c = 0 or c = 1 respectively.
Otherwise g(0) = f(0) > 0 and g(1) = f(1) − 1 < 0 (since it is given that 0 ≤ f(x) ≤ 1 for all
x ∈ [0, 1]). Hence by the intermediate value theorem, there exists c ∈ (0, 1) such that g(c) = 0,
i.e. f(c) = c.

Ex.28 Show that there exists c ∈ R such that c179 + 163
1+c2+sin2 c

= 119.

Solution: Let f(x) = x179 + 163
1+x2+sin2 x

− 119 for all x ∈ R. Then f : R → R is continuous and



f(−2) < 0, f(0) > 0. Hence by the intermediate value theorem, there exists c ∈ (−2, 0) such that
f(c) = 0, i.e. c179 + 163

1+c2+sin2 c
= 119.

Ex.29 Let f, g : [−1, 1]→ R be continuous such that |f(x)| ≤ 1 for all x ∈ [−1, 1] and g(−1) = −1,
g(1) = 1. Show that there exists c ∈ [−1, 1] such that f(c) = g(c).
Solution: Let ϕ(x) = f(x)−g(x) for all x ∈ [−1, 1]. Since f and g are continuous, ϕ : [−1, 1]→ R
is continuous. If f(−1) = −1 or f(1) = 1, then we get the result by taking c = −1 or c = 1
respectively. Otherwise ϕ(−1) = f(−1) + 1 > 0 and ϕ(1) = f(1) − 1 < 0 (since it is given that
|f(x)| ≤ 1 for all x ∈ [−1, 1]). Hence by the intermediate value theorem, there exists c ∈ (−1, 1)
such that ϕ(c) = 0, i.e. f(c) = g(c).

Ex.30 Let x ∈ R and n ∈ N. Show that

(a) if n is odd, then there exists unique y ∈ R such that yn = x.
(b) if n is even and x > 0, then there exists unique y > 0 such that yn = x.

Solution: Let f(t) = tn − x for all t ∈ R, so that f : R→ R is continuous.
(a) We first assume that n is odd. Then lim

t→∞
f(t) = ∞ and lim

t→−∞
f(t) = −∞. So there exist

x1 > 0 and x2 < 0 such that f(x1) > 0 and f(x2) < 0. By the intermediate value property of
continuous functions, there exists y ∈ (x2, x1) such that f(y) = 0, i.e. yn = x. If possible, let
there exist u ∈ R such that u 6= y and un = x. Clearly either both u and y must be non-negative
or both u and y must be negative. We consider the case 0 ≤ y < u. (Other cases can be handled
similarly.) Then x = yn < un = x, which is a contradiction. Thus the uniqueness of y is proved.
(b) We now assume that n is even and x > 0. Then f(0) < 0 and lim

t→∞
f(t) =∞. So there exists

x1 > 0 such that f(x1) > 0. By the intermediate value property of continuous functions, there
exists y ∈ (0, x1) such that f(y) = 0 i.e. yn = x. If possible, let there exist u > 0 such that
u 6= y and un = x. Without loss of generality, let u > y. Then x = un > yn = x, which is a
contradiction. This proves the uniqueness of y.

Ex.31 If f : [0, 1] → R is continuous and f(x) > 0 for all x ∈ [0, 1], then show that there
exists α > 0 such that f(x) > α for all x ∈ [0, 1].
Solution: Since f : [0, 1]→ R is continuous, there exists x0 ∈ [0, 1] such that f(x) ≥ f(x0) for all
x ∈ [0, 1]. Choosing α = 1

2
f(x0), we find that α > 0 and f(x) > α for all x ∈ [0, 1].

Ex.32 Give an example of each of the following.

(a) A function f : [0, 1]→ R which is not bounded.
(b) A continuous and bounded function f : R → R which does not attain sup{f(x) : x ∈ R} as

well as inf{f(x) : x ∈ R}.
(c) A continuous and bounded function f : (0, 1)→ R which attains both

sup{f(x) : x ∈ (0, 1)} and inf{f(x) : x ∈ (0, 1)}.

Hint: (a) If f(x) =

{
1
x

if x ∈ (0, 1],
0 if x = 0,

then f : [0, 1]→ R is not bounded.
(b) The function f : R → R, defined by f(x) = x

1+|x| for all x ∈ R, is continuous and bounded.

However, neither sup{f(x) : x ∈ R} = 1 nor inf{f(x) : x ∈ R} = −1 is attained by f at any point
of R.
(c) The function f : (0, 1) → R, defined by f(x) = sin(2πx) for all x ∈ (0, 1), is continuous and
bounded. Also, sup{f(x) : x ∈ (0, 1)} = 1 = f(1

4
) and inf{f(x) : x ∈ (0, 1)} = −1 = f(3

4
).

Ex.33 If f(x) = x sinx for all x ∈ R, then show that f : R → R is neither bounded above
nor bounded below.
Solution: If possible, let f be bounded above. Then there exists M > 0 such that f(x) ≤ M
for all x ∈ R and hence 2nπ + π

2
= f(2nπ + π

2
) ≤ M for all n ∈ N. This gives n ≤ 1

2π
(M − π

2
)

for all n ∈ N, which is not possible. Hence f is not bounded above. Again, if possible, let f



be bounded below. Then there exists K > 0 such that f(x) ≥ K for all x ∈ R and hence
−2nπ− 3π

2
= f(2nπ + 3π

2
) ≥ K for all n ∈ N. This gives n ≤ − 1

2π
(K + 3π

2
) for all n ∈ N, which is

not possible. Hence f is not bounded below.

Ex.34 Let p be an nth degree polynomial with real coefficients in one real variable such that
n( 6= 0) is even and p(0) · p(n)(0) < 0. Show that p has at least two real zeroes.
Solution: Let p(x) = a0x

n+a1x
n−1 + · · ·+an−1x+an for all x ∈ R, where ai ∈ R for i = 0, 1, ..., n,

n ∈ N is even and a0 6= 0. Then p is infinitely differentiable (and so also continuous) and
p(n)(0) = n!a0. Since p(0) · p(n)(0) < 0, we have a0an < 0, i.e. a0 and an are of different signs.
Let us assume that a0 > 0, so that an < 0. (The case a0 < 0 and so an > 0 is almost similar.)
Since p(x) = a0x

n(1 + a1
a0
· 1
x

+ · · ·+ an−1

a0
· 1
xn−1 + an

a0
· 1
xn

) for all x(6= 0) ∈ R, we get lim
x→∞

p(x) =∞
and lim

x→−∞
p(x) = ∞. So there exist x1 > 0 and x2 < 0 such that p(x1) > 0 and p(x2) > 0. Since

p(0) = an < 0, by the intermediate value theorem, there exist c1 ∈ (x2, 0) and c2 ∈ (0, x1) such
that p(c1) = 0 and p(c2) = 0.

Ex.35 Let f : R → R be continuous at 0 and let g(x) = xf(x) for all x ∈ R. Show that
g : R→ R is differentiable at 0.

Solution: Since lim
x→0

g(x)−g(0)
x−0 = lim

x→0
f(x) = f(0) (because f is continuous at 0), g is differentiable

at 0.

Ex.36 Let α > 1 and let f : R → R satisfy |f(x)| ≤ |x|α for all x ∈ R. Show that f is dif-
ferentiable at 0.
Solution: We have |f(0)| ≤ |0|α = 0 ⇒ f(0) = 0 and so |f(x)−f(0)

x−0 | ≤ |x|α−1 for all x(6= 0) ∈ R.

Since lim
x→0
|x|α−1 = 0, by sandwich theorem for limit of functions, we get lim

x→0
|f(x)−f(0)

x−0 | = 0. It

follows that lim
x→0

f(x)−f(0)
x−0 = 0 and consequently f is differentiable at 0.

Ex.37 Let f(x) = x2|x| for all x ∈ R. Examine the existence of f ′(x), f ′′(x) and f ′′′(x), where
x ∈ R.

Solution: Here f(x) =

{
x3 if x ≥ 0,
−x3 if x < 0.

Clearly f : R→ R is differentiable at all x( 6= 0) ∈ R and f ′(x) =

{
3x2 if x > 0,
−3x2 if x < 0.

Also, lim
x→0+

f(x)−f(0)
x−0 = lim

x→0+
x2 = 0 and lim

x→0−
f(x)−f(0)

x−0 = lim
x→0−

(−x2) = 0.

Hence f ′(0) = lim
x→0

f(x)−f(0)
x−0 = 0.

Again, it is clear that f ′ : R→ R is differentiable at all x(6= 0) ∈ R and f ′′(x) =

{
6x if x > 0,
−6x if x < 0.

Also, lim
x→0+

f ′(x)−f ′(0)
x−0 = lim

x→0+
3x = 0 and lim

x→0−
f ′(x)−f ′(0)

x−0 = lim
x→0−

(−3x) = 0.

Hence f ′′(0) = lim
x→0

f ′(x)−f ′(0)
x−0 = 0.

Finally, it is clear that f ′′ : R→ R is differentiable at all x(6= 0) ∈ R and f ′′′(x) =

{
6 if x > 0,
−6 if x < 0.

Also, lim
x→0+

f ′′(x)−f ′′(0)
x−0 = lim

x→0+
6 = 6 and lim

x→0−
f ′′(x)−f ′′(0)

x−0 = lim
x→0−

(−6) = −6.

Hence lim
x→0

f ′′(x)−f ′′(0)
x−0 does not exist, i.e. f ′′′(0) does not exist.

Ex.38 Let f : R→ R be defined by f(x) =

{
x2| cos π

x
| if x 6= 0,

0 if x = 0.
Examine whether f is differentiable (i) at 0 (ii) on (0, 1).

Solution: (i) For each ε > 0, choosing δ = ε > 0, we find that
∣∣∣f(x)−f(0)x−0

∣∣∣ = |x|| cos π
x
| ≤ |x| for



all x ∈ R satisfying 0 < |x| < δ. Hence lim
x→0

f(x)−f(0)
x−0 = 0 and consequently f is differentiable at 0

(with f ′(0) = 0).

(ii) Since lim
x→ 2

3
+

f(x)−f( 2
3
)

x− 2
3

= lim
x→ 2

3
+

−x2 cos π
x
−0

x− 2
3

= d
dx

(−x2 cos π
x
)|x= 2

3
(applying L’Hôpital’s rule) =

π and lim
x→ 2

3
−

f(x)−f( 2
3
)

x− 2
3

= lim
x→ 2

3
−

x2 cos π
x
−0

x− 2
3

= d
dx

(x2 cos π
x
)|x= 2

3
(applying L’Hôpital’s rule) = −π,

lim
x→ 2

3

f(x)−f( 2
3
)

x− 2
3

does not exist and hence f is not differentiable at 2
3
∈ (0, 1). Consequently f is

not differentiable on (0, 1).

Ex.39(a) Examine whether f : R→ R, defined as below, is differentiable at 0.

f(x) =

{
1

2n+1 if x = 1
2n

for some n ∈ N,
0 otherwise.

Solution: Since
f( 1

2n
)−f(0)

1/2n
= 1

2
and

f( 1
3n

)−f(0)
1/3n

= 0 for all n ∈ N,
f( 1

2n
)−f(0)

1/2n
→ 1

2
and

f( 1
3n

)−f(0)
1/3n

→ 0.

As 1
2n
→ 0 and 1

3n
→ 0, by the sequential criterion of limit, it follows that lim

x→0

f(x)−f(0)
x−0 does not

exist. Consequently f is not differentiable at 0.

Ex.39(b) Examine whether f : R→ R, defined as below, is differentiable at 0.

f(x) =

{
1
4n

if x = 1
2n

for some n ∈ N,
0 otherwise.

Solution: For all x(6= 0) ∈ R, we have
∣∣∣f(x)−f(0)x−0

∣∣∣ ≤ |x|. Hence for each ε > 0, taking δ = ε > 0,

we find that
∣∣∣f(x)−f(0)x−0

∣∣∣ < ε for all x ∈ R satisfying 0 < |x − 0| < δ. Therefore lim
x→0

f(x)−f(0)
x−0 = 0

and consequently f is differentiable at 0 (with f ′(0) = 0).

Ex.40 Let f : R → R be differentiable at 0 and f(0) = f ′(0) = 0. Show that g : R → R,

defined by g(x) =

{
f(x) sin 1

x
if x 6= 0,

0 if x = 0,
is differentiable at 0.

Solution: Since 0 ≤
∣∣∣g(x)−g(0)x−0

∣∣∣ =
∣∣∣f(x)x ∣∣∣ | sin 1

x
| ≤

∣∣∣f(x)x ∣∣∣ for all x( 6= 0) ∈ R and since lim
x→0

∣∣∣f(x)x ∣∣∣ =∣∣∣lim
x→0

f(x)−f(0)
x−0

∣∣∣ = |f ′(0)| = 0, by the sandwich theorem for limits of functions, we get lim
x→0

∣∣∣g(x)−g(0)x−0

∣∣∣ =

0. It follows that lim
x→0

g(x)−g(0)
x−0 = 0 and consequently g is differentiable at 0 (with g′(0) = 0).

Ex.41 Let f(x) = x3 + x and g(x) = x3 − x for all x ∈ R. If f−1 denotes the inverse func-
tion of f and if (g ◦ f−1)(x) = g(f−1(x)) for all x ∈ R, then find (g ◦ f−1)′(2).
Solution: Since f ′(x) = 3x2 + 1 6= 0 for all x ∈ R, f : R → R is one-one. Also, since f is an odd
degree polynomial in R, by the intermediate value property of continuous functions, f : R→ R is
onto. Hence f−1 : R→ R exists and is differentiable. By chain rule and the rule for derivative of
inverse, we get (g ◦ f−1)−1(2) = g′(f−1(2))(f−1)′(2) = g′(1) 1

f ′(1)
(since f(1) = 2) = 1

2
.

Ex.42 If a, b, c ∈ R, then show that the equation 4ax3 + 3bx2 + 2cx = a + b + c has at least
one root in (0, 1).
Solution: Let f(x) = ax4+bx3+cx2−(a+b+c)x for all x ∈ R. Then f : R→ R is differentiable and
f(0) = 0 = f(1). Hence by Rolle’s theorem, the equation f ′(x) = 0, i.e. 4ax3+3bx2+2cx = a+b+c
has at least one root in (0, 1).

Ex.43 If a0, a1, ..., an ∈ R satisfy a0
1.2

+ a1
2.3

+ · · · + an
(n+1)(n+2)

= 0, then show that the equa-

tion a0 + a1x+ · · ·+ anx
n = 0 has at least one root in [0, 1].

Solution: Let f(x) = a0
1.2
x2 + a1

2.3
x3 + · · · + an

(n+1)(n+2)
xn+2 for all x ∈ [0, 1]. Then f : [0, 1] → R is

twice differentiable and f ′(x) = a0x+ a1
2
x2 + · · ·+ an

n+1
xn+1, f ′′(x) = a0 + a1x+ · · ·+ anx

n for all



x ∈ [0, 1]. Since f(0) = 0 = f(1), by Rolle’s theorem, there exists c ∈ (0, 1) such that f ′(c) = 0.
Again, since f ′(0) = 0, by Rolle’s theorem, there exists α ∈ (0, c) such that f ′′(α) = 0. Thus the
equation a0 + a1x+ · · ·+ anx

n = 0 has a root α ∈ [0, 1].

Ex.44 Show that the equation |x10 − 60x9 − 290| = ex has at least one real root.
Solution: Let f(x) = |x10 − 60x9 − 290| − ex for all x ∈ R. Then f : R → R is continuous and

f(0) = 289 > 0. Again, lim
x→∞

x10−60x9−290
ex

= lim
x→∞

10!
ex

(using L’Hôpital’s rule ten times) = 0. Hence

there exists M > 0 such that |x10−60x9−290
ex

| < 1 for all x > M and consequently f(2M) < 0.
Therefore by the intermediate value property of continuous functions, the equation f(x) = 0 has
at least one root in (0, 2M). Hence the given equation has at least one real root.

Ex.45(a) Find the number of (distinct) real roots of the equation x2 = cosx.
Solution: Let f(x) = x2 − cosx for all x ∈ R. Then f : R → R is twice differentiable with
f ′(x) = 2x + sinx and f ′′(x) = 2 + cosx for all x ∈ R. Since f ′′(x) 6= 0 for all x ∈ R, as a
consequence of Rolle’s theorem, it follows that the equation f ′(x) = 0 has at most one real root

and hence the equation f(x) = 0 has at most two real roots. Again, since f(−π
2
) = π2

4
> 0,

f(0) = −1 < 0 and f(π
2
) = π2

4
> 0, by the intermediate value property of continuous functions,

the equation f(x) = 0 has at least one root in (−π
2
, 0) and at least one root in (0, π

2
). Therefore

the given equation has exactly two (distinct) real roots.

Ex.45(b) Find the number of (distinct) real roots of the equation e2x + cosx+ x = 0.
Solution: Let f(x) = e2x + cosx + x for all x ∈ R. Then f : R → R is differentiable with
f ′(x) = 2e2x + (1 − sinx) > 0 for all x ∈ R. As a consequence of Rolle’s theorem, the equation
f(x) = 0 has at most one real root. Again, since f(−π

2
) = e−π − π

2
< 0 and f(0) = 2 > 0, by the

intermediate value property of continuous functions, the equation f(x) = 0 has least one root in
(−π

2
, 0). Therefore the given equation has exactly one (distinct) real root.

Ex.46 Let f : R → R be twice differentiable such that f(0) = 0, f ′(0) > 0 and f ′′(x) > 0
for all x ∈ R. Show that the equation f(x) = 0 has no positive real root.
Solution: Since f ′′(x) > 0 for all x ∈ R, f ′ is strictly increasing on R and so f ′(x) > f ′(0) > 0 for
all x > 0. This implies that f is strictly increasing on [0,∞) and so f(x) > f(0) = 0 for all x > 0.
Thus the equation f(x) = 0 has no positive real root.

Ex.47 Show that between any two (distinct) real roots of the equation ex sinx = 1, there ex-
ists at least one real root of the equation ex cosx+ 1 = 0.
Solution: Let f(x) = sinx− e−x for all x ∈ R. Then f : R→ R is differentiable (also continuous).
Let a, b ∈ R with a < b be such that ea sin a = 1 = eb sin b. Then f(a) = 0 = f(b). By Rolle’s
theorem, there exists c ∈ (a, b) such that f ′(c) = 0, i.e. cos c + e−c = 0 ⇒ ec(cos c + e−c) = 0 ⇒
ec cos c+ 1 = 0. Thus c ∈ (a, b) is a root of the equation ex cosx+ 1 = 0.

Ex.48 Let f(x) = 3x5 − 2x3 + 12x − 8 for all x ∈ R. Show that f : R → R is one-one and
onto.
Solution: Here f : R → R is differentiable and f ′(x) = 15x4 − 6x2 + 12 = 15[(x2 − 1

5
)2 + 19

25
] 6= 0

for all x ∈ R. As a consequence of the mean value theorem, f : R → R is one-one. Again, since
f is an odd degree polynomial with real coefficients in one real variable, by Ex.12(c) of Tutorial
Problem Set, f : R→ R is onto.

Ex.49(a) Show that x−1
x
< log x < x− 1 for all x(6= 1) > 0.

Solution: Let f(x) = log x for all x > 0. Then f : (0,∞) → R is differentiable and hence for
each x( 6= 1) ∈ (0,∞), there exists c between 1 and x such that f(x) − f(1) = (x − 1)f ′(c), i.e
log x = x−1

c
. Since 1

x
< 1

c
< 1 if x > 1 and 1 < 1

c
< 1

x
if 0 < x < 1, we get x−1

x
< x−1

c
< x− 1 for

all x(6= 1) > 0. Hence x−1
x
< log x < x− 1 for all x(6= 1) > 0.



Ex.49(b) Show that 1 + x < ex < 1 + xex for all x( 6= 0) ∈ R.
Solution: Let f(x) = ex for all x ∈ R. Then f : R → R is differentiable and hence for each x(6=
0) ∈ R, by the mean value theorem, there exists c between 0 and x such that f(x)−f(0) = xf ′(c),
i.e. ex − 1 = xec. Since 1 < ec < ex if x > 0 and ex < ec < 1 if x < 0, we get x < xec < xex for
all x(6= 0) ∈ R. Hence 1 + x < ex < 1 + xex for all x( 6= 0) ∈ R.

Ex.49(c) Show that 2 sinx+ tanx > 3x for all x ∈ (0, π
2
).

Solution: Let f(x) = 2 sinx + tanx − 3x for all x ∈ [0, π
2
). Then f : [0, π

2
) → R is twice differ-

entiable and f ′(x) = 2 cosx + sec2 x − 3 for all x ∈ [0, π
2
), f ′′(x) = 2 sinx(sec3 x − 1) > 0 for all

x ∈ (0, π
2
). Hence f ′ is strictly increasing on [0, π

2
) and so f ′(x) > f ′(0) = 0 for all x ∈ (0, π

2
).

Thus f is strictly increasing on [0, π
2
) and so f(x) > f(0) = 0 for all x ∈ (0, π

2
). Consequently

2 sinx+ tanx > 3x for all x ∈ (0, π
2
).

Ex.49(d) Show that (1 + x)α ≥ 1 + αx for all x ≥ −1 and for all α > 1.
Solution: Let α > 1 and let f(x) = (1 + x)α − (1 + αx) for all x ≥ −1. Then f : [−1,∞)→ R is
differentiable and f ′(x) = α[(1 + x)α−1 − 1] for all x ≥ −1. Clearly f ′(x) ≤ 0 for all x ∈ [−1, 0]
and f ′(x) ≥ 0 for all x ∈ [0,∞). Hence f is decreasing on [−1, 0] and increasing on [0,∞). So
f(x) ≥ f(0) = 0 for −1 ≤ x ≤ 0 and also f(x) ≥ f(0) = 0 for x ≥ 0. Therefore f(x) ≥ 0 for all
x ≥ −1, which proves the required inequality.

Ex.50(a) Determine all the differentiable functions f : [0, 1] → R satisfying the conditions
f(0) = 0, f(1) = 1 and |f ′(x)| ≤ 1

2
for all x ∈ [0, 1].

Solution: If possible, let f : [0, 1]→ R be a differentiable function satisfying the given conditions.

Then by the mean value theorem, there exists c ∈ (0, 1) such that f ′(c) = f(1)−f(0)
1−0 = 1, which

contradicts the given condition that |f ′(x)| ≤ 1
2

for all x ∈ [0, 1]. Therefore no such differentiable
function can exist.

Ex.50(b) Determine all the differentiable functions f : [0, 1] → R satisfying the conditions
f(0) = 0, f(1) = 1 and |f ′(x)| ≤ 1 for all x ∈ [0, 1].
Solution: Let f be such a function and let g(x) = x − f(x) for all x ∈ [0, 1]. Then g : [0, 1] → R
is differentiable and g′(x) = 1 − f ′(x) ≥ 0 for all x ∈ [0, 1]. Hence g is increasing on [0, 1] and
since g(0) = 0 = g(1), it follows that g is the constant function given by g(x) = 0 for all x ∈ [0, 1],
i.e. f(x) = x for all x ∈ [0, 1]. Also, if f(x) = x for all x ∈ [0, 1], then f satisfies all the given
conditions. Therefore there is exactly one function f satisfying the given conditions and it is given
by f(x) = x for all x ∈ [0, 1].

Ex.51 Let f : [0, 2] → R be differentiable and f(0) = f(1) = 0, f(2) = 3. Show that there
exist a, b, c ∈ (0, 2) such that f ′(a) = 0, f ′(b) = 3 and f ′(c) = 1.
Solution: By Rolle’s theorem, there exists a ∈ (0, 1) such that f ′(a) = 0. Again, by the mean

value theorem, there exists b ∈ (1, 2) such that f ′(b) = f(2)−f(1)
2−1 = 3. Hence by the intermediate

value property of derivatives, there exists c ∈ (a, b) such that f ′(c) = 1.

Ex.52(a) Evaluate the limit: lim
x→0

( 1
sinx
− 1

x
)

Solution: We have lim
x→0

( 1
sinx
− 1

x
) = lim

x→0

x−sinx
x sinx

= lim
x→0

1−cosx
sinx+x cosx

(using L’Hôpital’s rule)

= lim
x→0

sinx
2 cosx−x sinx (using L’Hôpital’s rule again) = 0.

Ex.52(b) Evaluate the limit: lim
x→0

e−1/x2

x
= 0

Solution: We have lim
x→0

e−1/x2

x
= lim

x→0

1/x

e1/x
2 = lim

x→0

−1/x2

− 2
x3
e1/x

2 (applying L’Hôpital’s rule) = lim
x→0

1
2
xe−

1
x2 =

0.



Ex.52(c) Evaluate the limit: lim
x→∞

x(log(1 + x
2
)− log x

2
)

Solution: lim
x→∞

x(log(1 + x
2
) − log(x

2
)) = lim

x→∞
x log

(
1+x

2
x
2

)
= lim

x→∞

log(1+ 2
x
)

1
x

= lim
x→∞

− 2
x2

− 1
x2

(1+ 2
x
)

(using

L’Hôpital’s rule) = lim
x→∞

2
1+ 2

x

= 2.

Ex.52(d) Evaluate the limit: lim
x→0

(1+x)
1
x−e

x

Solution: If f(x) = (1 + x)
1
x for all x ∈ (−1, 1) \ {0}, then f : (−1, 1) \ {0} → R is differ-

entiable and f ′(x) = (1 + x)
1
x

[
x−(1+x) log(1+x)

x2(1+x)

]
for all x ∈ (−1, 1) \ {0}. Hence lim

x→0

(1+x)
1
x−e

x
=

lim
x→0

(1+x)
1
x · lim

x→0

x−(1+x) log(1+x)
x2(1+x)

(applying L’Hôpital’s rule) = e lim
x→0

− log(1+x)
x(3x+2)

(using lim
x→0

(1+x)
1
x = e

and applying L’Hôpital’s rule in the second limit) = − e
2

(using lim
x→0

1
x

log(1 + x) = 1).

Ex.52(e) Evaluate the limit: lim
x→∞

2x+sin 2x+1
(2x+sin 2x)(sinx+3)2

Solution: Let xn = nπ and yn = (4n + 1)π
2

for all n ∈ N. Then xn → ∞, yn → ∞ and

lim
n→∞

2xn+sin 2xn+1
(2xn+sin 2xn)(sinxn+3)2

= lim
n→∞

(1
9
+ 1

18nπ
) = 1

9
, lim
n→∞

2yn+sin 2yn+1
(2yn+sin 2yn)(sin yn+3)2

= lim
n→∞

( 1
16

+ 1
(4n+1)16π

) = 1
16

.

By the sequential criterion for existence of limits, it follows that lim
x→∞

2x+sin 2x+1
(2x+sin 2x)(sinx+3)2

does not

exist.

Ex.53 If f : (0,∞)→ (0,∞) is differentiable at a ∈ (0,∞), then evaluate lim
x→a

(
f(x)
f(a)

) 1
log x−log a

.

Solution: Let g(x) = (f(x)
f(a)

)
1

log x−log a for all x( 6= a) ∈ (0,∞). Then g(x) > 0 for all x( 6= a) ∈ (0,∞)

and we have lim
x→a

log g(x) = lim
x→a

log f(x)−log f(a)
log x−log a =

d
dx

(log f(x)−log f(a))|x=a
d
dx

(log x−log a)|x=a
(applying L’Hôpital’s rule)

= af
′(a)
f(a)

. By the continuity of the exponential function, it follows that lim
x→a

g(x) = eaf
′(a)/f(a).

Ex.54 Let f(x) =

{
sinx
x

if x(6= 0) ∈ R,
1 if x = 0.

Examine whether f : R→ R is continuously differentiable.
Solution: Clearly f is differentiable at each x(6= 0) ∈ R and f ′(x) = 1

x
cosx − 1

x2
sinx for all

x(6= 0) ∈ R. Also, lim
x→0

f(x)−f(0)
x−0 = lim

x→0

sinx−x
x2

= lim
x→0

cosx−1
2x

= lim
x→0

− sinx
2

= 0 (using L’Hôpital’s rule).

So f is differentiable at 0 and f ′(0) = 0. Again, it is clear that f ′ : R→ R is continuous at each
x(6= 0) ∈ R. Further, since lim

x→0
f ′(x) = lim

x→0

x cosx−sinx
x2

= lim
x→0

−x sinx
2x

= lim
x→0

(−1
2

sinx) = 0 = f ′(0)

(using L’Hôpital’s rule), f ′ is continuous at 0. Hence f is continuously differentiable.

Ex.55(a) Using Taylor’s theorem, show that |
√

1 + x− (1 + x
2
− x2

8
)| ≤ 1

2
|x|3 for all x ∈ (−1

2
, 1
2
).

Solution: Let f(x) =
√

1 + x for all x ∈ (−1
2
, 1
2
). Then f has derivatives of all orders in (−1

2
, 1
2
)

and we have f ′(x) = 1
2
√
1+x

, f ′′(x) = − 1
4(1+x)3/2

and f ′′′(x) = 3
8(1+x)5/2

for all x ∈ (−1
2
, 1
2
).

By Taylor’s theorem, for each x ∈ (−1
2
, 1
2
), there exists c between 0 and x such that f(x) =

f(0) +xf ′(0) + x2

2!
f ′′(0) + x3

3!
f ′′′(c) = 1 + x

2
− x2

8
+ x3

16
· 1
(1+c)5/2

. This gives |
√

1 + x− (1 + x
2
− x2

8
)| =

|x|3
16
· 1
(1+c)5/2

≤ 25/2

16
|x|3 =

√
2
4
|x|3 ≤ 1

2
|x|3.

Ex.55(b) Using Taylor’s theorem, show that 1 − x2

2!
+ x4

4!
> cosx > 1 − x2

2!
+ x4

4!
− x6

6!
for all

x ∈ (0, π).
Solution: Let f(x) = cos x for all x ∈ R. Then f : R → R is infinitely differentiable and
f ′(x) = − sinx, f ′′(x) = − cosx, f ′′′(x) = sinx, f (4)(x) = cosx, f (5)(x) = − sinx, f (6)(x) =
− cosx for all x ∈ R. If x ∈ (0, π), then by Taylor’s theorem, there exist c1, c2 ∈ (0, x)

such that f(x) = f(0) + xf ′(0) + x2

2!
f ′′(0) + x3

3!
f ′′′(0) + x4

4!
f (4)(c1) = 1 − x2

2!
+ x4

4!
cos c1 and

f(x) = f(0) + xf ′(0) + x2

2!
f ′′(0) + · · · + x5

5!
f (5)(0) + x6

6!
f (6)(c2) = 1 − x2

2!
+ x4

4!
− x6

6!
cos c2. Since

cos c1 < 1 and cos c2 < 1, it follows that 1− x2

2!
+ x4

4!
> cosx > 1− x2

2!
+ x4

4!
− x6

6!
.



Ex.55(c) Using Taylor’s theorem, show that x− x3

3!
< sinx < x− x3

3!
+ x5

5!
for all x ∈ (0, π).

Solution: Let f(x) = sin x for all x ∈ R. Then f : R → R is infinitely differentiable and f ′(x) =
cosx, f ′′(x) = − sinx, f ′′′(x) = − cosx, f (4)(x) = sinx, f (5)(x) = cos x for all x ∈ R. If x ∈ (0, π),

then by Taylor’s theorem, there exist c1, c2 ∈ (0, x) such that f(x) = f(0) + xf ′(0) + x2

2!
f ′′(0) +

x3

3!
f ′′′(c1) = x− x3

3!
cos c1 and f(x) = f(0) +xf ′(0) + x2

2!
f ′′(0) + · · ·+ x5

5!
f (5)(c2) = x− x3

3!
+ x5

5!
cos c2.

Since cos c1 < 1 and cos c2 < 1, it follows that x− x3

3!
< sinx < x− x3

3!
+ x5

5!
.

Ex.56 Find the radius of convergence of the power series
∞∑
n=0

n!xn.

Solution: If x = 0, then the given series becomes 0 + 0 + · · · , which is clearly convergent. Let
x(6= 0) ∈ R and let an = n!xn for all n ∈ N. Then lim

n→∞
|an+1

an
| =∞ and so there exists n0 ∈ N such

that |an+1

an
| > 2 for all n ≥ n0. This gives |an| > 2n−n0|an0 | for all n ≥ n0 and hence lim

n→∞
an 6= 0.

Consequently
∞∑
n=1

an is not convergent. Therefore the radius of convergence of the given power

series is 0.

Ex.57 Find the interval of convergence of the power series
∞∑
n=1

xn

n
.

Solution: If x = 0, then the given series becomes 0 + 0 + · · · , which is clearly convergent. Let

x(6= 0) ∈ R and let an = xn

n
for all n ∈ N. Then lim

n→∞
|an+1

an
| = |x|. Hence by ratio test,

∞∑
n=1

an

is convergent (absolutely) if |x| < 1, i.e. if x ∈ (−1, 1) and is not convergent if |x| > 1, i.e. if

x ∈ (−∞,−1) ∪ (1,∞). If x = 1, then
∞∑
n=1

an =
∞∑
n=1

1
n

is not convergent. Again, if x = −1, then

∞∑
n=1

an =
∞∑
n=1

(−1)n
n

is convergent by Leibniz test, since ( 1
n
) is a decreasing sequence of positive real

numbers and lim
n→∞

1
n

= 0. Therefore the interval of convergence of the given power series is [−1, 1).

Ex.58 Let f : [a, b] → R be a bounded function. If there is a partition P of [a, b] such that
L(f, P ) = U(f, P ), then show that f is a constant function.
Solution: Let P = {x0, x1, ..., xn}, where a = x0 < x1 < · · · < xn = b. Since L(f, P ) = U(f, P ),

we get
n∑
i=1

(Mi −mi)(xi − xi−1) = 0, where Mi = sup{f(x) : x ∈ [xi−1, xi]} and mi = inf{f(x) :

x ∈ [xi−1, xi]} for i = 1, 2, ..., n. Since Mi ≥ mi and xi − xi−1 > 0 for i = 1, 2, ..., n, it follows that
Mi −mi = 0, i.e. Mi = mi for i = 1, 2, ..., n. This implies that f is constant on [xi−1, xi] for each
i ∈ {1, 2, ..., n}. Hence f(x) = f(xi−1) = f(xi) for all x ∈ [xi−1, xi] (i = 1, 2, ..., n). Consequently
f(x) = f(a) for all x ∈ [a, b]. Therefore f is a constant function.

Ex.59(a) Evaluate the limit: lim
n→∞

1
n2

n∑
k=1

√
n2 − k2

Solution: Let f(x) =
√

1− x2 for all x ∈ [0, 1]. Considering the partition Pn = {0, 1
n
, 2
n
, ..., n

n
= 1}

of [0, 1] for each n ∈ N (and taking ck = k
n

for k = 1, ..., n), we find that

S(f, Pn) =
n∑
k=1

f( k
n
)( k
n
− k−1

n
) = 1

n2

n∑
k=1

√
n2 − k2. Since f : [0, 1]→ R is continuous, f is Riemann

integrable on [0, 1] and hence

lim
n→∞

1
n2

n∑
k=1

√
n2 − k2 = lim

n→∞
S(f, Pn) =

1∫
0

f = 1
2
(x
√

1− x2 + sin−1 x)|10 = π
4
.

Ex.59(b) Evaluate the limit: lim
n→∞

1
n
[(n+ 1)(n+ 2) · · · (n+ n)]

1
n

Solution: For each n ∈ N, let an = 1
n
[(n+ 1)(n+ 2) · · · (n+n)]

1
n = [(1 + 1

n
)(1 + 2

n
) · · · (1 + n

n
)]

1
n and

let f(x) = log(1 + x) for all x ∈ [0, 1]. Considering the partition Pn = {0, 1
n
, 2
n
, ..., n

n
= 1} of [0, 1]



for each n ∈ N (and taking ck = k
n

for k = 1, ..., n), we find that S(f, Pn) =
n∑
k=1

f( k
n
)( k
n
− k−1

n
) =

1
n

n∑
k=1

log(1 + k
n
). Since f : [0, 1] → R is continuous, f is Riemann integrable on [0, 1] and hence

lim
n→∞

(log an) = lim
n→∞

1
n

n∑
k=1

log(1+ k
n
) = lim

n→∞
S(f, Pn) =

1∫
0

log(1+x) dx = log 4
e

(integrating by parts).

By the continuity of the exponential function, it follows that lim
n→∞

an = lim
n→∞

elog an = elog
4
e = 4

e
,

which is the required limit.

Ex.59(c) Evaluate the limit: lim
x→0

x

1−ex2
x∫
0

et
2
dt.

Solution: Since the function f : [−1, 1] → R, defined by f(x) = ex
2

for all x ∈ [−1, 1], is

continuous, by the first fundamental theorem of calculus, d
dx

x∫
0

et
2
dt = ex

2
for all x ∈ [−1, 1].

Hence lim
x→0

x

1−ex2
x∫
0

et
2
dt = lim

x→0

xex
2
+
x∫
0

et
2
dt

−2xex2
(applying L’Hôpital’s rule) = lim

x→0

ex
2
+ex

2
+2x2ex

2

−2ex2−4x2ex2
(apply-

ing L’Hôpital’s rule again) = −1.

Ex.59(d) Evaluate the limit: lim
n→∞

(
18+38+···+(2n−1)8

n9

)
.

Solution: Let f(x) = 28x8 for all x ∈ [0, 1]. Considering the partition Pn = {0, 1
n
, 2
n
, ..., n

n
= 1} of

[0, 1] for each n ∈ N and observing that ci = 2i−1
2n

= 1
2
( i−1
n

+ i
n
) ∈ [ i−1

n
, i
n
] for i = 1, ..., n, we find

that S(f, Pn) =
n∑
i=1

f(2i−1
2n

)( i
n
− i−1

n
) = 1

n

n∑
i=1

(2i−1
n

)8. Since f : [0, 1]→ R is continuous, f is Riemann

integrable on [0, 1] and hence lim
n→∞

(
18+38+···+(2n−1)8

n9

)
= lim

n→∞
S(f, Pn) =

1∫
0

f(x) dx = 28x9

9
|1x=0 = 256

9
.

Ex.60 If f : [−1, 1]→ R is continuously differentiable, then evaluate lim
n→∞

1
n

n∑
k=1

f ′( k
3n

).

Solution: Since f ′ is continuous on [0, 1
3
], f ′ is Riemann integrable on [0, 1

3
] and

1
3∫
0

f ′(t) dt =

lim
‖Pn‖→0

S(f ′, Pn), where for each n ∈ N, Pn = {0, 1
3n
, 2
3n
, ..., n

3n
= 1

3
} is a partition of [0, 1

3
] and

S(f ′, Pn) =
n∑
k=1

( k
3n
− k−1

3n
)f ′( k

3n
) = 1

3n

n∑
k=1

f ′( k
3n

) (taking ck = k
3n
∈ [k−1

3n
, k
3n

] for k = 1, ..., n). So

lim
n→∞

1
n

n∑
k=1

f ′( k
3n

) = 3

1
3∫
0

f ′(t) dt = 3[f(1
3
)− f(0)].

Ex.61(a) Show that π2

9
≤

π
2∫
π
6

x
sinx

dx ≤ 2π2

9
.

Solution: Let f(x) = x
sinx

for all x ∈ (0, π
2
]. Then f ′(x) = sinx−x cosx

sin2 x
for all x ∈ (0, π

2
]. If

g(x) = sin x − x cosx for all x ∈ [0, π
2
], then g′(x) = x sinx ≥ 0 for all x ∈ [0, π

2
] and so g is

increasing on [0, π
2
]. Hence for all x ∈ [0, π

2
], g(x) ≥ g(0) = 0 and consequently f ′(x) ≥ 0 for all

x ∈ (0, π
2
]. Therefore f is increasing on (0, π

2
] and so π

3
= f(π

6
) ≤ f(x) ≤ f(π

2
) = π

2
. Since f is

continuous on [π
6
, π
2
], f is Riemann integrable on [π

6
, π
2
] and therefore π2

9
= π

3
(π
2
− π

6
) ≤

π
2∫
π
6

x
sinx

dx ≤

π
2
(π
2
− π

6
) = π2

6
≤ 2π2

9
.

Ex.61(b) Show that
√
3
8
≤

π
3∫
π
4

sinx
x
dx ≤

√
2
6

.

Solution: Let f(x) = sinx
x

for all x ∈ (0, π
2
]. Then f ′(x) = x cosx−sinx

x2
for all x ∈ (0, π

2
]. If



g(x) = x cosx − sinx for all x ∈ [0, π
2
], then g′(x) = −x sinx ≤ 0 for all x ∈ [0, π

2
] and so g is

decreasing on [0, π
2
]. Hence for all x ∈ [0, π

2
], g(x) ≤ g(0) = 0 and consequently f ′(x) ≤ 0 for all

x ∈ (0, π
2
]. Therefore f is decreasing on (0, π

2
] and so 3

√
3

2π
= f(π

3
) ≤ f(x) ≤ f(π

4
) = 2

√
2

π
. Since

f is continuous on [π
4
, π
3
], f is Riemann integrable on [π

4
, π
3
] and therefore

√
3
8

= 3
√
3

2π
(π
3
− π

4
) ≤

π
3∫
π
4

sinx
x
dx ≤ 2

√
2

π
(π
3
− π

4
) =

√
2
6

.

Ex.62 If f : [a, b]→ R is continuous, then show that there exists c ∈ [a, b] such that
b∫
a

f(x) dx =

(b− a)f(c).
(This result is called the mean value theorem of Riemann integrals.)
Solution: Since f is continuous on [a, b], f is Riemann integrable on [a, b] and so m(b − a) ≤
b∫
a

f(x) dx ≤ M(b − a), where m = inf{f(x) : x ∈ [a, b]} and M = sup{f(x) : x ∈ [a, b]}. Since

f is continuous on [a, b], there exist α, β ∈ [a, b] such that f(α) = m and f(β) = M . Hence

f(α) ≤
b∫
a
f(x) dx

b−a ≤ f(β). By the intermediate value property of continuous functions, there exists

c between α and β (both inclusive) such that f(c) =

b∫
a
f(x) dx

b−a , i.e.
b∫
a

f(x) dx = (b− a)f(c).

Ex.63 Let f : [a, b]→ R and g : [a, b]→ R be continuous and let g(x) ≥ 0 for all x ∈ [a, b]. Show

that there exists c ∈ [a, b] such that
b∫
a

f(x)g(x) dx = f(c)
b∫
a

g(x) dx.

(This result is called the generalized mean value theorem of Riemann integrals.)
Solution: Since f is continuous on [a, b], f is bounded on [a, b] and there exist α, β ∈ [a, b] such
that f(α) = inf{f(x) : x ∈ [a, b]} and f(β) = sup{f(x) : x ∈ [a, b]}. We have f(α) ≤ f(x) ≤ f(β)
for all x ∈ [a, b] ⇒ f(α)g(x) ≤ f(x)g(x) ≤ f(β)g(x) for all x ∈ [a, b] (since g(x) ≥ 0 for all
x ∈ [a, b]). Since f, g are continuous on [a, b], g, fg are Riemann integrable on [a, b] and hence we

obtain f(α)
b∫
a

g(x) dx ≤
b∫
a

f(x)g(x) dx ≤ f(β)
b∫
a

g(x) dx. If
b∫
a

g(x) dx = 0, then
b∫
a

f(x)g(x) dx = 0

and so we can choose any c ∈ [a, b]. If
b∫
a

g(x) dx 6= 0, then
b∫
a

g(x) dx > 0 and hence we get f(α) ≤
b∫
a
f(x)g(x) dx

b∫
a
g(x) dx

≤ f(β). By the intermediate value property of the continuous function f , there exists c

between α and β (both inclusive) such that f(c) =

b∫
a
f(x)g(x) dx

b∫
a
g(x) dx

, i.e.
b∫
a

f(x)g(x) dx = f(c)
b∫
a

g(x) dx.

Ex.64 Let f : R → R be continuous and let g(x) =
x∫
0

(x − t)f(t) dt for all x ∈ R. Show

that g′′(x) = f(x) for all x ∈ R.

Solution: We have g(x) = x
x∫
0

f(t) dt −
x∫
0

tf(t) dt for all x ∈ R. Since f is continuous, by the

first fundamental theorem of calculus, g : R→ R is differentiable and g′(x) =
x∫
0

f(t) dt+ xf(x)−

xf(x) =
x∫
0

f(t) dt for all x ∈ R. Again, since f is continuous, by the first fundamental theorem of

calculus, g′ : R→ R is differentiable and g′′(x) = f(x) for all x ∈ R.

Ex.65 Let f(x) =

{
1 if 0 ≤ x ≤ 1,
0 if 1 < x ≤ 2,

and let F (x) =
x∫
0

f(t) dt for all x ∈ [0, 2].



Is F : [0, 2]→ R differentiable? Justify.

Solution: We have F (x) =

{
x if 0 ≤ x ≤ 1,
1 if 1 < x ≤ 2.

Since lim
x→1−

F (x)−F (1)
x−1 = 1 6= 0 = lim

x→1+

F (x)−F (1)
x−1 , F is not differentiable at 1 and hence F : [0, 2]→ R

is not differentiable.

Ex.66 If f : [0, 1] → [0, 1] is continuous, then show that the equation 2x −
x∫
0

f(t) dt = 1 has

exactly one root in [0, 1].

Solution: Let g(x) = 2x−
x∫
0

f(t) dt− 1 for all x ∈ [0, 1]. Since f is continuous, by the first funda-

mental theorem of calculus, g : [0, 1]→ R is differentiable and g′(x) = 2−f(x) > 0 for all x ∈ [0, 1]
(since f(x) ≤ 1 for all x ∈ [0, 1]). As a consequence of Rolle’s theorem, the equation g(x) = 0 has

at most one root in [0, 1]. Again, g(0) = −1 < 0 and g(1) = 1−
1∫
0

f(t) dt ≥ 0 (since f(t) ≤ 1 for

all t ∈ [0, 1] ⇒
1∫
0

f(t) dt ≤ 1). If g(1) = 0, then 1 is the only root of the given equation in [0, 1].

Otherwise g(1) > 0 and hence by the intermediate value property of the continuous function g,
the equation g(x) = 0 has at least one root in (0,1). Thus the given equation has exactly one root
in [0, 1].

Ex.67(a) Examine whether the improper integral
∞∫
0

e−t
2
dt is convergent.

Solution: Since
1∫
0

e−t
2
dt exists (in R) as a Riemann integral,

∞∫
0

e−t
2
dt converges iff

∞∫
1

e−t
2
dt con-

verges. Now 0 < e−t
2 ≤ e−t for all t ≥ 1. Also, since lim

x→∞

x∫
1

e−t dt = lim
x→∞

(e−1−e−x) = e−1,
∞∫
1

e−t dt

converges. Hence by the comparison test,
∞∫
1

e−t
2
dt converges. By our remark at the beginning,

∞∫
0

e−t
2
dt is convergent.

Ex.67(b) Examine whether the improper integral
∞∫
−∞

te−t
2
dt is convergent.

Solution: Since lim
x→∞

x∫
0

te−t
2
dt = −1

2
lim
x→∞

e−t
2|x0 = 1

2
lim
x→∞

(1 − e−x2) = 1
2
,
∞∫
0

te−t
2
dt is convergent.

Again, since lim
x→−∞

0∫
x

te−t
2
dt = −1

2
lim

x→−∞
e−t

2|0x = 1
2

lim
x→−∞

(e−x
2−1) = −1

2
,

0∫
−∞

te−t
2
dt is convergent.

Therefore the given integral is convergent.

Ex.67(c) Examine whether the improper integral
1∫
0

dt√
t−t2 is convergent.

Solution: The given integral is convergent iff both

1
2∫
0

dt√
t−t2 and

1∫
1
2

dt√
t−t2 are convergent. Let

f(t) = 1√
t(1−t)

, g(t) = 1√
t

and h(t) = 1√
1−t for all t ∈ (0, 1). Then lim

t→0+

f(t)
g(t)

= lim
t→0+

1√
1−t = 1

and lim
t→1−

f(t)
h(t)

= lim
t→1−

1√
t

= 1. Since

1
2∫
0

g(t) dt and
1∫
1
2

h(t) dt are convergent, by the limit comparison

test,

1
2∫
0

f(t) dt and
1∫
1
2

f(t) dt are convergent. Therefore the given integral is convergent.



Ex.68 Determine all real values of p for which the integral
∞∫
1

tpe−t dt converges.

Solution: Let p ∈ R and let f(t) = tpe−t, g(t) = 1
t[p]+2−p for all t ≥ 1. Then lim

t→∞
f(t)
g(t)

= lim
t→∞

t[p]+2

et
= 0

(using L’Hôpital’s rule [p] + 2 times). Since [p] + 2− p > 1,
∞∫
1

g(t) dt converges and hence by the

limit comparison test,
∞∫
1

f(t) dt converges. Thus the given integral converges for all p ∈ R.

Alternative solution: Let p ∈ R and let f(t) = tpe−t, g(t) = 1
t2

for all t ≥ 1. Then lim
t→∞

f(t)
g(t)

=

lim
t→∞

tP−2

et
= 0 (for p > 2, we use L’Hôpital’s rule n times, where n is the least positive integer

≥ p − 2). Since
∞∫
1

g(t) dt converges, by the limit comparison test,
∞∫
1

f(t) dt converges. Thus the

given integral converges for all p ∈ R.

Ex.69 Find the area of the region enclosed by the curve y =
√
|x+ 1| and the line 5y = x+ 7.

Solution: Solving the equation 1
5
(x + 7) =

√
x+ 1 for x ≥ −1 and the equation 1

5
(x + 7) =√

−(x+ 1) for x < −1, the x-coordinates of the points of intersection of the curve y =
√
|x+ 1|

and the line 5y = x+ 7 are found to be −2, 3 and 8. Hence the required area is
−1∫
−2

(x+7
5
−
√
−(x+ 1)) dx+

3∫
−1

(x+7
5
−
√
x+ 1) dx+

8∫
3

(
√
x+ 1− x+7

5
) dx = 5

3
.

Ex.70 The region bounded by the parabola y = x2 + 1 and the line y = x + 3 is revolved
about the x-axis to generate a solid. Find the volume of the solid.
Solution: Solving y = x2+1 and y = x+3, we obtain the x-coordinates of the points of intersection
of the given parabola and the line as −1 and 2. Hence the required volume is
2∫
−1
π((x+ 3)2 − (x2 + 1)2) dx = 117

5
π.

Ex.71 The region bounded by the parabolas y2 = 4ax and x2 = 4ay (where a > 0) is re-
volved about the x-axis to generate a solid. Find the volume of the solid.
Solution: Solving y2 = 4ax and x2 = 4ay, we obtain the x-coordinates of the points of intersec-

tions of the two parabolas as 0 and 4a. Hence the required volume is
4a∫
0

π(4ax− x4

16a2
) dx = 96

5
πa3.

Ex.72 Find the area of the region that is inside the circle r = 2 cos θ and outside the cardioid
r = 2(1− cos θ).
Solution: The given circle and the cardioid meet at three points corresponding to θ = 0, θ = π

3

and θ = −π
3
. By symmetry, the required area is 2

(
1
2

π/3∫
0

4 cos2 θ dθ − 1
2

π/3∫
0

4(1− cos θ)2 dθ

)
=

4(
√

3− π
3
).

Ex.73 Find the area of the region which is inside both the cardioids r = a(1 + cos θ) and
r = a(1− cos θ), where a > 0.
Solution: The cardioids meet at three points corresponding to θ = 0, θ = π

2
and θ = −π

2
. By

symmetry, the required area is 4
π/2∫
0

1
2
a2(1− cos θ)2 dθ = 1

2
a2(3π − 8).

Ex.74 Consider the funnel formed by revolving the curve y = 1
x

about the x-axis, between x = 1
and x = a, where a > 1. If Va and Sa denote respectively the volume and the surface area of the
funnel, then show that lim

a→∞
Va = π and lim

a→∞
Sa =∞.



Solution: For each a > 1, we have Va =
a∫
1

π
x2
dx = π(1− 1

a
) and Sa =

a∫
1

2π
x

√
1 + 1

x2
dx ≥

a∫
1

2π
x
dx =

2π log a. Hence lim
a→∞

Va = π and since lim
a→∞

log a =∞, we get lim
a→∞

Sa =∞.


