MA 101 (Mathematics I)

Hints/Explanations for Examples in Lectures

Sequence

Example: The sequence (325) is convergent with limit §

Proof: Let € > 0. Ij:(l)r all n € N, we have |2’::3 — % = 4n1+6 ﬁ. There exists nyg € N such that
ntl

s %| < ﬁ < ¢ for all n > ny and so the given sequence is convergent with

no > 1. Hence |
limit 3.

Example: The sequence (1,2,1,2;...) is not convergent.

Proof: 1f possible, let the given sequence (x,,) (say) be convergent with limit . Then there exists
ng € N such that |z, — (| < 3 for all n > ng. Hence |z9,, — €| < & and |zp041 — ¢| < 3 and so
2—¢ <iand |l —¢ <i Thisgivesl=|2-0)—(1-0)]<|2—¢+|1—¢ <1, whichisa

contradiction. Therefore the given sequence is not convergent.

Example: The sequence (n® + 1) is not convergent.

Proof. If possible, let (n® + 1) be convergent. Then there exist £ € R and ny € N such that
\n?’ +1—/] <1foraln>ny= n® < { for all n > ng, which is not true. Therefore the given
sequence is not convergent.

Example: The sequence (2%t2) is bounded.

2n+5
Proof For all n € N, |3042] = nd2 < 3042 — 3 4 L < 3. Hence the given sequence is bounded.

Example: The sequence (1,2,1,3,1,4,...) is unbounded.

Proof: 1f possible, let the given sequence (z,) (say) be bounded. Then there exists M > 0 such
that |z,| < M for all n € N. This gives n < M for all n € N, which is not true. Therefore the
given sequence is unbounded.

Example: The sequence (;ﬁi—ggig) is convergent with limit
i)
Proof: We have ;gi;jzia =3 +2% - = for all n € N. Since % — 0, the limit rules for algebraic
operations on sequences imply that the given sequence is convergent with limit % = %
Example: The sequence (v/n + 1 — 4/n) is convergent with limit 0.
1

: vV — -1 _ _Vn g 1 ., .
Proof. For alln € N, v/n+1—+/n Ve eI Since - — 0, the limit rules for al
gebraic operations on sequences imply that the given sequence is convergent with limit \TJF— = 0.

Example: If |o| < 1, then the sequence (™) converges to 0.
Proof: If a = 0, then o™ = 0 for all n € N and so (a”) converges to 0. Now we assume that
a # 0. Since |a| < 1, W > 1andsoﬁ—1+hforsomeh>0 For all n € N, we have

(1+h)" = 1+nh+ 0002 4o 4 B > nh = |a]" = ¢ 1+h)"

choose ng € N satlsfylng ng > 7=. Then |a" — 0] = |a|" < W < ¢ for all n > ng and hence (")
converges to 0.

<—foralln€N Given € > 0, we

Alternative proof. Given £ > 0, we choose ng € N satisfying ng > 13;3;. Then for all n > ng, we
have |a" —0] = |a|™ < |a|™ < e and hence (a™) converges to 0. (This proof assumes the definition

of logarithm.)



Example: If o > 0, then the sequence (a%) converges to 1.

Proof: We first assume that o > 1 and let x,, = an — 1 for all n € N. Then z, > 0 and
a=14uz,)"= 1+nxn+%xi+---+xz > nzx, for alln € N. So 0 <z, < 2 for all n € N.
Since = — 0, by sandwich theorem, it follows that z,, — 0. Consequently an — 1. Ifa< 1, then
L > 1 and as proved above, (é)% — 1. It follows that an — 1.

Alternative proof: We first assume that o > 1. For each n € N, applying the A.M. > G.M.
inequality for the numbers 1, ..., 1, (1 is repeated n — 1 times), we get 1 < an <1+ 0%1 Since

aT_l — 0, by sandwich theorem, it follows that an — 1. The case for a < 1 is same as given in
the above proof.

Example: The sequence (n%) converges to 1.

Proof For all n € N, let a, = n» —1 Then for allnEN n= (1+an)”—1+nan+n(n L 2 o+
Hay > n( )a =0<a? < —= foralln e N. Since —= — 0, by sandwich theorem, it follows

that a2 — 0 and so a, — 0. Consequently nw — 1.

Example: The sequence ((2" + 3")w) converges to 3.
Proof: We have 3" < 2" 4+ 3" < 23” forallmn e N= 3 < (2”+3”) < 2w.3 for all n € N. Also,

both the sequences (3,3, ...) and (27.3) converge to 3. (Note that 2% — 1.) Hence by sandwich
theorem, the given sequence converges to 3.

Alternative proof: Since (2"+3")n = 3[1—1—(%)”]% for all n € N, we have 3 < (2" +3")n < 3[1+(3)"
for all n € N. Also, both the sequences (3,3,...) and (3[1 + (3)"]) converge to 3. (Note that
(%)" — 0.) Hence by sandwich theorem, the given sequence converges to 3.

Example: The sequence (ﬁ +- 4 ﬁ) converges to 1.

Proof: We have ——A— < ——— 4 ... for all n € N. Also, 22— = —A— — 1

4 1 < n
VvVn24+n — Vn2+1 vVn24+n — V/n2+1 > Vn24n \/H_l
n
1

and Tn 2+ - \/1+ — — 1. Hence by sandwich theorem, the given sequence converges to 1.
nZ

Example: If o € R, then the sequence (%) is convergent.

Proof. Let x, = ﬁ for all n € N. If « = 0, then x,, = 0 for all n € N and so (x,,) converges to 0.
If a # 0, then hm =] = hm % =0 < 1 and so (z,) converges to 0.

Example: The sequence (n—n) is not convergent.

Proof. 1f x, = %7 for all n € N, then lim [*25] = hm

= 2 > 1. Therefore the sequence
n—00 (1+ )

(z,) is not convergent.

Example: The sequence (1 — %) is increasing.
Proof: For all n € N, n+r1 < % and so 1 — n+r1 >1— % for all n € N. Therefore the given sequence
is increasing.

Example: The sequence (n + <) is increasing.
Proof Foralln e N, (n+14+—5)—(n+1)=1-
n € N. Therefore the given sequence is increasing.

1 1 1
m>0:>n+1+n—+1>n—l—5forall

Example: The sequence (cos %) is not monotonic.

Proof. Since cos § = ;, COS%7r = —1 and cos 6; = 1, we have cos § > cos ? < COS%7r and hence

the given sequence is neither increasing nor decreasing. Consequently the given sequence is not
monotonic.



Example: Let x; = 1 and x,,,; = %(xn + 1) for all n € N. Then the sequence (z,) is con-
vergent and nlg& Ty = %

Proof. For all n € N, we have z,,1 — ©, = %(1 — 2x,). Also, z; > % and if we assume that
x, > % for some k € N, then 211 = 3(zx +1) > 5(3 + 1) = 3. Hence by the principle of
mathematical induction, x, > % for all n € N. So (z,) is bounded below. Again, from above, we
get &1 —x, <0 foralln € N= x,,, <z, for all n € N = (z,,) is decreasing. Therefore (x,,)

is convergent. Let / = lim z,,. Then lim z,,; = ¢ and since x,,; = %(Jcn +1) for all n € N, we
n—oo n—oo

get (=1({+1)=>(=3

Alternative proof for showing that (x,) is decreasing: We have x5 = % < 1 =z, and if we assume
that xx1 < xp for some k € N, then xp,0 = %(l‘k.ﬁrl +1) < %(mk + 1) = z441. Hence by the
principle of mathematical induction, x,.1 < x, for all n € N.

Example: Let 2, = 1+ 4 + 5 + -+ + & for all n € N. Then the sequence (z,) is conver-
gent.

Proof. For all m,n € N with m > n, we have |z, — z,| = ﬁ + ﬁ + -+ % <
gt tgr =21 —5:i5) < = < 2. Given ¢ > 0, we choose ng € N satisfying
ng > 2. Then for all m,n > ng, we get [T, — x,| < n% < e. Consequently (z,) is a Cauchy

sequence in R and hence (x,,) is convergent.

Example: Let 0 < a < 1 and let the sequence (x,) satisfy the condition |z,.; — z,| < o”
for all n € N. Then (z,) is a Cauchy sequence.

Proof: For all m,n € N with m > n, we have |z, — z,| < \xn Tpi1| + |Tne1 — wnJrg\ +--+
[Tt — T <a"+a™l 4+ o™l = 2 (1—a™ ) < 2 Since0<a<1,a"—0 and

11—«

t‘”

so given any € > (, we can choose ny € N such tha < e. Hence for all m,n > ng, we have

|2, — 2| < &% < e. Therefore (z,,) is a Cauchy sequence.

Example: Let 0 < o < 1 and let the sequence (z,) satisfy the condition |z,12 — Tpi1| <
a|zy41 — @y for all n € N. Then (z,,) is a Cauchy sequence.

Solution: For all m,n € N with m > n, we have |z,, — x,| < |:Bn — Tpy1| + |£Bn+1 Tpaao| + -+
[Tt — Tm| < (@ + -+ Q™2 |wy — 1| = O‘TH(l— Mg — x| < 2— |$2—x1| Since

0<a<l1,a"! — 0and so given any € > 0, we can choose ny € N such that

OL

]xg—xl\ <e.

aloal |ze — 21| < e. Therefore (xn) is a Cauchy

Hence for all m,n > ng, we have |z, — z,| <
sequence.

Example: Let z; = 1 and let z,,, = ﬁ for all n € N. Then the sequence (x,) is conver-
gent and lim z, = v2 — 1.
n—oo

| 1 1 | _ mng1—wa|
J3'(1,7‘»1“1‘2 $n+2 |73n+1+2||l’n+2|

> (. Hence by the principle of mathematical

Proof: For alln € N, we have |, 0—T,1| = Now, z; > 0 and if we

assume that xp > 0 for some k£ € N, then z;; = ” +2

induction, z,, > 0 for all n € N. Using this, we get |T,40 — Tpy1| < Z|xn+1 — x,| for all n € N. It

follows that (z,) is a Cauchy sequence in R and hence (z,,) is convergent Let ¢ = lim z,. Then
n—oo

hm Tpy1 = £ and since 41 = — for all n € N, we get £ = £+2 = (= —14++/2. Since z, >0
forallnGN,wehavefzOandsofzx/ﬁ—l.

Example: If z, = (—1)"(1 — ) for all n € N, then z, 4 1. In fact, (x,) is not conver-
gent.
Proof. Since xq, 1 = (—1)>"71(1 — 2n171> = 2n - —1 — —1, z, /4 1. Again, since z;, =

(=1)*"(1—5) =1—5- —1#—1, (x,) is not convergent.




Remark: Let (z,) be a sequence in R such that x5, — ¢ € R and x9, 1 — . Then z, — (.

Proof: Let € > 0. Since xo, — ¢ and x5, 1 — ¢, there exist ny,ny € N such that |z, — ¢] < & for
all n > ny and |xe, 1 — £| < € for all n > ny. Taking ny = max{2n,2n, — 1} € N, we find that
|z, — l| < e for all n > ng. Hence x,, — /.
Example: The sequence (1,3,1,2,1,3, ...) converges to 1. 1

Proof. 1f (x,) denotes the given sequence, then z, = niﬂ = oT 1 and 29,1 = 1 — 1.

Therefore (z,,) converges to 1.

Example: If z € R, then there exists a sequence (r,,) of rationals converging to z. Similarly, if
z € R, then there exists a sequence (t,) of irrationals converging to z.

Proof. For each n € N| there exist r, € Q and ¢, € R\ Q such that x — % <r,<ax+ % and
xr— % <t,<z+ % Since x — % — x and = + % — x, by sandwich theorem, the sequence (r,,) of
rationals converges to x and the sequence (¢,) of irrationals also converges to x.

Series

o
Example: The geometric series Y ar™ ! (where a # 0) converges iff |r| < 1.
n=1
Proof: If r = 1, then the given series becomes a+a+- - -, which is not convergent, since (s,) = (na)
n

does not converge as a # 0. We now assume that » # 1. Then s, = Z ar'™' = ;%-(1 —r") for

a

all n € N. If |r| < 1, then lim 7" = 0 and so (s,) converges to 7% Therefore the given series
n—00

converges (with sum %) if |r| < 1. If |r| > 1, then the sequence (r™) does not converge and since

a # 0, it follows that (s,) does not converge. Hence in this case the given series is not convergent.

is convergent with sum 1.

Example: The series Z e +1

Proof: Here s,, = Z m = > (3—m7) = 1— 577 foralln € N. Since lim s, = lim (1-=5) =
k=1 k=1

N—00 n—00 n+l

1, the given series is convergent with sum 1.

Example: The series 1 —1+1—1+--- is not convergent.

0 if n is even,
Proof Here sn =141 ¢ 1 is odd,

and so the sequence (s,) is not convergent. Therefore the given series is not convergent.

oo
Example: The series Y -5 is convergent.

n n n
Proof: For all n > 2, we have s,, = Z%<1+Z@:1+Z(ﬁ—%):2—%<2. Hence
k=1 k=2 k=2
the sequence (s,,) is bounded above and consequently by monotonic criterion for series, the given

series is convergent.

oo
Example: The series > % is not convergent.
n=1 "

Proof. 1f possible, let the given series be convergent. Then by Cauchy criterion for series, there

exists ng € N such that —< + n—+2 + e+ % < 1 for all m > n > ng. In particular, we get
1 1 1 _

n0+1+n0+2+ +%<_ Butn0+1+no+2+ +%_%+%+ +%_2’andsowe



get a contradiction. Hence the given series is not convergent.

Alternative proof: Let s, = 14 5+4---4 = foralln € N. Then sgn = 1+ 5+ (5+ 1)+ -+ (5= +
) > 1+l D (A E) =142+ 4L =142 foralln € N. This

shows the sequence (s,) is not bounded. Hence (s,) is not convergent and consequently i Lis

n=1
not convergent.

oo
Example: The series Zl (nf;)% 1s not convergent.

n=

1

Proof: Since (n+7§52)?_111+4) i3 J;(H  — 1, we have % # 0 and so the given series is not
convergent.

oo
Example: The series ) (—1)" 25 is not convergent.

n=1
Proof: Since (—1)2”%12 = 1Jil — 1, we have (—1)":%5 # 0 and so the given series is not conver-
gent. !

o0 .
Example: The series ﬁ% is convergent.

n=1

Proof: We have 0 < 1;’:‘“2” S s for all n € N. Since Z is convergent, by comparison test, the

given series is convergent.

o0
. . 1 .
Example: The series ) 7 is convergent.
n=

o0
2%1 for all n € N. Since 21 2% is convergent, by comparison test, the
n—=

Proof: We have 0 <

2”+n
given series is convergent.

Example: The series Z is not convergent.
w/n(n 1)

Proof Since ——— >->0 for all n > 2 and since is not convergent, by comparison test
f: m El gent, by p )
the given series is not Convergent.

oo
Example: The series ) T2 is convergent.
n=

Proof. Let x, = = and y, = # for all n € N. Then z,,y, > 0 for all n € N and
lim £ = lim 2~ = lim —4 = 1 # 0. Since Y y, is convergent, by limit comparison
n—oo Jn n—oo 4n°—2 n—oo 4‘,?3 4 n—1

oo
test, > x, is convergent.

n=1

o
Example: For p € R, the series Y X is convergent iff p > 1.

np
n=1

Proof: If p < 0, then - L/ 0 and so the given series is not convergent Now, let p > 0. Then ( =)
is a decreasing sequence of non-negative real numbers. Also, Z A (Qn) = Z (z5=1)", being a

geometric series, converges iff 2p_1 <1, i.e. iff p > 1. Hence by Cauchy s condensation test, the
given series converges iff p > 1.

Example: For p € R, the series Z
Proof: Let f(x) =

W is convergent iff p > 1.

for all > 1. Then f: (1,00) — R is differentiable and

a:(log z(log z)P



fl(x) = _(loggﬁ;g(gg?:ﬂ) < 0 for all z > max{l,e?} = a (say). Hence f is decreasing on

(a,00) and so f(n + 1) < f(n) for all n > ng, where ng € N is chosen to satisfy ny > a.

Thus the sequence m of non-negative real numbers is decreasing. Since the series
n=ng
Z 2" 5 log RE Z (10g2 7 18 convergent iff p > 1, by Cauchy’s condensation test, Z m
n=ng =ng
is convergent iff p > 1 Consequently the given series is convergent iff p > 1.
oo
Example: The series ) 5+ is convergent.
n=1
Proof. Taking x,, = g5 for all n € N, we find that lim || = hm $(1+ 1) =3 < 1. Hence by
n—oo
the ratio test, the given series is convergent.
Example: The series Z (2”2 is not convergent.
Proof. Taking x,, = ¢ ) for all n € N, we find that lim ]x"+1| = lim %2 — 4 > 1. Hence by the
) n—o00 n—o00 n+1
ratio test, the given series is not convergent.
N ()"
Example: The series > s convergent.
n 1
Proof: Taking z, = ® - for all n € N, we have lim |z, |7 = lim at =0 < 1 (since
(nt1) n n—00 n—00
. n ! n’n o 1
nh_)n;o )T A = nh_)rgo (1+ = L < 1). Hence by the root test, the given series is convergent.
Example: The series Z 3n5:4n is not convergent.
n—l
" . o . 5 o 5 .
Proof: Taking x, = 3n+4n for all n € N, we have 711131 |:L‘n|n = r}irgom = 7 > 1 (since

lim (3" + 4")% = 4, as shown earlier). Hence by the root test, the given series is not convergent.
n—o0

o
Example: For p € R, the series ) (—1)""'— L is convergent iff p > 0.
n=1

Proof: For p <0, |(=1)"" L] = L 24 0 and so (—1)"*'= /4 0. Hence the given series is not

npP

convergent if p < 0. If p > 0, then (#) is a decreasing sequence of positive real numbers with

# — 0 and hence the given series converges by Leibniz’s test.

oo
Example: The series ;::1(—1)”“ - 1S convergent.

Proof- Since (n +1)* + =5 = n* + 14+ 2n + =5
1

1 _ _n
ey < I = Wi for all n € N. Hence (

> n? + % for all n € N, we get _(nffggﬂ -

is a decreasing sequence of positive real

n3+1)
1

numbers. Also, 5 = 1:—1 — 0. Therefore by Leibniz’s test, the given alternating series is
3

convergent.

n

o
Alternative proof: Since 0 < < L for all n € N and since the series n—lg converges, by

n3+1
n=1
[e.e] o
comparison test, the series 21 (=)™ | = 21 577 converges. Thus Zl(—l)"ng’jrl is an ab-
n—= n—=
solutely convergent series and hence it is convergent.
Example: Ifl—l—i—l— 1—1—1—1—1- - =8, then1+l—%+%+%—i+é+---:%3.

Proof: We first note that by Lelbmz s test, the series 1 — % % — }l + .- converges.

Letl——+———+ (i)

Then the series 3 — i + é —---=3(1—1 4% —--) converges to 3s. It follows that the series



0+5—-0—7+0+7-0—5+-- (ii)
also converges to £s. Hence the series (14+0)+ (—5+3)+ (-0 + (-5 — 1)+ G+0)+---,
which is the sum of the series (i) and (i), converges to s 4+ 35 = 2s. Therefore it follows that

2
1+ —-3+z+2—;+5+--=32s

Continuity

Example: nh—>nolo Sm(\/i— m =1

Proof. Since vn+1 — y/n = T 0, using the fact that glcli% = = 1, we obtain
. osin(vntl-vn) _

Jim e =1

3r+2 ifx <1,
A2 ifx>1

?

Example: The function f: R — R, defined by f(x) = {

is not continuous at 1.
Proof: Since lir{l f(z) = lir{l (Bx+2)=5#4= f(1), f is not continuous at 1.
z—1— z—1—
. l .

Example: The function f : R — R, defined by f(z) = { xsgn z i i i 87
is continuous at 0.
Proof: For all z(# 0) € R, |f(z) — f(0)] = |zsin 2| < |z| and hence given any ¢ > 0, choosing
d=¢e>0, weget |f(z) — f(0)] <e for all z € R satisfying |x — 0] < §. Therefore f is continuous
at 0.

. l .
Example: The function f : R — R, defined by f(z) = { SHS x i i i 87
is not continuous at 0.
Proof. 1f z, = m for all n € N, then the sequence (z,) converges to 0, but f(z,) =
sin(4n + 1)5 = 1 for all n € N and so f(z,) = 1 # 0 = f(0). Therefore f is not continu-

ous at 0.

Example: hH(l) sin L does not exist (in R).
z—

Proof. 1f x, = m

sini =1 and sinyin = 0 for all n € N, we get sin% — 1 and sinyin — 0. Therefore by the

and y, = é for all n € N, then z, — 0 and y, — 0. However, since

sequential criterion for limit, liII(l) sin = does not exist (in R).
T—

Example: The function f: R — R, defined by f(x) = { é i; E %’\ Q.

is not continuous at any point of R.

Proof: 1If o € Q, then there exists a sequence (,,) in R \ Q such that t,, — x¢. Since f(¢,) =0
for all n € N, f(t,) — 0 # 1 = f(x0). Hence f is not continuous at xy. Again, if zp € R\ Q,
then there exists a sequence (r,) in Q such that r, — xo. Since f(r,) = 1 for all n € N,

f(rn) = 1# 0= f(xg). Hence f is not continuous at x.

Example: The function f: R — R, defined by f(x) = { _xgc i; E %’\ Q

is continuous only at 0.

Proof: Given any ¢ > 0, choosing § = ¢ > 0, we have |f(z) — f(0)] = |z| < € for all x € R
satisfying |z — 0| < §. Therefore f is continuous at 0. If z¢(# 0) € Q, then there exists a sequence

(t,) in R\ Q such that ¢, — xo. Since f(t,) = —t, for all n € N, f(t,) = —x¢ # 2o = f(x0).



Hence f is not continuous at zp. Again, if xp € R\ Q, then there exists a sequence (r,) in Q
such that r, — x¢. Since f(r,) = xo for all n € N, f(r,) = xg # —xo = f(x0). Hence f is not
continuous at xg.

Example: The equation 22 = zsinx + cos z has at least two real roots.

Proof Let f(z) = 2> — xsinz — cosz for all z € R. Then f : R — R is continuous and
f(=m)=7>+1>0, f(0) = =1 <0 and f(xr) = 72+ 1 > 0. Hence by the intermediate value
theorem, the equation f(x) = 0 has at least one root in (—m,0) and at least one root in (0, 7).
Thus the equation f(z) = 0 has at least two real roots.

Example: If f:[0,1] — [0, 1] is continuous, then there exists ¢ € [0, 1] such that f(c) = c.
Proof: Let g(x) = f(z) — « for all x € [0,1]. Since f is continuous, ¢ : [0, 1] — R is continuous.
If f(0) =0or f(1) = 1, then we get the result by taking ¢ = 0 or ¢ = 1 respectively. Otherwise
g(0) = f(0) > 0 and g( ) = f(1) =1 < 0 (since it is given that 0 < f(z) < 1 for all z € [0, 1]).
Hence by the intermediate value theorem, there exists ¢ € (0, 1) such that g(c) =0, i.e. f(c) =

Example: Let f : [0,2] — R be continuous such that f(0) = f(2). Then there exist z, z2 € [0, 2]
such that 1 — xo = 1 and f(z1) = f(x2).

Proof: Let g(z) = f(z + 1) — f(x) for all x € [0,1]. Since f is continuous, ¢ : [0,1] — R lS
continuous. Also, g(0) = f(1) — f(0) and g(1) = f(2) — f(1) = —g(0), since f(0) = f(2 )
g(0) = 0, then f(1) = f(0) and we get the result by taking x; = 1 and xo = 0. If ¢g(0) #

then ¢(0) and g(1) are of opposite signs and hence by the intermediate value theorem, there ex1sts
c € (0,1) such that g(c) = 0, i.e. f(c+1) = f(c). We get the result by taking 1 = c+1 and x5 = c.

Example: There does not exist any continuous function from [0, 1] onto (0, 00).
Proof: If f : [0,1] — (0, 00) is continuous, then f must be bounded. Since (0, c0) is not a bounded
set in R, it follows that f cannot be onto.

Differentiation

. l .
Example: Let f(z) = xsgn ’ ﬁ i(j (())) o

Then f: R — R is not differentiable at 0.

Proof: Since liH(l) w = hH(l) sin L does not exist, f is not differentiable at 0.
z— —
1 .
) _ [ a?sins if 2(#0) € R,
Example: Let f(x) = 0 I —

Then f: R — R is differentiable but f': R — R is not continuous at 0.
Proof: Clearly f is differentiable at all z( 0) € R and f'(z) = 2z sin = — cos 1 for all z(#£ 0) € R.

Also, for each ¢ > 0, choosing 6 = ¢ > 0, we find that |f(32_£ ) = |:L‘Slni| < |z| < € for all

J(@)—£(0)
z—0

with f/(0) = O Thus f: R — R is differentiable.
Again, since 5— — 0 but f’( — —1# f'(0), f/: R — R is not continuous at 0.

z € R satisfying 0 < |z| < 6. Hence lin% = 0 and consequently f is differentiable at 0
T

QHW)

3 . l .
Example: Let f(z) = v s(;n z i i(j 8) €R,

Then f: R — R is differentiable, f’: R — R is continuous, but f’ is not differentiable at 0.
Proof: Clearly f is differentiable at all z(# 0) € R and f'(z) = 3:(: sm —xcos = for all z(# 0) € R.

Also, for each ¢ > 0, choosing § = /2 > 0, we find that |[{2=0) = |22 sin 1| < |z|* < ¢ for all



r € R satisfying 0 < || < §. Hence lir% .f(wi:g(o) -
T—

with f’(0) = 0. Thus f: R — R is differentiable.
Clearly f': R — R is continuous at all z(# 0) € R. Also, since hm x? sm - =0 and hm x cos -=0

0 and consequently f is differentiable at 0

=0
(similar to what we have shown earlier), we obtain hr% f(z) = 0 = f'(0 ) which shows that fis
z—

continuous at 0. Thus f': R — R is continuous.

Again, limw = hH(l)(?)in‘ sint — cos1) does not exist, because if z, = 5— and y, =
—

m for all n € N, then z, — 0 and y, — 0, but lim (ansm— cos =) = —1 and

n—00 n

lim (3y, sin - — cos —) = 1. Therefore f’ is not differentiable at 0.

n—00
2?2 ifr € Q,

Example: Let f(x) = 0 ifre %\Q

Then f: R — R is differentiable only at 0 and f'(0) = 0.

Proof: 1f zo(# 0) € Q, then there exists a sequence (t,,) in R\ Q such that ¢, — xy. Since f(¢,) =0
for all n € N, f(t,) — 0 # 22 = f(xy). Hence f is not continuous at zy. Also, if ug € R\ Q,
then there exists a sequence (r,) in Q such that 7, — ug. Since f(r,) =r2 — ud # 0= f(uog), f
is not continuous at uy. Thus f is not continuous at any x(# 0) € R and therefore f cannot be
differentiable at any z(# 0) € R.

Again, for each € > 0, choosing § = ¢ > 0, we find that |f O} < |z| < & for all z € R sat-
isfying 0 < |z| < 0. Hence hII(l) e ; 1O — 0 and consequently f is dlfferentlable at 0 with f’(0) = 0.

Example: The equation x? = xsinx + cos z has exactly two (distinct) real roots.

Proof: Let f(z) = 2> — xsinz — cosz for all z € R. Then f : R — R is differentiable (and hence
continuous) with f'(z) = x(2 — cosx) for all x € R. Since cosx # 2 for any = € R, the equation
f'(x) = 0 has exactly one real root, viz. z = 0. As a consequence of Rolle’s theorem, it follows that
the equation f(z) = 0 has at most two real roots. Also, since f(—7) =7*4+1> 0, f(0) = -1 <0
and f(m) = 72+ 1 > 0, by the intermediate value property of continuous functions, the equation
f(z) = 0 has at least one root in (—, 0) and at least one root in (0, 7). Thus the equation f(x) =
has exactly two (distinct) real roots and so the given equation has exactly two (distinct) real roots.

Example: Find the number of (distinct) real roots of the equation z* 4 222 — 6z + 2 = 0.
Solution: Taking f(z) = z* + 22% — 62 + 2 for all x € R, we find that f : R — R is twice
differentiable with f/(z) = 42®+4x —6 and f”(z) = 1222 +4 for all x € R. Since f”(z) # 0 for all
x € R, as a consequence of Rolle’s theorem, it follows that the equation f’(x) = 0 has at most one
real root and hence the equation f(x) = 0 has at most two real roots. Again, since f(0) =2 > 0,
f(1) = =2 < 0and f(2) = 14 > 0, by the intermediate value property of continuous functions, the
equation f(z) = 0 has at least one real root in (0, 1) and at least one real root in (1,2). Therefore
the given equation has exactly two (distinct) real roots.

Example: sinz > x — % for all r € [0, 7]

Proof: Let f(x) =sinz — T + % > for all z € [0, Z]. Then f :[0,7] — R is infinitely differentiable
and f'(z) = cosx — 1+ % f”( ) = sinz + 2 and f"(xz) = 1 — cosz for all z € [0,F]. Since
f"(x) > 0 for all z € |0, ] f” is increasing on [0, 5]. Hence f”(z) > f”(0) = 0 for all z € [0, 5].
This shows that f’ is increasing on [0, ] and so f'(x) > f/(0) = 0 for all z € [O Z]. Thus f is in-

creasing on [0, 5] and so f(z) > f(0) = O forall x € [0, 7]. Therefore sinz > x—— forall z € [0, 7].
Example: If f(z) = 2% + 22 — 52 + 3 for all x € R, then f is one-one on [1,5] but not one-
one on R.

Proof f : R — R is differentiable with f/'(x) = 322 + 2z — 5 for all x € R. Clearly f'(x) # 0
for all x € (1,5) and hence f is one-one on [1,5]. Again, since f(0) =3, f(1) =0 and f(2) =
by the intermediate value property of continuous functions, there exist z; € (0,1) and x5 € (1,2)
such that f(z1) =1 = f(z2). Therefore f is not one-one on R.



Example: Let f : R — R be differentiable such that f(—1) = 5, f(0) = 0 and f(1) = 10.
Then there exist ¢, co € (—1,1) such that f'(¢;) = =3 and f'(c2) = 3.

Proof: By the mean value theorem, there exist « € (—1,0) and § € (0,1) such that f'(a) =
%{Sl) = —5and f(B) = w = 10. Hence by the intermediate value property of deriva-
tives, there exist ¢y, ¢3 € (o, §) (and so ¢y, ¢a € (—1,1)) such that f'(¢;) = —3 and f'(¢y) = 3.

Example: If f(x) = 1 — 2%? for all z € R, then f has no local maximum or local minimum
at any nonzero x € R. Further, f has a local maximum at 0.

Proof: f:R — R is differentiable at all z(# 0) € R and f'(z) = —227/3 £ 0 for all z(£ 0) € R.
Hence f does not have local maximum or local minimum at any x(# 0) € R. Again, since
f(z) <1 = f(0) for all z € R, f has a local maximum at 0 (and the local maximum value is

f(0) =1).

Alternative method for showing local mazimum at 0: Since f'(x) > 0 for all z < 0 and f'(z) <0
for all z > 0, f has a local maximum at 0.

Example: lim ¥ 1?_1 =1

z—0 2

\/ A (T+z—1)|z=
Proof: Applying (first version of) L’Hopital’s rule, we obtain lim 1;’”_1 — aWltr =0 _ 1

Py T (@) 2
1
Alternative proof- Applying (second version of ) L'Hopital’s rule, we obtain lim YA+2=1 — Jipy 2v/I5z
z—0 z z—0 1
-1
=1
l-sinz __ 1
Example: g}l_{n Ttcos2z 4
l—sinz __ —cosT  __ 1; sine  __ 1
Proof: Applying L’Hopital’s rule twice, we obtain lim {7>%% = lim 2% hn% et = 7
x—> CE% xr— 3
z2sin L
Example: hm z =
—0 sin x

Proof. For all z(# 0) € R, we have 0 < |zsini| < |z|. Since lim |z| = 0, by sandwich theo-

rem (for limit of functions), we get hm |zsin 2| = 0 and hence hmxsm— = 0. It follows that
z—0
~ 1
lim nglc — lim xgln% _ ;%xém :Q:[)
sin x H sin x *
z=0 Sne g0 T S 5=

Example: hn})(suf)% =1
Proof: Let f(z) = (%)i for all z(# 0) € R. Then f(x) > 0 for all z € (—1,1) \ {0} and

log(si22)
T

rcosxr—sinz
rsinx

= lim
r—0

(applying L’Hopital’s rule again) = hH(l) BT — () (since 11[?((1) sz — 1), By the continuity of
x—

%—I—cos T

the exponential function, it follows that lin% flx) =€ =1.
Tr—r

(applying L’Hopital’s rule) = lim 2502

we have ilg% log f(z) = ilg(l) S et cose

r—sinx __ 1
Example: hjn oaine = 3

sin x

Proof. Since |S‘“| < 1 for all x > 0 and since lim 1 ~ =0, we get lim = (0. Consequently

T—00 T—00
. r—sinx 1 _Sl% 1
lim S = m o = 5
1 . . . 1
Example: The sequence (<2%) is convergent with lim =&* = (.

n—oo

Proof. Let f(x) = k’% for all z > 0. Then applying L'Hopital’s rule, we obtain lim f(z) =

T—00
lim UTI = 0. Therefore by the sequential criterion of limit, the sequence (f(n)) = (*%&2) con-
T—r00

verges to 0.



<Vli+x<1+3 for all x > 0.
t f(t) = \/1 +t for all x € [0,2]. Then f :[0,2] — R is twice differentiable
"(t) = for all t € [0, x]. By Taylor’s theorem, there exists ¢ € (0, z)

Example: 1+ 5 — %
Proof.: Let x> O d le

_4(1+t)3/2
2

$2 X
’(0)+gf”(c):1+§—§-w SIHCGO<( 72 < 1, we get

o0

Example: For the power series > i—g, the radius of convergence is 1 and the interval of con-
n=0

vergence is [—1, 1]

Proof: If x = 0, then the given series becomes 0 4+ 0 + ---, which is clearly convergent. Let
z(# 0) € R and let a, = %; for all n € N. Then lim [***1| = |z|. Hence by ratio test, Y a,
n— o0 n n=1

is convergent (absolutely) if |z| < 1, d.e. if x € (—1,1) and is not convergent if |z| > 1, i.e. if
x € (—oo,—1)U(1,00). Therefore the radius of convergence of the given power series is 1. Again,

if |z| =1, then >’ |a,| = Z ~5 is convergent and hence Z a, is also convergent. Therefore the
n=1 n=1 n=1
interval of convergence of the given power series is [—1, 1].

Example: For the power series ) (;B:L (x — 1)", the radius of convergence is 4 and the in-
n=1

terval of convergence is (—3, 5].

Proof. If x = 1, then the given series becomes 0 4+ 0 + ---, which is clearly convergent. Let

z(# 1) € R and let a,, = (;1)71 (x —1)" for all n € N. Then lim [*| = 1|z — 1|. Hence by
n—00 i

4n

ratio test, Y. a, is convergent (absolutely) if t|z — 1| < 1, i.e. if z € (—3,5) and is not conver-
n=1
gent if Hz — 1| > 1, i.e. if z € (—o0,—3) U (5,00). Therefore the radius of convergence of the
given power series is 4. Again, if z = =3, then >  a, = ) % is not convergent. If x = 5, then
n=1 n=1

Z a, = 21 —U" is convergent by Leibniz test, since (1) is a decreasing sequence of positive real
n=

numbers and lim % = 0. Therefore the interval of convergence of the given power series is (—3, 5].
n—oo

Example: The Maclaurin series for e¢” converges to e* for all x € R.
Proof: If f(x) = e® for all z € R, then f : R — R is infinitely differentiable and £ (z) = e®

for all x € R and for all n € N. Hence the Maclaurin series for e” is the series 1 + ) %, where

n=1
x € R. For z = 0, the Maclaurin series of e* becomes 1+ 0+ 0 4 ---, which clearly converges
to e = 1. Let z(# 0) € R. The remainder term in the Taylor expansion of e* about the point
0 is given by R,(z) = (n::), f+(e,) = (fLTll)!eC", where ¢, lies between 0 and z. Since er < e*

if £ >0and e < 1if x <0, we get |R,(x)] < ‘x|n+1,exif:v>0and | R ()] < ¢ =" if ¢ < 0.

+1)'
. . n+2 1)! .
Also, since nh_{ﬁlo ‘(fll o ‘(Zﬁ; +)1 = nll_rrolo n|i+|2 =0<1, we get hrn 2" — () and hence it follows that

o0 (1 +1)
lim R, (xz) = 0. Therefore the Maclaurin series of e” converges to e”.
n— oo

Example: The Maclaurin series for sinx converges to sinx for all x € R.
Proof: 1If f(x) = sinz for all # € R, then f : R — R is infinitely differentiable and f?"=(z) =
(=) cosz, f@(z) = (—1)"sinz for all z € R and for all n € N. Hence the Maclaurin series

n+1 a1

for sinx is the series »_ (—1) where x € R. For z = 0, the Maclaurin series of sinz

@n—1)’
n=1
becomes 0 — 0 4+ 0 — - -+, which clearly converges to sin0 = 0. Let x(# 0) € R. The remainder
term in the Taylor expansion of sinz about the point 0 is given by R,(x) = 7:11, f+(e,),

where ¢, lies between 0 and z. Since |sinc,| <1 and |cosc,| < 1, we get |R,(z)] < lﬂi Also,



. . n+2 | . n+1 .
since nh_)rgo % . T;LTTE = nh_)nolo % =0 < 1, we get 7}1_)120 % = 0 and hence it follows that

lim R, (z) = 0. Therefore the Maclaurin series of sinz converges to sin .
n—oo

Example: The Maclaurin series for cosx converges to cosx for all z € R.
Proof: If f(a:) = cosx for all z € R, then f : R — R is infinitely differentiable and "1 (z) =
(—=1)"sinz, fC(x) = (- 1) cosx for all x € R and for all n € N. Hence the Maclaurin series

for cosx is the series 1 + n g , where x € R. For x = 0, the Maclaurin series of cosx
(@n)!

becomes 1 =040 —---, Wthh clearly converges to cos0 = 1. Let 2(# 0) € R. The remainder

term in the Taylor expansion of sinz about the point 0 is given by R,(x) = nj:, f+D(e,),

where ¢, lies between 0 and z. Since |sinc,| < 1 and |cosc,| < 1, we get |R,(z)] < li'_:l Also,
since 7}1_{20 lﬁ:; . % = nh—{Eo n|i+‘2 =0 < 1, we get hm F‘Tl) = 0 and hence it follows that

lim R,(x) = 0. Therefore the Maclaurin series of cosx converges to cos .
n—0o0

Example: If f(z) = 2° — 52* + 523 + 12 for all € R, then f has a local maximum only
at 1 and a local minimum only at 3.

Proof. f: R — Ris infinitely differentiable and f(z) = 52%(z—1)(x—3), f"(x) = 102(22*—62+3),
f"(x) = 30(22% — 4z + 1) for all x € R. Since f'(z) = 0iff z = 0, 1, or 3, f has neither a local
maximum nor a local minimum at any point of R\ {0,1,3}. Again, since f”(1) = —10 < 0,
f"(3) =90 > 0, f”(0) = 0 and f”(0) =30 # 0, f has a local maximum at 1 (with local maximum
value f(1) = 13), f has a local minimum at 3 (with local minimum value f(3) = —15) and f has
neither a local maximum nor a local minimum at 0.

Integration

Example: Let f(z) = z* — 423 + 10 for all x € [1,4]. Then for the partition P = {1,2,3,4} of
[1,4], U(f, P) = 11 and L(f, P) = —40.
Proof: Since f'(x) = 42?(x — 3) for all x € [1, 4], we have f'(x) < 0 for all z € (1,3) and f'(x) > 0
for all x € (3,4). Hence f is strictly decreasing on [1,3] and strictly increasing on [3,4]. Conse-
quently sup{f(z) : z € [L,2]} = f(1) = 7, sup{f(z) : = € [2,3]} = f(2) = —6, sup{[f(z) : © €
3.4} = £(4) = 10 and inf{£(x) : & € [1,2)} = F(2) = —6, inf{f(x) € [2,3]} = f(3) = —17,
inf{f(z): z € [3,4]} = f(3) = —17. Therefore U(f,P) =7(2—1)+ (—6)(3 —2)+10(4 — 3) =11
and L(f, P) = (—6)(2 — 1) + (—17)(3 — 2) + (—17)(4 — 3) = —40.
Example: Let £ € R and let f(z) = k for all x € [0,1]. Then f : [0,1] — R is Riemann
1
integrable on [0,1] and [ f(z)dz = k.
0
Proof: Clearly f is bounded on [0,1]. Let P = {x¢, 1, ..., 2,} be any partition of [0,1]. Clearly
M; =k =m,; fori=1,..,n and hence U(f, P) = L(f,P) = Z k(x; — x;—1) = k. Consequently

1 1
J f(z)dz =k = [ f(zx)dz. Therefore f is Riemann integrable on [0, 1] and f f(x = k.
0 0

0 if z € (0,1],

Example: Let f(x) = { 1 ifr—0

1
Then f : [0,1] — R is Riemann integrable on [0,1] and [ f(z)dz = 0.

0
Proof. Clearly f is bounded on [0,1]. Let P = {zg,,...,x,} be any partition of [0,1]. Then



1
m; =0 and M; > 0 for i = 1,...,n and so L(f,P) = 0 and U(f,P) > 0. Hence [ f(z)dz =0
0

1
and f f(x)dr > 0. Again, if 0 < ¢ < 1, then considering the partition P, = {0, 5,1} of [0, 1], we

1 1
get 0 < [ f(z)de < U(f,P1) = § < e and consequently [ f(z)dz = 0. Therefore f is Riemann
0 0

1
integrable on [0, 1] and [ f(z)dxz = 0.

0
1 ifxel0,1]NnQ,
Example: Let f(z) = 0 ifae %O, 1% ﬂ ((%\Q

Then f :[0,1] — R is not Riemann integrable on [0, 1].
Proof: Clearly f is bounded on [0,1]. Let P = {zg,21,...,z,} be any partition of [0,1]. Since
every interval contains a rational as well as an irrational number, we get M; = 1 and m; = 0 for

n 1
i=1,...,n and hence U(f,P) = > (v; — x;-1) = 1 and L(f, P) = 0. Consequently [ f(z)dz =1
0

=1

1 1 1
and [ f(z)dx = 0. Since [ f(z)dz # [ f(z)dz, f is not Riemann integrable on [0, 1].
0 0 0

Example: Let f(z) = « for all x € [0,1]. Then f : [0,1] — R is Riemann integrable on
1

0,1] and [ f(z)dz =1
0

Proof: Clearly f is bounded on [0, 1]. For each n € N P, ={0,2,
Akso, L(f.P) = 10+ T4+ 2= = L~ L Land U(f. P}) =

= 1} is a partltlon of [0, 1]
G+ tB=3%m 3

T
1 n
Hence f is Riemann integrable on [0,1] and [ f(z)dz = %

0

Example: Let f(z) = 2? for all x € [0,1]. Then f : [0,1] — R is Riemann integrable on
1

0,1] and [ f(z)de = 3
0

Proof: Clearly f is bounded on [0, 1]. For each n € N, P, = {0, =, ..., @ = 1} is a partition of [0, 1].
Also, L(f, P) = 20+ L+ + & = (1 - - L) 5 Land U(f, P) = L (b +---+ %) =
1

n

(14+4)(3 + &) — 3. Hence f is Riemann integrable on [0,1] and [ f(z)dz = %
0

1
z? 1
Example: Wi < b[ A dr <3

Proof Since 1 < /1+z < /2 for all 2 € [0,1], we get \m/—z < \/”1% < 2% for all z € [0,1].

Since all the given functions are continuous and hence Riemann integrable on [0, 1], we get

1 1 1 1
z2 z2 2 1 22 1
v v dx;‘mﬁgﬁdxﬁg-

Example: lim [—— Jlrl + a5+ + ] = log2
n—oo
Proof: Let f(z) = 1 for all z € [0, 1]. Considering the partition P, = {0, 1,2, ... 2 =1} of [0, 1]
for each n € N (and takmg ¢; =~ fori=1,..,n), we find that
S(f,P,) = Z fEHE-E) =% n%ﬂ Since f : [0, 1] — R is continuous, f is Riemann integrable
i=1 i=1
n 1
on [0,1] and hence lim Z — hm S(f, P,) = [ f(z)dx =log(l + z)|i_, = log 2.

Example: f dt converges iff p > 1.



Proof For all z > 1, we have [dt = 1%}p(ml_p —1)if p # 1 and [}dt = logz. Hence
1 1

T

lim [ L dt = l%p if p>1and lim [ dt =ocif p<1. Therefore [ & dt converges iff p > 1.

tP
T—00 1

oo
Example: The improper integral [ edt is not convergent.

—00

00 0 00
Proof: In order that the improper integral [ e'dt converges, both [ e'dt and [ e’ dt must con-
0

—0o0 —00

verge. However, [ e'dt does not converge, because lim [ efdt = lim (e*—1) = co. Hence [ e'dt
0 T—00 {) T—00 o

is not convergent.

Example: The improper integral [ = dt converges.
0

x

Proof: Since lim [ 17 dt = lim tan~' z = %, the given improper integral converges.
T—00 {) + T—00

sin? ¢

o dt converges.

Example: The improper integral [
1

o0
Proof. Since 0 < S‘i‘# < t% for all t > 1 and since [ t%dt converges, by the comparison test,
0 !

J SI?—Qt dt converges.

1

oo
. . . dt
Example: The improper integral { /i converges.

o 1 _ 1 . llzz T 1 - .
Proof: Let f(t) = ;7= and g(t) = iz for all £ > 1. Then tliglo o = tliglo e 1. Since

g(t) dt converges, by the limit comparison test, [ f()dt also converges.
1

cost
1+¢2

Example: the improper integral [ dt converges.
0

cost
1+¢2

cost
1+¢2

dt con-

1 o]
Proof: Since [ {55 dt exists (in R) as a Riemann integral, [
0 0

dt converges iff [
1

cost < 1

verges. Now }IHQ <z

o0 (o)
for all ¢ > 1 and [ 3 dt converges. Hence by comparison test, [ ’ff‘t§| dt
1 1

cost
1+¢2

cost
1+¢2

converges and consequently [ dt converges. By our remark at the beginning, [ dt con-
1 0

verges.

xr
. 3 cost 1 : : 1 : -1
Alternative proof: We have ‘1“2 <1 for allt > 0. Also, since g}grolog el dt = xh_{go tan™' x = 7,

cost
1+¢2

142 142

converges.

o0 o0 o0
J Tz dt converges. Hence by comparison test, [ [£%L| dt converges and consequently [ £5Ldt
0 0 0

o0
Example: The improper integral [ 2t dt converges.
1

Proof Let f(t) = 1 and g(¢) = sint for all ¢ > 1. Then f : [1,00) = R is decreasing and

tlim f(t) = 0. Also, for all z > 1, we have
—00

fg(t)dt' = |cos1l — cosz| < |cosl|+ |cosz| < 2.
1

Hence by Dirichlet’s test, [ f(t)g(t)dt converges.
1



1

Example: [ & dt converges iff p < 1.

0
1

Proof. [ tip dt exists (in R) as a Riemann integral if p < 0. So let p > 0. Then for 0 < z < 1, we
0

1 1 1
have fipdt: 1%p(l—a:l_”) if p#1and [1dt =—logxz. Hence Ilir(%ftipdt: l%p if p<1and
T T

1
hI(I)lJr f 7 dt = 00 if p > 1. Therefore Ik tip dt converges iff p < 1.
T— 0

Example: The length of the curve y = (2% + 2) from z =0 to x = 3 is 12.
[0,

Proof Since dy — (22 4 2)2 for all z € [0,3], the length of the given curve from z = 0 to z = 3
3
is f\/l+x2(az2+2)dm = [(2* + 1) dx = 12.
0 0

2
Example: The perimeter of the ellipse %3 -+ U b2 =1is [ Vva2sin®t 4 b2 cos? t dt.

0
Proof. The parametric equations of the given ellipse are x = acost, y = bsint, where 0 < t < 27.
dx

Since % = —asint and % = bcost for all t € [0,27], the perimeter of the given ellipse is
2

J VaZsin?t + b2 cos? t dt. (This integral does not have a simple expression in terms of a and b.)

Example: The length of the curve z = e’sint, y = e’ cost, 0 <t < Z.

Proof: Since % = ¢’ cost + e'sint and (;—?; = elcost — et sint for all ¢t € [0, 7], the required length

2
is [\/(e! cost + e'sint)? + (et cost — e* sint)? dt = \/_fe dt = 2(es —1).
0

Example: The length of the cardioid r = 1 — cos# is 8.

Proof.  Since % = sinf for all § € [0,7], by symmetry, the length of the given cardioid is

2 [ /(1 —cosf)? +sin*0df =4 [sinldf =8.
0 0

Example: The area above the z-axis which is included between the parabola y?> = ax and
the circle 22 + y? = 2ax, where a > 0, is (¥35%)a®.
Proof: Solving 4% = ax and 22 + y? = 2ax, we obtain the z-coordinates of the common points on

the given parabola and the circle as 0 and a. Therefore the required area is

J(V2az — 2% — \Jaz) dz = (2252)a®. (The integral [ v/2ax — 22 dz can be evaluated by the sub-
0 0
stitution z = 2asin®6.)

Example: The area of the region that is inside the cardioid r = a(1 + cosf) and also inside

the circle 7 = 3a is (70 — 28)q?
Proof: At a pomt of intersection of the cardioid r = a(1 + cos ) and the circle r = 3a, we have
a(l + cosf) = %a. So § = % corresponds to a point of intersection. Hence by symmetry, the
area of the region that is inside the cardioid r = a(1 4 cosf) and inside the circle r = 3a is
w/3
2 |1 Of( a)?df + 1 { (1+cos)?df| = (T — 23)q?
/3

Example: A solid lies between planes perpendicular to the z-axis at * = 0 and x = 4. The
cross sections perpendicular to the axis on the interval 0 < z < 4 are squares whose diagonals run
from the parabola y = —/z to the parabola y = y/z. Then the volume of the solid is 16.

Proof. The length of the diagonal of the cross-sectional square at a distance x from the origin is
2/« and hence the cross-sectional area at a distance x from the origin is 2x. Therefore the volume



4
of the solid is [ 2z dx = 16.
0
Example: The volume of a sphere of radius r is §7r7"3.
Proof. The volume of a sphere of radius r is same as the volume of the solid generated by revolving
the semi-circular area bounded by the curve y = v/r2 — 22 between x = —r and x = r about the

a-axis. Hence the required volume is [ w(r? — 2?) do = gm0,

Example: A round hole of radius v/3 is bored through the centre of a solid sphere of radius
2. Then the volume of the portion bored out is 2—387r.

Proof: The required volume is V; — V5, where V; is the volume of the solid sphere of radius 2
and V5 is the volume of the solid generated by revolving the plane region common to z2 + y? < 4
and y > /3 about the z-axis. We know that V; = %w. Also, solving 2? + y?> = 4 and y = /3,

1
we get © = —1,1 and so Vo = [ 7(4 — 2? — 3)dx = %71’. Therefore the required volume is 23—871
-1

Example: The volume and area of the curved surface of a paraboloid of revolution formed by
revolving the parabola y? = 4ax about the z-axis, and bounded by the section z = 1 are 2max?
and $my/a((a + 21)? — a?) respectively.

x1
Proof: The required volume is [ 4max dx = 2rax? and the required surface area is

0

[ 2nv/4az\/T+ 2 dx (since & = 22) = Smva((a 1) —a2).
0

Y



