MA 101 (Mathematics I)
Hints/Solutions for Practice Problem Set - 1

Ex.1(a) State TRUE or FALSE giving proper justification: If both (x,) and (y,) are unbounded
sequences in R, then the sequence (x,y,) cannot be convergent.

Solution: The given statement is FALSE, since both (z,) = (1,0,2,0, 3,0, ...) and

(yn) = (0,1,0,2,0,3,...) are unbounded sequences in R but the sequence (x,y,) = (0,0,0,...) is
convergent.

Ex.1(b) State TRUE or FALSE giving proper justification: If both (x,) and (y,) are increasing
sequences in R, then the sequence (x,y,) must be increasing.

Solution: The given statement is FALSE, since both (z,,) = (—+) and (y,) = (n?) are increasing
sequences in R but the sequence (z,y,) = (—n) is not increasing.

Ex.1(c) State TRUE or FALSE giving proper justification: If (z,), (y,) are sequences in R
such that (z,) is convergent and (y,) is not convergent, then the sequence (x,, + y,) cannot be
convergent.

Solution: The given statement is TRUE. If (z,, + y,,) is convergent, then since (z,,) is also conver-
gent, (y,) = (z, + yn) — (x,) must be convergent, which is not true.

Ex.1(d) State TRUE or FALSE giving proper justification: A monotonic sequence (x,) in R
is convergent iff the sequence (z2) is convergent.

Solution: The given statement is TRUE. If (z,,) is convergent, then by the product rule, (z2) =
(zp,) is also convergent. Conversely, let (z2) be convergent. Then (22) is bounded, i.e. there

exists M > 0 such that |z2| < M for all n € N. This gives |z,| < VM for all n € N. So (z,) is
bounded. Since it is given that (z,) is monotonic, we can conclude that (z,) is convergent.

Ex.1(e) State TRUE or FALSE giving proper justification: If (z,) is an unbounded sequence
of nonzero real numbers, then the sequence ( ) must converge to 0.

Solution: The given statement is FALSE. The sequence (z,) = (1,2,1,3,1,4,...) is not bounded,
but -- - 7 0, because (+ —) has a subsequence (1,1, ...) converging to 1.

Ex.1(f) State TRUE or FALSE giving proper justification: If z,, = (1 — £)sin %* for all n € N,
then the sequence (x,,) is not convergent although it has a convergent subsequence

Solution: The given statement is TRUE. We have s, = (1 — 5-) sinnr = 0 and

Tgni1 = (1 — 4n+1) sin(2nm + %) =1 — ;=5 +1 for all n € N. Hence x5, — 0 and 4,1 — 1. Thus
(z,,) has two convergent subsequences (9,) and (Z4,41) with different limits and therefore (z,,) is
not convergent.

Ex.1(g) State TRUE or FALSE giving proper justification: If both the series > x, and > y,
n=1

n=1

oo
of real numbers are convergent, then the series ) x,y, must be convergent.
n=1

Solution: The given statement is FALSE. Taking z,, =y, = (_% for all n € N, we find that both

o] o
the series 21 x, and 21 Y, are convergent by Leibniz’s test (since (\/LE) is a decreasing sequence
n= n=
[o.¢] (o ¢]
of positive real numbers with lim - = 0), but we know that the series . 2y, = >, * is not
n—oo V1 oo AL

convergent.

Ex.1(h) State TRUE or FALSE giving proper justification: If f : R — R is continuous and



f(z) >0 for all z € Q, then it is necessary that f(z) > 0 for all z € R.
Solution: The given statement is FALSE, because if f(x) = |z —+/2| for all z € R, then f : R — R
is continuous and f(z) > 0 for all z € Q, but f(/2) = 0.

Ex.1(i) State TRUE or FALSE giving proper justification: There exists a continuous function
from (0, 1) onto (0, c0).
Solution: The given statement is TRUE. The function f : (0,1) — (0,00), defined by f(z) = =

for all z € (0, 1), is continuous. Also, f is onto, because if y € (0, 00), then z = ﬁ € (0,1) such
that f(z) =

Ex.1(j) State TRUE or FALSE giving proper justification: There exists a continuous function
from [0, 1] onto (0,1).

Solution: The given statement is FALSE. If possible, let there exist a continuous function f :
[0,1] — (0,1) which is onto. Then there exists xy € [0, 1] such that f(zo) < f(z) for all z € [0, 1].
Since 0 < 3 f(z0) < 1 and since f is onto, there exists ¢ € [0,1] such that f(c) = 3 f(zo). From
above, we get f(zo) < f(c), i.e. f(zo) < 3f(x0), which is not possible, since f(z¢) > 0. Hence
there does not exist any continuous function from [0, 1] onto (0, 1).

Ex.1(k) State TRUE or FALSE giving proper justification: There exists a continuous function
from (0, 1) onto [0, 1].

Solution: The function f : (0,1) — [0,1], defined by f(z) = |sin(27x)| for all x € (0,1), is
continuous. Since f(3) =0 and f(3) = 1, by the intermediate value theorem, for each k € (0, 1),
there exists ¢ € (7, 2) such that f(c) = k. Hence f is onto.

Ex.1(1) State TRUE or FALSE giving proper justification: If f : R — R is continuous and
bounded, then there must exist ¢ € R such that f(c) =

Solution: The given statement is TRUE. Since f is bounded, there exists M > 0 such that
|f(x)] < M for all z € R. Let g(z) = f(x) — x for all x € R. Since f is continuous, g : R — R is
continuous. If f(—=M) = —M or f(M) = M, then we get the result by taking c = —M or ¢ = M
respectively. Otherwise g(—M) = f(—=M)+ M > 0 and g(M) = f(M) — M < 0. Hence by the
intermediate value theorem, there exists ¢ € (—M, M) such that g(c) =0, i.e. f(c) =

Ex.1(m) State TRUE or FALSE giving proper justification: If both f : R - R and g : R —» R
are continuous at 0, then the composite function g o f : R — R must be continuous at 0.
Solution: The given statement is FALSE. If f(z) =2 4 1 for all x € R and if
2 ifreR\ {1},

9@ =913 irp_1,
then both f: R — R and g : R — R are continuous at 0, but go f : R — R is not continuous at

. 2 ifxreR\ {0},
0, since (g o f)(x) = { 3 o 07\{ }

so that lim(g o f)(x) =2 #3 = (g /)(0).

Ex.1(n) State TRUE or FALSE giving proper justification: If f : R — R is not differentiable at
zo € R and g : R — R is not differentiable at f(z), then go f : R — R cannot be differentiable

at xg.

: ) . . 1 ifx >0,
Solution: The given statement is FALSE. If f(z) = |z| for allz € R and if g(z) = 1 ifr<0
then f : R — R is not differentiable at 0 and g : R — R is not differentiable at f(0) = 0, but
(go f)(x) =1 for all x € R, so that g o f is differentiable at 0.

Ex.1(0) State TRUE or FALSE giving proper justification: If f : R — R is such that hH(l) w
4>

exists (in R) for every x € R, then f must be differentiable on R.



Solution: The given statement is FALSE. Let f(0) = 1 and f(x) = 0 if z(# 0) € R. Then for every

r € R, lim f@Hh—f@=h) _ 15, 0-0 _
" h—0 h h

L7 0, but f (being not continuous at 0) is not differentiable at 0.
—

Ex.2(a) Using the definition of convergence of sequence, examine whether the sequence (n + %)
is convergent.

Solution: If possible, let (n + %) be convergent. Then there exist ¢ € R and ng € N such that
In+3 — 4] <1foralln>ny=n<{—3 forall n>ng, which is not true. Therefore the given
sequence is not convergent.

Ex.2(b) Using the definition of convergence of sequence, examine whether the sequence
((—1)"7%2) is convergent.
Solution: Let € > 0. For all n € N, we have |[(—=1)"-25 — 0| = =25 < 2. There exists no € N such

that ng > 2. Hence |(—1)"-25 - 0] < n% < ¢ for all n > ngy and so the glven sequence is convergent
(with limit 0).

Ex.2(c) Using the definition of convergence of sequence, examine whether the sequence
((—=1)"(1 — 1)) is convergent.
Solution: If possible, let the given sequence (z,,) (say) be convergent with limit E . Then there exists

m € N such that |z, — | < 1 for all n > m = |2, — €| < § and |zom1 — €] < 3 = |1 — 5 — (] < 3
and]1+€—2m1+1|<}l:>2—(m+2ml+1)<%:>%<%+2m+lS%—i—g—l which is a

contradiction. Therefore the given sequence is not convergent.

Ex.2(d) Using the definition of convergence of sequence, examine whether the sequence

2 3 .
(% is convergent.
. 2 : _ i — .
Solution: Let ¢ > 0. For all n € N, we have ]% -3 = % < 2%. There exists
V19 3n2+sinn—4

no € N such that ny > N Hence | DR \ < 47% < ¢ for all n > ng and so the given
sequence is convergent (with limit 2).

Ex.2(e) Using the definition of convergence of sequence, examine whether the sequence <2\2/E—I§’”>

is convergent.
Solution: Let e > 0. For all n € N, we have |23 _ 3 = ayn-9 4f+9 < % + 2 =1

2n+3 4n+6 Jn
There exists ny € N such that ng > 1. Hence \2‘2/5;3” 3 < f <e for all n > ng and so the

given sequence is convergent (with limit 2).

Ex.3(a) Let a,b, ¢ be distinct positive real numbers and let z, = (a® + b" + ¢)= for all n € N.
Examine whether the sequence (x,,) is convergent. Also, find the limit if it is convergent.

Solution: Let a = max{a,b,c}. Then o < a” +b" 4+ ¢ < 3a” for all n € N. So a < x,, < 3na
for all n € N. Since 3% — 1, 3na — . Hence by sandwich theorem, it follows that the sequence

(x,,) is convergent and nh_)rgo Ty = Q.

Alternative solution: Let a = max{a,b,c}. Then a™ < a™ +b" + " = o"[(£)" + (2)" + (£)"] <

a"[(&)" 4+ (L) + ()" for all n € N. So a <z, < of(£)" + (2)" + (£)"] for all n € N. Since

()" + (2)" + (£)" — 1, by sandwich theorem, it follows that (z,) is convergent and Jim 2, = a.

Ex.3(b) Let z,, = % for all n € N for all n € N. Examine whether the sequence (x,,) is

convergent. Also, find the limit if it is convergent.
1_q4(D"
Solution: We have z,, = % for all n € N. Since =
for algebraic operations, (z,) is convergent with lim x, = ozﬂgo = —%.

n—oo



Ex.3(c) Let |a| > 1, k > 0 and z,, = Z—Z for all n € N. Examine whether the sequence ()
is convergent. Also, find the limit if it is convergent

Solution: We have lim [*2| = lim (1 + %)k\%l = ‘04 < 1. Hence (z,) converges to 0.
n— 00 " n— 00

Ex.3(d) Let z, = % for all n € N, where p(x) is a polynomial in the real variable = of de-
gree 5. Examine whether the sequence (z,) is convergent. Also, find the limit if it is convergent.
Solution: The highest power of n in each of p(n) and p(n+ 1) is 5 and the coefficient of n° in p(n)
and p(n+1) is same. Hence dividing both numerator and denominator by n® and using the fact that

L — 0, it follows that lim p("+1 ‘ = 1 and consequently hm | Pt ] = pntl) 20 | 1
n—00 2 p(n) 2
ThlS implies that (z,) is convergent with limit 0.
Ex.3(e) Let z,, = W for all n € N. Examine whether the sequence (x,) is conver-
gent. Also, find the limit if it is convergent.
3
Solution: We have lim [*22| = lim g”ig = lim §+g = 2 < 1. Hence (z,) is convergent and
n—o0 n—o0 n—oo Sto
lim z, = 0.
n— oo

Ex.3(f) Let z, = Lsin®n for all n € N. Examine whether the sequence (z,) is convergent.
Also, find the limit if it is convergent.

Solution: Since 0 < %sinzn < % for all n € N and since % — 0, by sandwich theorem, (z,) is
convergent with limit 0.

Ex.3(g) Let z,, = m + m +t (n+ inyz for all n € N. Examine whether the sequence (z,)
is convergent. Also, find the limit if it is convergent.
_>

Solution: We have 0 < z,, < ﬁ for all n € N and (nfl)Q = (H"%)Q (1+0

sandwich theorem, it follows that (z,) is convergent with limit 0.

1

= = 0. Hence by

Ex.3(h) , = 5 + A5 + -+ n3+n for all n € N. Examine whether the sequence ()

is convergent. Also, find the limit if it is convergent.

Solution: We have (1 +2+ - +n)7 <2, < (1 +2+ - +n)z5 for all n € N. Also,
n 1+1 141
(1+2+...+n)n3+n:2(11:%)—>§and (14+24-- —|—n)n3+1—2(%3)—> Hence by sandwich

theorem, (z,) is convergent with limit 1

: _ 1 1 1 -
Ex.3(i) =, = a T s T T e for all n € N. Examine whether the sequence

(x,) is convergent. Also, find the limit if it is convergent.

Solution: We have 2L < g, < 2L for all n € N. Also, ——2+1

1—&-7
‘/n2+n+1 —_ — ‘/77»2+1 Y \/7’12—‘1-71"1‘1 \/1+ + 1 — ]. and

1
ntl _ _*u_ 41 Hence by sandwich theorem, (z,) is convergent with limit 1.

Ex.3(j) Let z, = \/Lﬁ(ﬁ-lh/ﬁ + \/3_1“/5 + -+ m) for all n € N. Examine whether
the sequence (z,,) is convergent. Also, find the limit if it is convergent.

Solution: Since x,, = \r(ﬁ_ 1+ \/_— V34 V2n 1 —2n—1) = f(\/Qn +1-1)=
%(w /2 + % — \/Lﬁ) for all n € N and since % — 0, by the limit rules for algebraic operations, (z,)
is convergent with lim z, = 1(v2+0—0) = 75

n—oo

Ex.3(k) Let x, = (8224csmyn for a]l n € N. Examine whether the sequence (z,) is conver-
gent. Also, find the limit if it is convergent.
Solution: We have 0 < |x,| < (3)" for all n € N. Since (3)" — 0, by sandwich theorem, it follows

that |z,| — 0 and consequently (xy,) is convergent with hmlt 0.



Ex.3(1) Let z,, = v4n?2+n — 2n for all n € N. Examine whether the sequence (z,) is con-
vergent. Also, find the limit if it is convergent.
Solution: For all n € N, V/4n?2 4+n — 2n =

n . 1 : 1 . .
ViEinren © Jiriaz Since = — 0, by the limit rules

. . . . _ 1 _ l
for algebraic operations, (z,) is convergent and nhi& Tn = oz = 1

Ex.3(m) Let z, = vn2+n — v/n2+1 for all n € N. Examine whether the sequence (z,,) is
convergent. Also, find the limit if it is convergent.

n—1

\/n2+n+\/n2+1 \/F+\/1+ 2

rules for algebraic operations, (z,) is convergent and nh_glo Ty = \/ﬁ n m =

Since

Solution: For all n € N, we have z,, = — 0, by the limit

o= S

Ex.3(n) Let ; = 1 and 2,11 = 1+ \/x, for all n € N. Examine whether the sequence (z,,)
is convergent. Also, find the limit if it is convergent.

Solution: We have zo = 2 > zy. Also, if x51 > x for some k € N, then xp 0 = 1+ /Tp 1 >
1+ /x) = x41. Hence by the principle of mathematical induction, ,41 > x, for all n € N. So
(xy) is increasing. Again, z; < 3 and if 23, < 3 for some k € N, then x4 = 14+ /2 < 1+v3 < 3.
Hence by the principle of mathematical induction, z,, < 3 for all n € N. So (x,,) is bounded above.

Consequently (x,) is convergent. If ¢ = lim x,, then x,,; — ¢ and since z,.; = 1 4+ \/z, for
n—oo

allnEN,weget€:1+\/_:>€:3+Tfor37f. Since z,, > 1 foralln € N, ¢ > 1andso€:T‘/5.

Ex.3(0) Let 1 = 4 and z,,1 = 3 — = for all n € N. Examine whether the sequence ()
is convergent. Also, find the limit if it is convergent

Solution: We have x; > 2 and if we assume that x; > 2 for some k¥ € N, then x;,; >3 —1=2.
Hence by the principle of mathematical induction, x, > 2 for all n € N. Therefore (z,) is
bounded below. Again Ty = g < 1 and if we assume that zp.; < z for some k € N then
) <0 = Zpyo < xp41. Hence by the principle of mathematical induction,

Tpyo — Thy1 = 2(5 — wk“

Tpi1 < x, for all n € N. Therefore (a:n) is decreasing. Consequently (z,) is convergent. Let
¢ = lim z,. Then lim z,.; = 3 — hma: :>€—3—2 (since x, > 2 for all n € N, £ # 0)
n—oo

n—oo n— oo

={l-1)({—-2)=0=(¢=1or¢{=2. Butz, >2forall n € N, so > 2. Therefore ¢ = 2.

Alternative solution: For all n € N; we have |z, 10 — Tpy1| = WQHJCIW"“ —x,|. Also, as shown in
n

the above solution, z,, > 2 for all n € N. Hence |2,,2 — 2,11| < %|xn+1 — x,| for all n € N. Tt fol-

lows that (x,,) is a Cauchy sequence in R and hence (z,,) is convergent. To show that lim z, = 2,
n—oo

we proceed as in the above solution.

Ex.3(p) Let 21 = 0 and 2,41 = v/6+ 2, for all n € N. Examine whether the sequence ()
is convergent. Also, find the limit if it is convergent.

Solution: We have zo = V6 > z;. Also, if Try1 > xp for some k € N, then x50 = /6 + x5 >
V6 + xp = xp,1. Hence by the principle of mathematical induction, z,,1 > x, for all n € N. So
(x,,) is increasing. Again, 1 < 3 and if x;, < 3 for some k € N, then x4, = /6 + 11, < v/6 + 3 = 3.
Hence by the principle of mathematical induction, x,, < 3 for all n € N. So (x,,) is bounded above.
Consequently (z,) is convergent. If ¢ = lim x,, then z,,; — ¢ and since x,,1 = /6 + x,, for all

n—o0

neN weget {l=v6+0=0*—(—-6=0=(=3o0r —2. Since z,, >0 foralln € N, £ > 0 and
so ¢ = 3.

Ex.3(q) Let ; > 1 and 2,11 = /7, for all n € N. Examine whether the sequence (z,) is
convergent. Also, find the limit if it is convergent.

Solution: We have z; > 1 and if we assume that z;, > 1 for some k € N, then z;, = /73, > L.
Hence by the principle of mathematical induction, x, > 1 for all n € N. Again, x5 = /71 < 14
and if we assume that z,.; < z; for some k € N, then x5 = VZTer1 < /T = xp41. Hence by
the principle of mathematical induction, z,1 < z, for all n € N. Thus (z,) is decreasing and



bounded below. Consequently (z,) is convergent. If ¢ = lim z,, then lim z,,; = ¢ and since
n—oo n—oo

xnﬂ:\/xnforallnEN,wegetfzﬂéﬁzééﬁzOor1. Since xz, > 1 for all n € N,
¢ > 1 and so we must have ¢ = 1.

Ex.4 Let (x,), (y,) be sequences in R such that z, — = € R and y, — y € R. Show that

lim max{x,,y,} = max{z,y}.
n—oo

Solution: We know that max{z,,yn} = 3(zn + yn + [T, — ya|) for all n € N. Since z,, — = and
Yn = Y TntYn — T+Y and |xn yn| - |l’ y| Consequently hm max{xn, yn} = (I+y+|$ y|)

max{z,y}.

Ex.5 If a sequence (z,,) of positive real numbers converges to ¢ € R, then show that lim /x, =

n—oo
V.

Solution: In view of Ex.2 of Tutorial Problem Set, we get ¢ > 0. If a > 0 and b > 0, then
Ha+b—|a—b]) = min{a,b} < vab and hence it follows that |\/a — vb| < \/|a — b|. Let £ > 0.
Since z,, — ¢, there exists ny € N such that |z, — ¢| < &2 for all n > ng. Therefore using the
inequality obtained above, we get |\/Z, — V| < \/|z, —{] < ¢ for all n > ny. Consequently

lim \/z, = V2.

n—o0

Ex.6 Let (z,) be a convergent sequence in R with lim z, = ¢ # 0. Show that there exists
n—oo

ng € N such that x,, # 0 for all n > ny.

Solution: Since x, — £ and || > 0, there exists no € N such that |z, — ¢| < 1|¢| for all n > n,.

If for some n > ng, z,, = 0, then we obtain [¢| < 1|¢|, which is not possible. Hence z,, # 0 for all
n > ng.

Ex.7 If x, = - +1 + n—+2 + -+ m for all n € N, then show that the sequence (z,) conver-
gent.
Solution: For all n € N| we have x,,.1 — x, = ﬁ + ﬁ — HLH > %H n+1 =0= 2,1 > T,

for all n € N = (,) is increasing. Also, 2, < 2+ X +4... 41 =1foralln € N= (z,) is bounded
above. Therefore (z,,) is convergent.

Ex.8(a) Let 27 = 1 and z,41 = 2”” for all n € N. Show that the sequence (x,) in R is
Cauchy (and hence convergent) Also find the limit.

Solution: Since Tpy1 = 1+ 77— for all n € N, we have |z,40 — x| = |m — len\ =
% for all n € N. Also, x1 = 1 and if we assume that x;, > 1 for some k£ € N, then
Tpe1 = 1+ 1 ﬂ > 1. Hence by the principle of mathematical induction, z, > 1 for all n € N.

Consequently |z,10 — Tpi1| < jt]:zrnﬂ x,| for all n € N. It follows that (z,) is Cauchy and hence
(z,) converges. Let ¢ = lim xz,,. Then hm Tpip =Landsoweget f =14+ =2 =2=/(=+/2

n—00 1+£

or —v/2. Smcexn21forallnEN,wemusthave@Zlandsof—\/_.

Ex.8(b) Let ; > 0 and 2,41 = 2+ - for all n € N. Show that the sequence (x,) in R is
Cauchy (and hence convergent). Also, find the limit.

Solution: We have |z,,2 — T, 11| = |xn+1 | = ‘\ZZ:IIH;E”\‘ for all n € N. Also, 29 = 2 + I—ll > 2

and if we assume that x; > 2 for some k 2 2, then z;1 =2+ é > 2. Hence by the principle

of mathematical induction, z,, > 2 for all n > 2. Consequently |z,12 — Tpi1| < i\a}nﬂ — Zn|
for all n > 2. It follows that (z,) is Cauchy and hence (z,) converges. Let ¢{ = lim x,. Then

n—oo

lima:n+1:€andsoweget€:2+%=>€2—2€—1:O=>€:1i\/§. Since x,, > 2 for all
n—oo
n22,WemusthaveEZZandsoﬁzl—i—\/i



Ex.9(a) If 2, = (=1)"n? for all n € N, then examine whether the sequence (z,) has a con-

vergent subsequence?

Solution: If possible, let the given sequence have a convergent subsequence ((—1)"n2). Then

(( 1)™n2) must be bounded. So there exists M > 0 such that |(—1)"ni| < M for all k € N =
n2 < M for all k € N, which is not possible, since (n;,) is a strictly increasing sequence of positive

integers. Therefore the given sequence cannot have any convergent subsequence.

Ex.9(b) If z, = (—1)"5’?’3:—“2" for all n € N, then examine whether the sequence (z,) has a
convergent subsequence.
Solution: Since |x,| = 3_52 |sinn|® < 5 for all n € N, the sequence (z,,) is bounded and hence by

n
Bolzano-Weierstrass theorem, (z,) has a convergent subsequence.

Ex.10 If a,b € R, then show that the series a + (a + b) + (a + 2b) + --- is not convergent
unless a = b = 0.

Solution: Let s, = a+(a+b)++--+a+(n—1)b=nla+1(n—1)b] for all n € N. If b # 0, then the
sequence (a + 3(n — 1)b) is not bounded and so the sequence (s,) is not bounded, which implies
that (s,) is not convergent. If b = 0, then the sequence (s,) = (na) is not bounded and hence is
not convergent if @ # 0. Thus the given series is not convergent (i.e. (s,) is not convergent) if
a#0orb#0.

If a = b= 0, then the series becomes 0 4 0 + - - -, which is clearly convergent.

o0
Ex.11(a) Examine whether the series > 2 is convergent.
n=1

y . 3 . Tn+l | __ _ 1 _—
Solution: Taking z,, = % for all n € N, we find that 7}1_>I]glo| | = hm (n+1) nlggom =

é < 1. Hence by the ratio test, the given series is convergent.

o0

Ex.11(b) Examine whether the series (f;)! is convergent.
n=1
Solution: For all n € N, we have (i@! = 2.zl ndl

n—oo
consequently the given series is not convergent.

Ex.11(c) Examine whether the series Z L sin + is convergent.

Solution: Since 0 < = sin% < % for all n € N and since the series Z ~3 converges, by comparison
n=1
test, the given series is convergent.

Ex.11(d) Examine whether the series ) gf;ﬁ is convergent.
n=1

2n2+3

Solution: Let @, = /577

. 24+
and vy, = for all n € N. Since lim %= = lim /== = /2 #0
n—soo Yn n— 00 5+7T3 5
o0

o
and since Y ¥, is not convergent, by limit comparison test, Y z,, is not convergent.
n=1 n=1

oo
Ex.11(e) Examine whether the series ”—"2 is convergent.

n= 1
Solution: Taking z,, = &5 for all n € N, we have lim \xn\ n o= hrn 7w = 0 < 1 (since
n—oo
nh_}rn ;nﬁll . % = % <1). Hence by the root test, the given series is convergent.

Ex.11(f) Examine whether the series Z ((n® +1)3 — n) is convergent.

n=1

Solution: Taking x,, = (n® + 1)% —n>0and y, = ﬁ for all n € N, we have



o0

203 3
. Ty . n (n +1—n ) _ . 1 _ l . .
nlggo yn nlggo (n3+1)2/34n(nd+1)1/34n2 7}520 (I+-3)2 3+ 1+ 5) 341 37 Since 7;1 Yn 15 convergent,
o
> x, is also convergent by limit comparison test.
n=1
S~ Vidl-yvn
Ex.11(g) Examine whether the series ) **——" is convergent.
n=1
- N == ey 1 _ Tn
Solution: Let x, = -~ = T and vy, = n3/2 for all n € N. Since nh_>Holo =
o o
lim L = 1 and since ) y, is convergent, by limit comparison test, Y x, is convergent.
n—oo \/1+5+1 n=1 n=1

Ex.11(h) Examine whether the series Z (L)”2 is convergent.

Proof. Taking x,, = ( f‘H)” for all n € N we have hm |Z,|7 = lim —4— =
n—soo (1+3)"

the root test, the given series is convergent.

= 1 < 1. Hence by

Ex.11(i) Examine whether the series S (—1)"" YL s convergent.

n+1
n=1
Solution: For n € N, the inequality V”‘L H < *{ffll is equivalent to the inequality (n + 1)% <

(n+2)y/n+1. Since n(n+2)*—(n+1)3 =n +n—1 > 0foralln € N, we get (n+1)2 < (n+2)y/n—+1

V/nFl+1 Vn+l Vvntl\ -
for all n € N and hence = “5= < * === for all n € N. Consequently the sequence <TL_+1> is de-

Jatl et

creasing. Also, Y= = 7 T — 0. Hence by Leibniz’s test, the given series converges.
Alternative method for showing decreasing: Let f(x) = f“ for all x > 1. Then f :[1,00) = R
is differentiable and f'(z) = % <0 for all z > 1. Hence [ is decreasing on [1,00) and so

f(n+1) < f(n) for all n € N.

Ex.12 Find all € R for which the series > %7: is convergent.

Solution: For x = 0, the given series becomes 0 + 0 + ---, which clearly converges. We now
o0
assume that x # 0. Then hm \ AR ;% = lim n|i+‘1 =0 < 1. So by the ratio test, Y. % is
n—00 n=1

absolutely convergent and hence convergent. Therefore the given series is convergent for all x € R.

Ex.13 Find all = € R for which the series @D g convergent.

=1 37/2n+1
Solution: If x = —2, then the given series becomes 0 4+ 0 + - - -, which is clearly convergent. Let
z(# —2) € R and let a, = 3?;% for all n € N. Then lim [*| = Z|z 4 2|. Hence by ratio
n—00 "

test, Y a, is convergent (absolutely) if 3|z + 2| < 1, i.e. if 2 € (—5,1) and is not convergent if

n=1

fle+2] > 1, de if € (—o0,—5) U (1,00). If z = =5, then 2—31 an = Y, \(/% is convergent by

. . . 1 . . .y . 1 o
Leibniz test, since ( m) is a decreasing sequence of positive real numbers and nhjEO T 0.

o0 oo [o.¢]
Again, if z = 1, then z ay = Z \/ﬁ is not convergent by limit comparison test, since Zl \/Lﬁ
n=1 n—=

n=1

is not convergent and h_)m \/anT \/Li # 0. Therefore the set of all x € R for which ngl ay, 18

convergent is [—5, 1).




Solution: If 0 < a < 1, then 0 < -2~ < @" for all n € N and Y_ a” is convergent. Hence by

a+n
n=1

an n

a™4+n

a
a+n

is convergent if 0 < a < 1. Again, if a > 1, then

o
comparison test, »_
n=1

1
— T;;g; — 1 7é 0

o0
and hence afin is not convergent if @ > 1. (We have used that lim 7. = 0, which follows from
n=1

n—oo

the fact that lim &L . < =1 <1))
n—oo a n a

Ex.15 If 0 < z, < % for all n € N and if the series ) x, converges, then show that the se-

n=1

[e.e]
ries ) +%%— converges.
n=1 "

Solution: Since 0 < x, < % for all n € N, we have 0 < T2 < 21y for all n € N. Also, since

Tn
1—zp

> 2x, converges, by comparison test, »
n=1 n=1
Ex.16 Let (x,), (y,) be sequences in R such that |z,| < |y,| for all n € N. Find out (with
justification) the true statement(s) from the following.

converges.

o0 o0
(a) If the series ) y, converges, then the series Y z, must converge.

n=1 n=1
o0 o0

(b) If the series > x, converges, then the series > y, must converge.
n=1 n=1

(c) If the series Y y, converges absolutely, then the series ) x, must converge absolutely.
n=1 n=1

(d) If the series > x, converges absolutely, then the series > y, must converge absolutely.
n=1 n=1

[e.e] o0 o0
Solution: By comparison test, > |z,|is convergent (i.e. > x,, is absolutely convergent) if > |y,|
n=1 n=1 n=1

o0
is convergent (i.e. » i absolutely convergent) and so (c) is true. Again, we know that Y -
n=1

is convergent and

o0

> Y

n=1
1

is not convergent. Also, since (%) is a decreasing sequence of positive real

0 n
numbers with £ — 0, by Leibniz’s test, Y. (j) is convergent. Hence to see that (a) is false,
n=1

we can take z, = L, y, = % for all n € N and to see that (b) and (d) are false, we can take
xn:#,yn:%forallnEN.

Ex.17 If a series Y. x, is convergent but the series > x? is not convergent, then show that
n=1 n=1

oo
the series > x, is conditionally convergent.
n=1

Solution: Since Y x, is convergent, x,, — 0, and so there exists ng € N such that |z,| < 1 for

n=1
o
all n > ng. Hence z2 < |z,| for all n > ny. Since Y. x2 is not convergent, by comparison test,
n=1

[e.e] oo
> |zn| is not convergent. Consequently > x, is conditionally convergent.

n=1 n=1
Ex.18(a) Examine whether the series ) (—1)"(vn? + 1 —n) is conditionally convergent.
n=1
Solution: Let x, = vVn2+1—n for alln € N. Then z,, > 0 for alln € N and z,, = ———— =

vVn2+1+4n

L L — g, forall n € N, i.e. the sequence (z,,)

V(12414 (nt1) < VeEiTen

1
—n_ (. Also, x =



o0
is decreasing. Therefore by Leibniz’s test, > (—1)"*x, is convergent and hence the given series

n=1
is convergent.

Again, if y, = L for all n € N, then lim 22 = lim ———— = 1 # 0. Since ). ¥, is not con-

n—oo Yn n—00 1+ni2+1 n—1
o0 [e.e]
vergent, by limit comparison test, > xz, is not convergent, i.e. > [(—1)"(v/n?+1 —n)| is not
n=1 n=1
convergent. Thus the given series is conditionally convergent.

Ex.18(b) Examine whether the series Z is conditionally convergent.

1)”

(—1)"
n?+(=1)"

oo
Solution: By comparison test, the series Z => m is convergent, since
n=2

0< 2 for all n > 2 and z is convergent. Thus the given series is not conditionally

n2+( e =

convergent.

Ex.18(c) Examine whether the series ) (—1)”“2# (where a € R) is conditionally convergent.
n=1

Solution: Let a € R and let z,, = “Z# for all n € N. Then z, > 0 for all n € N and
Ty = Z—z + % — 0. Also, 41 = ﬁ + n+r1 < Z—z + % =z, for all n € N, i.e. the sequence (z,,)
is decreasing. Therefore by Leibniz’s test, it follows that the given series is convergent.

Again, if y, = < for all n € N, then lim Z» = lim (% +1) =1#0. Since ) y, is not convergent,

n—oo Jn n— 00 n—=1
o 2+
o : : : nain| :
by limit comparison test, z T, is not convergent, i.e. ) [(—1)"“%"| is not convergent. Thus

n=1
the given series is conditionally convergent.

Ex.19 Find all € R for which the series Z log "H) (x — 5)™ is convergent.

Hint: If x = 5, then the given series becomes 0 + 0 + ---, which is clearly convergent. Let

z(#5) € R and let a,, = 10%) (x — 5)™ for all n € N. Since hm }gigﬁ; = 1 (using L’Hopital’s

rule), by sequential criterion of limits, we get hm igiggﬁ; =1land so lim [*2| = |z —5|. Hence
n—oo

by the ratio test, Z a, converges (absolutely) if |z — 5| < 1, i.e. if 2 € (4,6) and diverges if

n=1
|z — 5| > 1, d.e. if x € (—00,4) U (6,00). If f(x) = 10% for all > 0, then f : (0,00) — R
is differentiable and f’(z) < 0 for all z > e?. Hence f is decreasing on (2, 00). Consequently

the sequence <1°g”) is decreasing. If z = 6, then > a, = > 22 diverges, by Cauchy’s
n=16 1

vn VAT

n=1 n=

oo (e.9]
condensation test. Again, if + = 4, then >  a, = > (—1)”% converges, by Leibniz’s test.
n=1 n=1

Therefore the set of all x € R for which the given series converges is [4,6).

Ex.20 Find all x € R for which the series Z % is conditionally convergent.
n=1
Solution: If x = —3, then the given series becomes 0+ 0+ - - -, which is clearly absolutely conver-
gent. Let z(# —3) € R and let a,, = ()—H?’ for all n € N. Then lim “Z—“) = 1|z + 3|. Hence
n—00 i

by the ratio test, > a, converges absolutely if %|w +3| <1, ie. if z € (—8,2) and diverges if

n=1

o+ 3] > 1, ie if 2 € (—o0,—8) U (2,00). If 2 = —8, then > a, = > + diverges. If v = 2,

n=1 n=1



o o 1)n o oo o
then > a, = > % converges by Leibniz’s test, but > |a,| = > & diverges, i.e. > a, is con-

n=1 n=1 n=1 n=1 n=1

ditionally convergent. Therefore the set of all z € R for which > a, converges conditionally is {2}.
n=1

Ex.21 Let f,g : R — R be such that |f(z)| < |g(x)| for all z € R. If g is continuous at 0

and ¢g(0) = 0, then show that f is continuous at 0.

Solution: Let € > 0. Since g is continuous at 0, there exists § > 0 such that |g(z)| = |g(z)—g(0)] <

e for all z € R with [z — 0] < 4. So [f(z) = f(0)] < [f(@)] +[f(0)] < [g(z)| +[9(0)] = |g(x)] < e

for all z € R with |z — 0| < . Therefore f is continuous at 0.

Tanl s
Ex.22 Let f : R — R be defined by f(z) = { @ Sgn @ ii i 8
Examine whether f is continuous at 0.

Solution: Let z,, = (4T1) for all n € N. The sequence (x,,) in R converges to 0, but the sequence
(f(xn)) = (2nm+ %) cannot converge because it is not bounded. Therefore f is not continuous at 0.

Ex.23 Give an example (with justification) of a function f : R — R which is discontinuous
at every point of R but |f| : R — R is continuous.

Solution: Let f: R — R be defined by f(z) = _11 ii E %’\ 0.
If 2y € Q, then there exists a sequence (t,,) in R\ Q such that ¢, — (. Since f(t,) = —1 for
all n € N, f(t,) - —1 # 1 = f(xy). Hence f is not continuous at zy. Again, if o € R\ Q,
then there exists a sequence (r,) in Q such that r, — xo. Since f(r,) = 1 for all n € N,
f(rn) = 1# —1= f(xg). Hence f is not continuous at xy. Thus f is discontinuous at every point
of R.

However, |f|(x) = |f(z)| =1 for all z € R and so |f| : R — R is continuous.

Ex.24 Let f: R — R be continuous such that f(x) = 2%+ 5 for all 2 € Q. Find f(v/2).
Solution: There exists a sequence (r,,) in Q such that r, — V2. Since f is continuous at \/5, we

have f(v2) = lim f(r,) = lim (2 +5) = (vV2)* +5 =T.

Ex.25 Evaluate lim sin((2n7 + 52-) sin(2n7 + 5-)).

n—00 2nmw
Solution: We have (2nm + 5—) sin(2nm + 52-) = 2n7r sm 7=+ 7 sin 5~ — 1, since |5 sin 5| <
L 5 0= sLsins= — 0 and 2n7sin == = 12”” — 1, using hrn smz — 1. Since the sine
2nm 2nm 2nm 2nm S 0

function is continuous at 1, it follows that lim sin((2nm 4 5—) sm(2n7r + 5—)) =sinl.
n—oo

Ex.26 Let f: R — R be continuous such that f(0) > f(1) < f(2). Show that f is not one-one.
Solution: We choose k € R such that f(1) < & < min{f(0), f(2)}. Then by the intermediate
value theorem, there exist ¢; € (0,1) and ¢ € (1,2) such that f(c;) = k and f(c2) = k. Since
¢1 # c9, we conclude that f is not one-one.

Ex.27 Let f : [0,1] — [0,1] be continuous. Show that there exists ¢ € [0, 1] such that f(c)+2c¢° =

3c.

Solution: Let g(x) = f(x) + 22° — 327 for all x € [0,1]. Since f is continuous, ¢ : [0,1] — R is

continuous. If f(0) =0 or f(1) =1, then we get the result by taking ¢ = 0 or ¢ = 1 respectively.

Otherwise ¢g(0) = f(0) > 0 and ¢g(1) = f(1) — 1 < 0 (since it is given that 0 < f(x) < 1 for all
€ [0,1]). Hence by the intermediate value theorem, there exists ¢ € (0,1) such that g(c) = 0,

i.e. f(c)=

Ex.28 Show that there exists ¢ € R such that ¢!™ + % = 119.
Solution: Let f(z) = 2'™ + Hx?ﬂ% — 119 for all z € R. Then f : R — R is continuous and



f(=2) <0, f(0) > 0. Hence by the intermediate value theorem, there exists ¢ € (—2,0) such that
fle) =0, de "+ 50 = 119.

Ex.29 Let f, g : [-1,1] — R be continuous such that | f(z)| < 1forallz € [-1,1] and g(—1) = —1,
g(1) = 1. Show that there exists ¢ € [—1, 1] such that f(c) = g(c).

Solution: Let p(x) = f(x) —g(z) for all x € [—1,1]. Since f and g are continuous, ¢ : [-1,1] - R
is continuous. If f(—1) = —1 or f(1) = 1, then we get the result by taking ¢ = —1 or ¢ = 1
respectively. Otherwise p(—1) = f(—1) +1 > 0 and ¢(1) = f(1) — 1 < 0 (since it is given that
|f(z)] <1 forall z € [-1,1]). Hence by the intermediate value theorem, there exists ¢ € (—1,1)
such that ¢(c) =0, i.e. f(c) = g(c).

Ex.30 Let £ € R and n € N. Show that

(a) if n is odd, then there exists unique y € R such that y" = z.
(b) if n is even and x > 0, then there exists unique y > 0 such that y" = x.

Solution: Let f(t) =t" — x for all t € R, so that f : R — R is continuous.
(a) We first assume that n is odd. Then tlim f(t) = oo and tlim f(t) = —oo. So there exist
—00 ——00

1 > 0 and x5 < 0 such that f(z1) > 0 and f(x2) < 0. By the intermediate value property of
continuous functions, there exists y € (x9, 1) such that f(y) = 0, i.e. y™ = x. If possible, let
there exist u € R such that u # y and u™ = x. Clearly either both v and y must be non-negative
or both u and y must be negative. We consider the case 0 < y < u. (Other cases can be handled
similarly.) Then z = y™ < u" = x, which is a contradiction. Thus the uniqueness of y is proved.

(b) We now assume that n is even and z > 0. Then f(0) < 0 and tliglo f(t) = 0o. So there exists

x1 > 0 such that f(z1) > 0. By the intermediate value property of continuous functions, there
exists y € (0,21) such that f(y) = 0 i.e. y™ = z. If possible, let there exist u > 0 such that
u # y and u™ = x. Without loss of generality, let v > y. Then x = " > y" = z, which is a
contradiction. This proves the uniqueness of .

Ex.31 If f : [0,1] — R is continuous and f(z) > 0 for all € [0,1], then show that there
exists a > 0 such that f(z) > « for all z € [0, 1].

Solution: Since f :[0,1] — R is continuous, there exists zy € [0, 1] such that f(x) > f(x) for all
z € [0,1]. Choosing o = 5 f(z0), we find that & > 0 and f(z) > a for all z € [0,1].

Ex.32 Give an example of each of the following.

(a) A function f : [0,1] — R which is not bounded.
(b) A continuous and bounded function f : R — R which does not attain sup{f(z) : + € R} as
well as inf{f(z) : z € R}.
(¢) A continuous and bounded function f : (0,1) — R which attains both
€ (0,1

sup{f(z) : z € (0,1)} and inf{f(x) : x 1)}

- _J 2 ifxe(0,1],

Hint: (a) If f(z) = 0 ifz—0

then f:[0,1] — R is not bounded.

(b) The function f : R — R, defined by f(z) = 5 T for all x € R, is continuous and bounded.

However, neither sup{ f(z) : z € R} = 1 nor inf{f(x) : x € R} = —1 is attained by f at any point
of R.

(c) The function f : (0,1) — R, defined by f(z) = sin(27z) for all z € (0,1), is continuous and
bounded. Also, sup{f(z):z € (0,1)} =1 = f(3) and inf{f(z) : 2 € (0,1)} = -1 = f(2).

Ex.33 If f(z) = zsinz for all z € R, then show that f : R — R is neither bounded above
nor bounded below.

Solution: If possible, let f be bounded above. Then there exists M > 0 such that f(zx) < M
for all € R and hence 2nm + 5 = f(2nm 4+ %) < M for all n € N. This gives n < 5-(M — %)

2
for all n € N, which is not possible. Hence f is not bounded above. Again, if possible, let f



be bounded below. Then there exists K > 0 such that f(xz) > K for all z € R and hence
—2n7 — 3 = f(2nm + 2F) > K for all n € N. This gives n < —3=(K + 2F) for all n € N, which is
not poss&ble Hence f is not bounded below.

Ex.34 Let p be an nth degree polynomial with real coefficients in one real variable such that
n(# 0) is even and p(0) - p™(0) < 0. Show that p has at least two real zeroes.

Solution: Let p(z) = apz™ + a2 '+ +a, 1x+a, for all z € R, where a; € R fori = 0,1, ..., n,
n € N is even and ay # 0. Then p is infinitely differentiable (and so also continuous) and
p™(0) = nlag. Since p(0) - p™(0) < 0, we have apa, < 0, i.e. ag and a,, are of different signs.
Let us assume that ag > 0, so that a,, < 0. (The case ag < 0 and so a, > 0 is almost similar.)
Since p(x) = agz™(1+ % - L4+ =L b 4 9. ) for all (# 0) € R, we get ggli)rgop(x) =00

ao

and lim p(z) = co. So there exist 1 > 0 and x5 < 0 such that p(z;) > 0 and p(z3) > 0. Since

T——00
p(0) = a, < 0, by the intermediate value theorem, there exist ¢; € (x2,0) and ¢y € (0,21) such
that p(c;) = 0 and p(cy) = 0.

Ex.35 Let f : R — R be continuous at 0 and let g(z) = zf(z) for all x € R. Show that
g:R—Ris dlfferentlable at 0.
Solution: Since hm ; 99 — Jim f(z) = f(0) (because f is continuous at 0), g is differentiable

r— z—0
at 0.

Ex.36 Let > 1 and let f : R — R satisfy |f(z)] < |z|* for all z € R. Show that f is dif-
ferentiable at 0.
Solution: We have |f(0)] < [0]* =0 = f(0) = 0 and so |f | < |x]*7t for all :17(7é 0) € R.

|*=1 = 0, by sandwich theorem for limit of functlons we get hm ]f @70 — 0. 1

f(z)=f(0)
-0

Since lim |z

follows that hH(l) = 0 and consequently f is differentiable at 0.

Ex.37 Let f(z) = 2?|z| for all z € R. Examine the existence of f'(x), f”(z) and f”(z), where

r € R. ,
. x> ifx >0,
Solution: Here f(x) = { S w0
Clearly f: R — R is differentiable at all (£ 0) € R and f'(x 2 ifz>0,
Sx it z <0.
Also, lim w = lim 22 =0 and lim w = lim (—2?) =
z—0+ 0 z—0+ z—0— z—0 z—0—
Hence f/(0) = lim {&=/© 0( ) — 0.
z—0 =
Again, it is clear that f': R — R is differentiable at all z(# 0) € R and f"(x) = { _6;; i i z 8’
Also, lim Z@=O — Jim 3z =0 and lim @O = py (—3x) = 0.
z—04 z—0 z—04 r—0— z—0 z—0—
— liy L@)=f0) _
Hence f”( ) = :101_% 0 = 0.
. o " - : " 6 ifxz>0,
Finally, it is clear that f” : R — R is differentiable at all z(# 0) € R and f"'(z) = 6 ifr <0
Also, lim @O — iy 6 =6 and lim 0O = iy (—6) = 6.

z—0+ z—0 z—0+ z—0— z—0—

Hence lnr(l) - ) does not exist, i.e. f”(0) does not exist.
T—r

2 o]
Ex.38 Let f : R — R be defined by f(z) =4 * |c(())s$| iiig’

Examine whether f is differentiable (i) at 0 (ii) on (0, 1).
Solution: (i) For each ¢ > 0, choosing 6 = ¢ > 0, we find that ’fz ‘ = |z|[cos Z| < x| for



all z € R satisfying 0 < |z| < §. Hence lir% %g(o) = 0 and consequently f is differentiable at 0
z—
(with f'(0) = 0).

z)—f(2 . —x2 cos T — . a
(i) Since lim LACOR G D TP AL Sl 4 (—2%cosZ)|,_> (applying L'Hopital’s rule) =
z—2+ T3 z—2+ T3 v v 3
m and lim Lf(%) — lim 250 4 (22 cos T)| (applying L’Hopital’s rule) = —
= —— = 4 =2 (applying opital’s rule) = —m,

2 33_2 2
— s 3 — s — 3
xT 3 T 3

—f(2
lim f(z) J;(3)
a—2 T3

not differentiable on (0, 1).

does not exist and hence f is not differentiable at % € (0,1). Consequently f is

Ex.39(a) Examine whether f : R — R, defined as below, is differentiable at 0.
L ifr=1
fz) = { QnOH if v = 55 for some n € N,

otherwise.
1
Solutz'on‘ Since —f(”l‘/)zn © 3 L and LG —O _ 37{/)3”“ ) — 0 foralln € N, Ham) =70 2;/)2nf( ) -3 L and —f(3’{/)3nf(0) — 0.
As 5 — 0 and 57 — 0, by the sequential criterion of limit, it follows that hn% w does not

ex1st. Consequently f is not differentiable at 0.

Ex.39(b) Examine whether f : R — R, defined as below, is differentiable at 0.
+ if x = 55 for some n € N
_J ! on ,
fla) = { 0 otherwise.

Solution: For all z(# 0) € R, we have ‘M‘ < |x|. Hence for each € > 0, taking § = ¢ > 0,

we find that ‘%{;(0)‘ < ¢ for all z € R satisfying 0 < |z — 0] < . Therefore hr% m)_g(O) =0
z—
and consequently f is differentiable at 0 (with f’(0) = 0).

Ex.40 Let f : R — R be differentiable at 0 and f(0) = f’(0) = 0. Show that ¢ : R — R,

. l .
defined by g(z) = { f(x)osm z ﬁ i i 8’ is differentiable at O.
Solution: Since 0 < %:3(0)‘ - }@

(I) f

1 < ’@ (# 0) € R and since lim ‘f(x)

g(x) 9(0) | _

z—0 -

lim
x—0

0. It follows that hH(l) %:g(o) = 0 and consequently g is differentiable at 0 (with ¢’(0) = 0).
x—

= |f"(0)| = 0, by the sandwich theorem for limits of functions, we get hH(l)
z—

Ex.41 Let f(z) = 2% + z and g(x ) = 2% —z for all z € R. If f~! denotes the inverse func-
tion of f and if (go f~ )( ) g(f~'(x)) for all z € R, then find (go f)(2).

Solution: Since f'(z) =322+ 1#0for all z € R, f: R — R is one-one. Also, since f is an odd
degree polynomial in R, by the intermediate value property of continuous functions, f : R — R is
onto. Hence f~!: R — R exists and is differentiable. By chain rule and the rule for derivative of

inverse, we get (g0 f~1)71(2) = ¢/(F 1 (2))(f ) (2) = ¢/(1) 7 (since f(1) =2) = 1

Ex.42 If a,b,c € R, then show that the equation 4ax® + 3ba® + 2cx = a + b + ¢ has at least
one root in (0,1).

Solution: Let f(x) = ax?+bx3+cx®—(a+b+c)z for allz € R. Then f : R — R is differentiable and
f(0) =0 = f(1). Hence by Rolle’s theorem, the equation f'(z) = 0, i.e. 4ax3+3bx*+2cx = a+b+c
has at least one root in (0,1).

Ex.43 If ag,ay,...,a, € R satisty {4 + 35 + - + MW = 0, then show that the equa-
tion ag + a1 + - - - + a,x™ = 0 has at least one root in [0, 1].

Solution: Let f(z) = 8&x* + $La® 4 - + Mm "2 for all z € [0,1]. Then f:[0,1] — R is

twice differentiable and f (2) = apr + Ga® + - + g™t f(x) = ag + a1z + - -+ aya” for all



€ [0,1]. Since f(0) =0 = f(1), by Rolle’s theorem, there exists ¢ € (0,1) such that f'(c) = 0.
Again, since f’(0) = 0, by Rolle’s theorem, there exists a € (0, ¢) such that f”(a) = 0. Thus the
equation ag + a1 + - - - + a,z™ = 0 has a root a € [0, 1].

Ex.44 Show that the equation |21 — 60x® — 290| = ¢® has at least one real root.
Solution: Let f(z) = |2'° — 602? — 290| — €® for all z € R. Then f : R — R is continuous and
f(0) =289 > 0. Again, lim w = lim 1% (using L’Hopital’s rule ten times) = 0. Hence

T—00 T—00
there exists M > 0 such that |W| < 1 for all z > M and consequently f(2M) < 0.
Therefore by the intermediate value property of continuous functions, the equation f(z) = 0 has
at least one root in (0,2M). Hence the given equation has at least one real root.
Ex.45(a) Find the number of (distinct) real roots of the equation 2? = cos z.
Solution: Let f(z) = x* — cosz for all z € R. Then f : R — R is twice differentiable with
f'(x) = 2z 4+ sinx and f"(x) = 2 + coszx for all x € R. Since f”(z) # 0 for all z € R, as a

consequence of Rolle’s theorem, it follows that the equation f’(x) = 0 has at most one real root

2

and hence the equation f(x) = 0 has at most two real roots. Again, since f(—5) = & > 0,

f(0)=—-1<0and f(}) = %2 > 0, by the intermediate value property of continuous functions,
the equation f(z) = 0 has at least one root in (—7,0) and at least one root in (0, 7). Therefore
the given equation has exactly two (distinct) real roots.

Ex.45(b) Find the number of (distinct) real roots of the equation €** + cosx + x = 0.

Solution: Let f(z) = e** + cosx + x for all z € R. Then f : R — R is differentiable with
f'(x) = 2¢** + (1 —sinz) > 0 for all z € R. As a consequence of Rolle’s theorem, the equation
f(z) = 0 has at most one real root. Again, since f(—5) =e™™ —% <0 and f(0) =2 > 0, by the
intermediate value property of continuous functions, the equation f(x) = 0 has least one root in
(—=%,0). Therefore the given equation has exactly one (distinct) real root.

Ex.46 Let f : R — R be twice differentiable such that f(0) = 0, f/(0) > 0 and f"(z) > 0
for all x € R. Show that the equation f(z) = 0 has no positive real root.

Solution: Since f"(z) > 0 for all x € R, f’ is strictly increasing on R and so f'(z) > f/(0) > 0 for
all > 0. This implies that f is strictly increasing on [0, 00) and so f(z) > f(0) = 0 for all x > 0.
Thus the equation f(x) = 0 has no positive real root.

Ex.47 Show that between any two (distinct) real roots of the equation e*sinz = 1, there ex-
ists at least one real root of the equation e* cosx + 1 = 0.

Solution: Let f(x) =sinxz —e ® for all z € R. Then f: R — R is differentiable (also continuous).
Let a,b € R with a < b be such that e*sina = 1 = e¢’sinb. Then f(a) = 0 = f(b). By Rolle’s
theorem, there exists ¢ € (a,b) such that f'(c) =0, i.e. cosc+e =0 = e (cosc+e ) =0=
e‘cosc+ 1 =0. Thus ¢ € (a,b) is a root of the equation e” cosz + 1 = 0.

Ex.48 Let f(z) = 32z° — 22% + 122 — 8 for all x € R. Show that f : R — R is one-one and
onto.

Solution: Here f : R — R is differentiable and f/(z) = 152* — 62 + 12 = 15[(2® — £)* + 2] # 0
for all x € R. As a consequence of the mean value theorem, f : R — R is one-one. Again, since
f is an odd degree polynomial with real coefficients in one real variable, by Ex.12(c) of Tutorial
Problem Set, f : R — R is onto.

Ex.49(a) Show that =% <logz <z — 1 for all z(# 1) > 0.

Solution: Let f(x) = logx for all x > 0. Then f : (0,00) — R is differentiable and hence for
each z(# 1) € (0,00), there exists ¢ between 1 and x such that f(z) — f(1) = (x — 1) f'(¢), i.e
logr = 2, Since%<%<lifx>1and1<%<%if0<x<1,wegetxT_1<“”—;1<x—1for

C

all z(# 1) > 0. Hence =4 <loga < x — 1 for all z(# 1) > 0.




Ex.49(b) Show that 1 + z < e < 1+ ze® for all z(# 0) € R.

Solution: Let f(z) = e® for all z € R. Then f : R — R is differentiable and hence for each z(#
0) € R, by the mean value theorem, there exists ¢ between 0 and z such that f(z)— f(0) =z f'(c),
i.e. ¥ —1 =uwze. Since 1l <e‘<eifx>0ande® <e® <1lifxr <0, weget x<xe® < xe® for
all 2(# 0) € R. Hence 1 + 2 < e® < 1+ ze” for all z(# 0) € R.

Ex.49(c) Show that 2sinz + tanx > 3z for all x € (0,
Solution: Let f(zr) = 2sinx + tanx — 3z for all x € [O
entiable and f’(z) = 2cosx +sec?z — 3 for all z € [0, 5
z € (0,%). Hence f' is strictly increasing on [0, %) and
Thus f is strictly increasing on [0, ) and so f(z) > f (O)
2sinx +tanz > 3z for all z € (0, §).

2
,5)- Then f:[0,7) — R is twice differ-

f'(x) = QSlnx(Sec3x —1) > 0 for all
o f'(x) > f'(0) = 0 for all z € (0,%).
=0

for all x € (0,7). Consequently

)
) 1

Ex.49(d) Show that (1 4+ x)* > 1+ ax for all z > —1 and for all a > 1.

Solution: Let a > 1 and let f(z) = (1 +2)* — (1 + ax) for all z > —1. Then f:[—1,00) — R is
differentiable and f’(z) = «a[(1 + 2)* ! — 1] for all z > —1. Clearly f'(x) < 0 for all x € [—1,0]
and f'(x) > 0 for all z € [0,00). Hence f is decreasing on [—1,0] and increasing on [0,00). So
f(z) > f(0) =0 for —1 <z <0 and also f(z) > f(0) =0 for > 0. Therefore f(x) > 0 for all
x > —1, which proves the required inequality.

Ex.50(a) Determine all the differentiable functions f : [0,1] — R satisfying the conditions
f(0)=0, f(1) =1 and |f'(z)| < 3 for all z € [0, 1].

Solution: If possible, let f : [0,1] — R be a differentiable function satisfying the given conditions.
Then by the mean value theorem, there exists ¢ € (0,1) such that f'(c) = %{;(0) = 1, which
contradicts the given condition that |f’(z)| < 1 for all z € [0,1]. Therefore no such differentiable
function can exist.

Ex.50(b) Determine all the differentiable functions f : [0,1] — R satisfying the conditions
f(0)=0, f(1) =1 and |f'(x)] <1 for all x € [0, 1].

Solution: Let f be such a function and let g(z) = = — f(x) for all x € [0,1]. Then g :[0,1] = R
is differentiable and ¢'(z) = 1 — f'(xz) > 0 for all = € [0,1]. Hence g is increasing on [0, 1] and
since g(0) = 0 = g(1), it follows that g is the constant function given by g(z) = 0 for all = € [0, 1],
i.e. f(xr)=x forall z € [0,1]. Also, if f(z) = x for all x € [0,1], then [ satisfies all the given
conditions. Therefore there is exactly one function f satisfying the given conditions and it is given
by f(z) =« for all x € [0, 1].

Ex.51 Let f : [0,2] — R be differentiable and f(0) = f(1) = 0, f(2) = 3. Show that there
exist a,b, ¢ € (0,2) such that f'(a) =0, f'(b) =3 and f'(c) = 1.
Solution: By Rolle’s theorem, there exists a € (0,1) such that f’(a) = 0. Again, by the mean

value theorem, there exists b € (1,2) such that f'(b) = % = 3. Hence by the intermediate

value property of derivatives, there exists ¢ € (a,b) such that f'(c) = 1.

Ex.52(a) Evaluate the limit: hm(bmx — %)
Solution: We have hn%<#$ B 5) - glﬁli% xxs?;nxx = i tm smlac—:% (using L'Hopital’s rule)

sinx
= lim D coST—TonT
10 2cosz—xsinw

(using L’Hopital’s rule again) = 0.

1/z

Ex.52(b) Evaluate the limit: hH(l) =0
hm Vo Jim 2 (applying L’Hopital’s rule) = lim lye 3 =
z—0 el/=? 10 — et/ 2 z—0 2




Ex.52(c) Evaluate the limit: lim z(log(1+ %) —log %)

T—00 5
T 2 —
Solution: xlgl& w(log(l + 3) — log(3)) = ;Lriloxlog (H%f) = xlgglow = Q}L%Tiz) (using
L’Hopital’s rule) = lim = 2. |

2
T—r00 1+5

Ex.52(d) Evaluate the limit: lim M

z—0

Solution: 1f f(z) = (14 a)% for all € (—=1,1) \ {0}, then f : (=1,1)\ {0} — R is differ-

entiable and f'(z) = (1 + f)g %] for all z € (—1,1) \ {0}. Hence lin(l] (1+z1)7§__e =
T—

—(1+z)log(1+x) log(1+x)
g]cli%(l ) hr% (e a— (applying L’Hopital’s rule) = e glcli% TGaTD)

and applying L’Hopital’s rule in the second limit) = —< (using 1111(1) Llog(l + ) =1).
T—

- 1
(using glcll>1(1)<1+$>w =e
2
Ex.52(e) Evaluate the limit: lim —2ztsm2e+l

300 (2z4sin2z)(sin 24-3)2

Solution: Let z, = nm and y, = (4n + )7r for all n € N. Then z, — oo, y, — o0 and
: 2xp+sin 2z, +1 1 1 2yp+sin 2y, +1 1 _ 1
,}EEO (2%n+5in 220) (SN0 +3)2 T}g{}o(g"'wm) 97 2 511 2 ) (510 Y+ 3)2 16+(4n+1)167r) = 16

By the sequential criterion for existence of 11m1ts, it follows that lim f:l’:;;)léf:xl 5 does not
Tr—00

hm 0 7 hm (

exist.

Ex.53 If f: (0,00) — (0,00) is differentiable at a € (0,00), then evaluate lim <M> fselose

T—a (a)

Solution: Let g(x) = (%)logwiloga for all z(# a) € (0,00). Then g(z) > 0 for all (£ a) € (0,00)
. _1:. log f(z)—log f(a) __ %(Ing(z)—Ing(a)”x:a . TTA S ’
and we have glcl_rf‘ll log g(z) = glcl_rg ogrToga = T (ioga—Toga)lcs (applying L’Hopital’s rule)
f'(a)

= 0y - By the continuity of the exponential function, it follows that lim g(x) = e/ (@)/f(@),
r—a

s f (£ 0) € R,
1 ifx=0.

Examine whether f : R — R is continuously differentiable.

Solution: Clearly f is differentiable at each z(# 0) € R and f'(z) = 2cosz — 5 sinz for all
z(# 0) € R. Also, hm f(o) = lim S22 — iy <=2=d — Jjm =2 — () (using L’Hopital’s rule).

z—=0 T z—0 z x—0

So f is dlfferentlable at O and f'(0) = 0. Again, it is clear that f' : R — R is continuous at each

: : ! — 1y LCOsz—sinx __ ;i —xsinz __ 1; 1 — )
z(# 0) € R. Further, since glcll,%f (x) = }jlil(l) = glcl_r{(l) o 31613(1)( ssinz) = 0= f'(0)
(using L'Hopital’s rule), f’ is continuous at 0. Hence f is continuously differentiable.

Ex.54 Let f(z) =

Ex.55(a) Using Taylor’s theorem, show that Witz —(1+5— )| <Lz forallz e (-1, 1),
Solution: Let f(x) = +/1 —i— z for all z € (—3, 2) Then f has derlvatwes of all orders in (—1,1)
and we have f'(z) = 2\/@, f"(z) = W and f"(z) = W for all z € (—3,3).

1

2
By Taylor’s theorem, for each x € (—3,31), there exists ¢ between 0 and z such that f(z
)+ (0)+ 5/"(0) + 5 f"(€) = 145 — % + 55 - iy This gives [VI+ o —(1+5 - 5)| =

2|3 5/2

5 g < Bl = Rl < Gl

Ex.55(b) Using Taylor’s theorem, show that 1 — - —|— —A,l > cosx > 1 — L —|— o for all
€ (0,m).

Solution: Let f(x) = cosx for all x € R. Then f : R — R is infinitely differentiable and

fl(x) = —sinz, f'(x) = —cosx, f"(z) = sinz, fW(z) = cosz, fO(z) = —sinz, fO(z) =

—cosz for all x € R. If z € (0,7), then by Taylor’s theorem, there exist ci,co € (0,x)

such that f(z) = f(0) + zf'(0) + %f”(O) + ;f”’( ) + ?f(‘l)(cl) =1- g—? + %coscl and
fEQ 1,5 2 IE4 1‘6 .

f(@) = f(0) + zf(0) + L f7(0) + --- + L fO(0 ) f )(cy) = 1— o +ZG_ECOSC2' Since

coscy; < 1 and coscy < 1, it follows that 1 — ; + 9 > cosr >1—%¢ S 42 T



Ex.55(c) Using Taylor’s theorem, show that z — & < sinz < 2 — 3, + £ z for all z € (0, ).
Solution: Let f(z) = sinz for all z € R. Then f ]R — R is infinitely dlfferentlable and f'(x) =
cosz, f'(x) = —sinz, f"(r) = —cosz, fW(x) =sinz, fO(z) = cosx for allz € R. If z € (0,7),
then by Taylor’s theorem, there exist ¢1,co € (0,2) such that f(z) = f(0) + zf'(0) + %f”(O) +
g—?f’”(cl):x—g—fcoscl and f(x) = f(0)+zf'(0)+ 2,f”( )4+ f (CQ)Zx—é—?—l—ﬁ—Tcoch.
Since cosc¢; < 1 and coscy < 1, it follows that © — 5 <sinz <x — % M -

[e.e]
Ex.56 Find the radius of convergence of the power series ) nlz™.
n=0

Solution: If x = 0, then the given series becomes 0 4+ 0 + -- -, which is clearly convergent. Let

z(#0) € R and let a,, = nla” for all n € N. Then lim [*] = oo and so there exists ny € N such
n—oo

that [=2| > 2 for all n > ng. This gives |a,| > 2"7"|ay,| for all n > ny and hence lim a, # 0.

n—oo

Consequently Z a, is not convergent. Therefore the radius of convergence of the given power
n=1
series is 0.

o0
Ex.57 Find the interval of convergence of the power series Z %

Solution: If x = 0, then the given series becomes 0 + 0 + ---, which is clearly convergent. Let

z(# 0) € R and let a, = £~ for all n € N. Then lim [***1| = |z|. Hence by ratio test, Y a,
n— 00 " n—=1

is convergent (absolutely) if |z| < 1, d.e. if x € (—1,1) and is not convergent if |z| > 1, i.e. if

z € (—o00,—1)U(1,00). If £ =1, then Y a, = > + is not convergent. Again, if # = —1, then

n=1 n=1

oo
Z ap =3¢ 1) is convergent by Leibniz test, since (+) is a decreasing sequence of positive real
n=1

numbers and lim 2 ~ = 0. Therefore the interval of convergence of the given power series is [~1,1).
n—oo

Ex.58 Let f : [a,b] — R be a bounded function. If there is a partition P of [a,b] such that
L(f,P)=U(f, P), then show that f is a constant function.
Solutz'on: Let P = {xg,21,...,xp}, where a = g < 11 < --- < x, = b. Since L(f, P) = U(f, P),

we get Z(M m;i)(x; — x;-1) = 0, where M; = sup{f(z) : x € [x;_1,2;]} and m; = inf{f(z) :
T € [z 1,951]} for i =1,2,...,n. Since M; > m; and x; — x;_; > 0 for i = 1,2, ..., n, it follows that
M; —m; =0, i.e. M; =m; for i =1,2,...,n. This implies that f is constant on [z;_;,x;] for each

ied{l,2, ,n} Hence f(x) = f(zi—1) = f(x;) for all z € [x;-1,2;] (i = 1,2,...,n). Consequently
f(z) = f(a) for all = € [a,b]. Therefore f is a constant function.

Ex.59(a) Evaluate the limit: lim — Z Vn? — k?

nA)OO
Solution: Let f(z) = V1 — a2 for all x E [0,1]. Considering the partition P,, = {0,%,2, .. 2 =1}
of [0,1] for each n € N (and taking ¢, = £ for k = 1,...,n), we find that
S(f,P) =3 f(E)(E -2 = L3 /n2 — k2. Since f: [0,1] — R is continuous, f is Riemann
k=1 k=1

integrable on [0, 1] and hence

1
lim = Z\/n? k? = thf, =[f=3@@VI—a?+sin " 2)]j =1
0

TL—)OO

Ex.59(b) Evaluate the limit: lim +[(n+1)(n+2)---(n+ n))s
n—oo

Solution: For each n € N, let a, = 1[(n+1)(n+2)--- (n+n)]= = [(1+1)(
let f(x) =log(1+ z) for all z € [0, 1]. Considering the partition P, =



for each n € N (and taking ¢, = £ for k = 1,...,n), we find that S(f, P,) = > f(E)(£ - &1) =
k=1
2 Z log(1+ £). Since f :[0,1] — R is continuous, f is Riemann integrable on [0,1] and hence

1
lim (loga,) = lim % Z log(14+£) = lim S(f, P,) = [log(1+z)dz = log 2 (integrating by parts).
log g — 4

By the continuity of the exponential function, it follows that lim a, = lim €'°8% = ¢ >

n—o0 n—o0
which is the required limit.

[ e dt
2 .
Solution: Since the function f : [-1,1] — R, defined by f(z) = ¢ for all z € [~1,1], is
continuous, by the first fundamental theorem of calculus, £ [ e’ dt = e for all x € [—1,1].
0
ze” +fxe + +2
lim 5 = chlir(l] —2—52 (applying L’Hopital’s rule) = glﬂlir(l] W (apply-
ing L’ Hopltal S rule again) = —1.
Ex.59(d) Evaluate the limit: lim <1S+38+';’l;“(2"_1)8).
n—oo
Solution: Let f(x) = 2%z for all « € [0, 1]. Considering the partition P, = {0, +, 2, ,% =1} of

[0,1] for each n E N and observing that G = 2l = (4 e = L fori=1,..,n, we find
that S(f, P,) = Z fELH(E-E) =1 Z(zznl) Since f : [0,1] — R is continuous, f is Riemann

=1

1
integrable on [0, 1] and hence lim (18+38+'"+(2"71)8> = lim S(f, P,) bff =2zl = 26

n9
n—oo n—oo

n—oo

Ex.60 If f : [-1,1] — R is continuously differentiable, then evaluate lim - Z F1(3).
k=1

3
Solution: Since f’ is continuous on [0,3], f’ is Riemann integrable on [0,3] and [ f/(¢)dt =

||1;1T|nos(fl P,), where for each n € N, P, = {0,3%,3%,...,31” = %} is a partition of [0, %] and
n||—

S(f',P,) = Z(% — %)f’(%) = %1;1]”(%) (taking ¢ = % = [%,%] for k =1,...,n). So

lim £ 3 (&) = 3 10 dt =30/ () - O]

%
Ex.61(a) Show that T < [ -2
§

Solution: Let f(x) = = for all x € (0,3]. Then f/(x) = SRELSE for all z € (0,3]. If
g(z) = sinz — wcosz for all z € [0, 3], then ¢'(x) = rsinz > 0 for all € [0,5] and so g is
increasing on [0, 5]. Hence for all z € [0, 5], g(x) > ¢g(0) = 0 and consequently f’(:zc) > 0 for all

x € (0,%]. Therefore f is increasing on (O, Zland so & = f(§) < f(z) < f(5) = §. Since [ is
)

L dr <

s T

. . . . 2
continuous on [%, 7], f is Riemann integrable on [, ] and therefore - = Z(§ —

SIE

IA
Sy

2

9

\
IN

G-5=%

sin x d S i

x

Ex.61(b) Show that ﬁ <

AR )y

Solution: Let f(z) = 2% for all z € (0,%]. Then f'(z) = <=L for all z € (0,%]. If



g(z) = wcosx —sinz for all x € [0, 7], then ¢'(z) = —zsinxz < 0 for all z € [0,5] and so g is
decreasing on [0, 7]. Hence for all x E [0,3], g(x) < g(O) = 0 and consequently f'(x) < 0 for all

o]

z € (0,%]. Therefore f is decreasing on (0, 5] and so —Tr = f(3) < flx) < f(§) = %ﬁ Since
f is continuous on [§, %], f is Riemann integrable on [7, ] and therefore \/?g = %g(g - 7)<
3

[ BEde <225 - 5) =

g

b
Ex.62 If [ : [a,b] — R is continuous, then show that there exists ¢ € [a,b] such that [ f(z)dx =

(b—a)f(c).
(This result is called the mean value theorem of Riemann integrals.)
Solution: Since f is continuous on [a,b], f is Riemann integrable on [a,b] and so m(b — a) <

) <

[ f(z)dx < M(b— a), where m = inf{f(z) : z € [a,b]} and M = sup{f(z) : © € [a,b]}. Since

3“ is continuous on [a, b, there exist o, € [a,b] such that f(a) = m and f(8) = M. Hence
ff(:c) dz

fla) < *5—— < f(B). By the intermediate value property of continuous functions, there exists

a

b
[ 1) do b
¢ between a and 3 (both inclusive) such that f(c) = *5——, i.e. [ f(z)dx = (b—a)f(c).

a

Ex.63 Let f : [a,b] - R and ¢ : [a,b] — R be continuous and let g( ) >0 for all z € [a,b]. Show
b

that there exists ¢ € [a, b] such that [ f(z)g(z)dz = fg

(This result is called the generalized mean value theorem of Riemann integrals.)

Solution: Since f is continuous on [a,b], f is bounded on [a,b] and there exist a, 8 € [a, b] such
that f(a) = inf{f(z) : z € [a, b]} and f(5) = sup{f(z) : x € [a,b]}. We have f() < f(z) < f(f)
for all z € [a,b] = f(a)g(z) < f(x)g(z) < f(B)g(x) for all z € [a,b] (since g(xz) > 0 for all
x € la,b]). Slnce f,g are Contlnuous on [a, ] g fg are Rlemann integrable on [a b] and hence we

obtain f(« fg )dx < ff(a:)g(x) dr < f(b’)fg(x) dx. Iffg(x) dx = 0, then ff(:v)g(x) dx =0

b b
and so we can choose any ¢ € [a,b]. If [ g(x)dz # 0, then [ g(z)dxz > 0 and hence we get f(a) <

a
b

J f(@)g(x) da
¢—— < f(B). By the intermediate value property of the continuous function f, there exists ¢
Jg9(z)dx
‘ b
[ f(@)g(x) dx b b
between a and 3 (both inclusive) such that f(c) = *5———, i.e. [ f(x)g(x)dz = f(c) [ g(x) dz.
J g(z)dz a a

Ex.64 Let f : R — R be continuous and let g(z) = [(x — ¢)f(t)dt for all z € R. Show
0

that ¢"(z) = f(z) for all x € R.
Solution: We have g(x) = xff t)dt — ftf(t) dt for all z € R. Since f is continuous, by the

T

first fundamental theorem of calculus, g : R — R is differentiable and ¢'(z) = [ f(¢)dt + x f(z) —
0

= [ f(t)dt for all z € R. Again, since f is continuous, by the first fundamental theorem of
0
calculus, ¢’ : R — R is differentiable and ¢”(x) = f(z) for all z € R.

. < < X
Ex.65Letf(x):{(1] i?ziz;’ and let F(x Off )dt for all = € [0, 2].



Is F': [0,2] — R differentiable? Justify.

i <zx<
Solution: We have F(x) = f i(l) < i < ;’

Since lim % 1#0= lim %, F is not differentiable at 1 and hence F': [0,2] — R

r—1— z—1+
is not differentiable.

Ex.66 If f : [0,1] — [0,1] is continuous, then show that the equation 2z — [ f(¢)dt = 1 has
0
exactly one root in [0, 1].
Solution: Let g(x) = 2x — [ f(t)dt — 1 for all x € [0,1]. Since f is continuous, by the first funda-
0

mental theorem of calculus, ¢ : [0, 1] — R is differentiable and ¢'(z) = 2— f(z) > 0 for all z € [0, 1]
(since f(x) <1 for all z € [0,1]). As a consequence of Rolle’s theorem the equation g(x) = 0 has

at most one root in [0, 1]. Again, g(0) = =1 <0 and g(1) =1 — ff t)dt > 0 (since f(t) <1 for

1
all t € [0,1] = [ f(t)dt <1). If g(1) = 0, then 1 is the only root of the given equation in [0, 1].
0

Otherwise g(1) > 0 and hence by the intermediate value property of the continuous function g,
the equation g(x) = 0 has at least one root in (0,1). Thus the given equation has exactly one root
in [0, 1].

Ex.67(a) Examine whether the improper integral [ et dt is convergent.
0

1 o0 00
Solution: Since [ e dt exists (in R) as a Riemann integral, [ e~ dt converges iff [ =% dt con-

0 0 1
verges. Now 0 < e < e forall t > 1. Also, since lim fe bdt = lim (et —e™®) =e!, [etdt

oo
converges. Hence by the comparison test, [ et dt converges. By our remark at the beginning,
1

_ 42 .
e~ dt is convergent.

Ex.67(b) Examine whether the improper integral [ te™* dt is convergent.

—00
o0

Solution: Since lim fte_t dt = —3 lim e~ |0 = 1 hm (1—e %) = 5, [te ~* dt is convergent.

Again, since xgmoofte*t dt = —3 :EEEHOO e |0 = %xgrfloo(e*zQ—l) = —1, f ~* dt is convergent.

Therefore the given integral is convergent.

1
Ex.67(c) Examine whether the improper integral f \/% is convergent.

=

Solution: The given integral is convergent iff both f \/W and f \/% are convergent. Let

2

_ 1 _ L e SO s 1
ft) = rrmnt g(t) = 7 and h(t) = (0,1). Then tl_l}x(])%r o = tl—lg}k o =1
1
3
and thrln T; = lirln % = 1. Since [ g(t)dt and f h(t) dt are convergent, by the limit comparison
—1— t—1— 0

E

1
2

test, [ f(t)dt and f f(t) dt are convergent. Therefore the given integral is convergent.
0

=



Ex.68 Determine all real values of p for which the integral [ tPe~*dt converges.
1
Solution: Let p € R and let f(t) = tPe™", g(t) = iz forallt > 1. Then hm 10 — im

9(t) oo et

p|+2

=0

(using L’Hopital’s rule [p] + 2 times). Since [p] +2 —p > 1, f g(t) dt converges and hence by the

limit comparison test, [ f(¢)dt converges. Thus the given integral converges for all p € R.
1

Alternative solution: Let p € R and let f(t) = tPe™, g(t) = -5 for all ¢ > 1. Then lim £

o0 g(t) -

tp = 0 (for p > 2, we use L’Hopital’s rule n times, where n is the least positive integer

t—o0

> p —2). Since f g(t) dt converges, by the limit comparison test, [ f(t)dt converges. Thus the
1

given integral Converges for all p € R.

Ex.69 Find the area of the region enclosed by the curve y = /|x + 1| and the line 5y = = + 7.
Solution: Solving the equation 1(x +7) = V& +1 for 2 > —1 and the equation (z +7) =
vV —(x+1) for x < —1, the z-coordinates of the points of intersection of the curve y = \/|z + 1
and the line 5y = x + 7 are found to be —2, 3 and 8. Hence the required area is

-1 3 8

f2($T+7 —/—(z+1))dr + j;(%” —\/ac+1)da:+{(\/x+1— =) do = 3.

Ex.70 The region bounded by the parabola y = z? + 1 and the line y = z + 3 is revolved
about the z-axis to generate a solid. Find the volume of the solid.

Solution: Solving y = 22+1 and y = 2+3, we obtain the z-coordinates of the points of intersection

of the given parabola and the line as —1 and 2. Hence the required volume is
2

[ 7((x+3)* = (2® + 1)*) do = Y.

“1

Ex.71 The region bounded by the parabolas y? = 4ax and z? = 4ay (where a > 0) is re-
volved about the z-axis to generate a solid. Find the volume of the solid.

Solution: Solving y? = 4ax and x* = 4ay, we obtain the z-coordinates of the points of intersec-
4a

tions of the two parabolas as 0 and 4a. Hence the required volume is [ 7(4az — 3
0

o 2 ) da = Pra

Ex.72 Find the area of the region that is inside the circle » = 2cos# and outside the cardioid

r = 2(1 — cosf).

Solution: The given circle and the cardioid meet at three points corresponding to 6 = 0, 0 = %
w/3 w/3

and § = —%. By symmetry, the required area is 2 (% “0[ 4cos?0db — % of 4(1 — cos 0)? d9> —

Ex.73 Find the area of the region which is inside both the cardioids r = a(1 + cos#) and
r = a(l — cosf), where a > 0.
Solution: The cardioids meet at three points corresponding to § = 0, § =
/2
symmetry, the required area is 4 [ 1a?(1 — cos0)?df = 3a*(37 — 8).
0

T and 0 = —

2

vl

. By

Ex.74 Consider the funnel formed by revolving the curve y = % about the z-axis, between z =1
and x = a, where a > 1. If V, and S, denote respectively the volume and the surface area of the

funnel, then show that lim V, = 7 and lim S, = oo.
a—r o0 a—r o0



a

Solution: For each a > 1, we have V, = [ Ldez =n(1—1) and S, =

—

loga = oo, Weget lim S,

2mloga. Hence lim V, = 7 and since lim
a— 00 a— 00

a—0o0

/

2
T
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