
MA 101 (Mathematics I)

Hints/Explanations for Examples in Lectures

Sequence

Example: The sequence ( n+1
2n+3

) is convergent with limit 1
2
.

Proof: Let ε > 0. For all n ∈ N, we have | n+1
2n+3

− 1
2
| = 1

4n+6
< 1

4n
. There exists n0 ∈ N such that

n0 >
1
4ε

. Hence | n+1
2n+3

− 1
2
| < 1

4n0
< ε for all n ≥ n0 and so the given sequence is convergent with

limit 1
2
.

Example: The sequence (1, 2, 1, 2, ...) is not convergent.
Proof: If possible, let the given sequence (xn) (say) be convergent with limit `. Then there exists
n0 ∈ N such that |xn − `| < 1

2
for all n ≥ n0. Hence |x2n0 − `| < 1

2
and |x2n0+1 − `| < 1

2
and so

|2 − `| < 1
2

and |1 − `| < 1
2
. This gives 1 = |(2 − `) − (1 − `)| ≤ |2 − `| + |1 − `| < 1, which is a

contradiction. Therefore the given sequence is not convergent.

Example: The sequence (n3 + 1) is not convergent.
Proof: If possible, let (n3 + 1) be convergent. Then there exist ` ∈ R and n0 ∈ N such that
|n3 + 1 − `| < 1 for all n ≥ n0 ⇒ n3 < ` for all n ≥ n0, which is not true. Therefore the given
sequence is not convergent.

Example: The sequence (3n+2
2n+5

) is bounded.

Proof: For all n ∈ N, |3n+2
2n+5
| = 3n+2

2n+5
< 3n+2

2n
= 3

2
+ 1

n
≤ 5

2
. Hence the given sequence is bounded.

Example: The sequence (1, 2, 1, 3, 1, 4, ...) is unbounded.
Proof: If possible, let the given sequence (xn) (say) be bounded. Then there exists M > 0 such
that |xn| ≤ M for all n ∈ N. This gives n ≤ M for all n ∈ N, which is not true. Therefore the
given sequence is unbounded.

Example: The sequence ( 2n2−3n
3n2+5n+3

) is convergent with limit 2
3
.

Proof: We have 2n2−3n
3n2+5n+3

=
2− 3

n

3+ 5
n
+ 3
n2

for all n ∈ N. Since 1
n
→ 0, the limit rules for algebraic

operations on sequences imply that the given sequence is convergent with limit 2−0
3+0+0

= 2
3
.

Example: The sequence (
√
n+ 1−

√
n) is convergent with limit 0.

Proof: For all n ∈ N,
√
n+ 1 −

√
n = 1√

n+1+
√
n

=
1√
n√

1+ 1
n
+1

. Since 1
n
→ 0, the limit rules for al-

gebraic operations on sequences imply that the given sequence is convergent with limit 0√
1+0+1

= 0.

Example: If |α| < 1, then the sequence (αn) converges to 0.
Proof: If α = 0, then αn = 0 for all n ∈ N and so (αn) converges to 0. Now we assume that
α 6= 0. Since |α| < 1, 1

|α| > 1 and so 1
|α| = 1 + h for some h > 0. For all n ∈ N, we have

(1 + h)n = 1 + nh+ n(n−1)
2!

h2 + · · ·+ hn > nh⇒ |α|n = 1
(1+h)n

< 1
nh

for all n ∈ N. Given ε > 0, we

choose n0 ∈ N satisfying n0 >
1
hε

. Then |αn − 0| = |α|n < 1
n0h

< ε for all n ≥ n0 and hence (αn)
converges to 0.

Alternative proof: Given ε > 0, we choose n0 ∈ N satisfying n0 >
log ε
log |α| . Then for all n ≥ n0, we

have |αn−0| = |α|n ≤ |α|n0 < ε and hence (αn) converges to 0. (This proof assumes the definition
of logarithm.)



Example: If α > 0, then the sequence (α
1
n ) converges to 1.

Proof: We first assume that α ≥ 1 and let xn = α
1
n − 1 for all n ∈ N. Then xn ≥ 0 and

α = (1 + xn)n = 1 + nxn + n(n−1)
2!

x2n + · · ·+ xnn > nxn for all n ∈ N. So 0 ≤ xn <
α
n

for all n ∈ N.

Since α
n
→ 0, by sandwich theorem, it follows that xn → 0. Consequently α

1
n → 1. If α < 1, then

1
α
> 1 and as proved above, ( 1

α
)

1
n → 1. It follows that α

1
n → 1.

Alternative proof: We first assume that α ≥ 1. For each n ∈ N, applying the A.M. ≥ G.M.
inequality for the numbers 1, ..., 1, α (1 is repeated n− 1 times), we get 1 ≤ α

1
n ≤ 1 + α−1

n
. Since

α−1
n
→ 0, by sandwich theorem, it follows that α

1
n → 1. The case for α < 1 is same as given in

the above proof.

Example: The sequence (n
1
n ) converges to 1.

Proof: For all n ∈ N, let an = n
1
n − 1. Then for all n ∈ N, n = (1 + an)n = 1 + nan + n(n−1)

2!
a2n +

· · ·+ann >
n(n−1)

2!
a2n ⇒ 0 ≤ a2n <

2
n−1 for all n ∈ N. Since 2

n−1 → 0, by sandwich theorem, it follows

that a2n → 0 and so an → 0. Consequently n
1
n → 1.

Example: The sequence ((2n + 3n)
1
n ) converges to 3.

Proof: We have 3n < 2n + 3n < 2.3n for all n ∈ N ⇒ 3 < (2n + 3n)
1
n < 2

1
n .3 for all n ∈ N. Also,

both the sequences (3, 3, ...) and (2
1
n .3) converge to 3. (Note that 2

1
n → 1.) Hence by sandwich

theorem, the given sequence converges to 3.

Alternative proof: Since (2n+3n)
1
n = 3[1+(2

3
)n]

1
n for all n ∈ N, we have 3 < (2n+3n)

1
n ≤ 3[1+(2

3
)n]

for all n ∈ N. Also, both the sequences (3, 3, ...) and (3[1 + (2
3
)n]) converge to 3. (Note that

(2
3
)n → 0.) Hence by sandwich theorem, the given sequence converges to 3.

Example: The sequence ( 1√
n2+1

+ · · ·+ 1√
n2+n

) converges to 1.

Proof: We have n√
n2+n

≤ 1√
n2+1

+ · · · + 1√
n2+n

≤ n√
n2+1

for all n ∈ N. Also, n√
n2+n

= 1√
1+ 1

n

→ 1

and n√
n2+1

= 1√
1+ 1

n2

→ 1. Hence by sandwich theorem, the given sequence converges to 1.

Example: If α ∈ R, then the sequence (α
n

n!
) is convergent.

Proof: Let xn = αn

n!
for all n ∈ N. If α = 0, then xn = 0 for all n ∈ N and so (xn) converges to 0.

If α 6= 0, then lim
n→∞

|xn+1

xn
| = lim

n→∞
|α|
n+1

= 0 < 1 and so (xn) converges to 0.

Example: The sequence (2
n

n4 ) is not convergent.

Proof: If xn = 2n

n4 for all n ∈ N, then lim
n→∞

|xn+1

xn
| = lim

n→∞
2

(1+ 1
n
)4

= 2 > 1. Therefore the sequence

(xn) is not convergent.

Example: The sequence (1− 1
n
) is increasing.

Proof: For all n ∈ N, 1
n+1

< 1
n

and so 1− 1
n+1

> 1− 1
n

for all n ∈ N. Therefore the given sequence
is increasing.

Example: The sequence (n+ 1
n
) is increasing.

Proof: For all n ∈ N, (n + 1 + 1
n+1

) − (n + 1
n
) = 1 − 1

n(n+1)
> 0 ⇒ n + 1 + 1

n+1
> n + 1

n
for all

n ∈ N. Therefore the given sequence is increasing.

Example: The sequence (cos nπ
3

) is not monotonic.

Proof: Since cos π
3

= 1
2
, cos 3π

3
= −1 and cos 6π

3
= 1, we have cos π

3
> cos 3π

3
< cos 6π

3
and hence

the given sequence is neither increasing nor decreasing. Consequently the given sequence is not
monotonic.



Example: Let x1 = 1 and xn+1 = 1
3
(xn + 1) for all n ∈ N. Then the sequence (xn) is con-

vergent and lim
n→∞

xn = 1
2
.

Proof: For all n ∈ N, we have xn+1 − xn = 1
3
(1 − 2xn). Also, x1 >

1
2

and if we assume that

xk >
1
2

for some k ∈ N, then xk+1 = 1
3
(xk + 1) > 1

3
(1
2

+ 1) = 1
2
. Hence by the principle of

mathematical induction, xn >
1
2

for all n ∈ N. So (xn) is bounded below. Again, from above, we
get xn+1 − xn < 0 for all n ∈ N ⇒ xn+1 < xn for all n ∈ N ⇒ (xn) is decreasing. Therefore (xn)
is convergent. Let ` = lim

n→∞
xn. Then lim

n→∞
xn+1 = ` and since xn+1 = 1

3
(xn + 1) for all n ∈ N, we

get ` = 1
3
(`+ 1)⇒ ` = 1

2
.

Alternative proof for showing that (xn) is decreasing: We have x2 = 2
3
< 1 = x1 and if we assume

that xk+1 < xk for some k ∈ N, then xk+2 = 1
3
(xk+1 + 1) < 1

3
(xk + 1) = xk+1. Hence by the

principle of mathematical induction, xn+1 < xn for all n ∈ N.

Example: Let xn = 1 + 1
1!

+ 1
2!

+ · · · + 1
n!

for all n ∈ N. Then the sequence (xn) is conver-
gent.
Proof: For all m,n ∈ N with m > n, we have |xm − xn| = 1

(n+1)!
+ 1

(n+2)!
+ · · · + 1

m!
≤

1
2n

+ 1
2n+1 + · · · + 1

2m−1 = 2
2n

(1 − 1
2m−n

) < 2
2n

< 2
n
. Given ε > 0, we choose n0 ∈ N satisfying

n0 >
2
ε
. Then for all m,n ≥ n0, we get |xm − xn| < 2

n0
< ε. Consequently (xn) is a Cauchy

sequence in R and hence (xn) is convergent.

Example: Let 0 < α < 1 and let the sequence (xn) satisfy the condition |xn+1 − xn| ≤ αn

for all n ∈ N. Then (xn) is a Cauchy sequence.
Proof: For all m,n ∈ N with m > n, we have |xm − xn| ≤ |xn − xn+1| + |xn+1 − xn+2| + · · · +
|xm−1 − xm| ≤ αn + αn+1 + · · · + αm−1 = αn

1−α(1 − αm−n) < αn

1−α . Since 0 < α < 1, αn → 0 and

so given any ε > 0, we can choose n0 ∈ N such that αn0
1−α < ε. Hence for all m,n ≥ n0, we have

|xm − xn| < αn0
1−α < ε. Therefore (xn) is a Cauchy sequence.

Example: Let 0 < α < 1 and let the sequence (xn) satisfy the condition |xn+2 − xn+1| ≤
α|xn+1 − xn| for all n ∈ N. Then (xn) is a Cauchy sequence.
Solution: For all m,n ∈ N with m > n, we have |xm − xn| ≤ |xn − xn+1| + |xn+1 − xn+2| + · · · +
|xm−1−xm| ≤ (αn−1 +αn + · · ·+αm−2)|x2−x1| = αn−1

1−α (1−αm−n)|x2−x1| ≤ αn−1

1−α |x2−x1|. Since

0 < α < 1, αn−1 → 0 and so given any ε > 0, we can choose n0 ∈ N such that αn0−1

1−α |x2 − x1| < ε.

Hence for all m,n ≥ n0, we have |xm − xn| ≤ αn0−1

1−α |x2 − x1| < ε. Therefore (xn) is a Cauchy
sequence.

Example: Let x1 = 1 and let xn+1 = 1
xn+2

for all n ∈ N. Then the sequence (xn) is conver-

gent and lim
n→∞

xn =
√

2− 1.

Proof: For all n ∈ N, we have |xn+2−xn+1| = | 1
xn+1+2

− 1
xn+2
| = |xn+1−xn|

|xn+1+2||xn+2| . Now, x1 > 0 and if we

assume that xk > 0 for some k ∈ N, then xk+1 = 1
xk+2

> 0. Hence by the principle of mathematical

induction, xn > 0 for all n ∈ N. Using this, we get |xn+2 − xn+1| ≤ 1
4
|xn+1 − xn| for all n ∈ N. It

follows that (xn) is a Cauchy sequence in R and hence (xn) is convergent. Let ` = lim
n→∞

xn. Then

lim
n→∞

xn+1 = ` and since xn+1 = 1
xn+2

for all n ∈ N, we get ` = 1
`+2
⇒ ` = −1±

√
2. Since xn > 0

for all n ∈ N, we have ` ≥ 0 and so ` =
√

2− 1.

Example: If xn = (−1)n(1 − 1
n
) for all n ∈ N, then xn 6→ 1. In fact, (xn) is not conver-

gent.
Proof: Since x2n−1 = (−1)2n−1(1 − 1

2n−1) = 1
2n−1 − 1 → −1, xn 6→ 1. Again, since x2n =

(−1)2n(1− 1
2n

) = 1− 1
2n
→ 1 6= −1, (xn) is not convergent.



Remark: Let (xn) be a sequence in R such that x2n → ` ∈ R and x2n−1 → `. Then xn → `.
Proof: Let ε > 0. Since x2n → ` and x2n−1 → `, there exist n1, n2 ∈ N such that |x2n − `| < ε for
all n ≥ n1 and |x2n−1 − `| < ε for all n ≥ n2. Taking n0 = max{2n1, 2n2 − 1} ∈ N, we find that
|xn − `| < ε for all n ≥ n0. Hence xn → `.

Example: The sequence (1, 1
2
, 1, 2

3
, 1, 3

4
, ...) converges to 1.

Proof: If (xn) denotes the given sequence, then x2n = n
n+1

= 1
1+ 1

n

→ 1 and x2n−1 = 1 → 1.

Therefore (xn) converges to 1.

Example: If x ∈ R, then there exists a sequence (rn) of rationals converging to x. Similarly, if
x ∈ R, then there exists a sequence (tn) of irrationals converging to x.
Proof: For each n ∈ N, there exist rn ∈ Q and tn ∈ R \ Q such that x − 1

n
< rn < x + 1

n
and

x− 1
n
< tn < x+ 1

n
. Since x− 1

n
→ x and x+ 1

n
→ x, by sandwich theorem, the sequence (rn) of

rationals converges to x and the sequence (tn) of irrationals also converges to x.

Series

Example: The geometric series
∞∑
n=1

arn−1 (where a 6= 0) converges iff |r| < 1.

Proof: If r = 1, then the given series becomes a+a+· · · , which is not convergent, since (sn) = (na)

does not converge as a 6= 0. We now assume that r 6= 1. Then sn =
n∑
i=1

ari−1 = a
1−r (1 − r

n) for

all n ∈ N. If |r| < 1, then lim
n→∞

rn = 0 and so (sn) converges to a
1−r . Therefore the given series

converges (with sum a
1−r ) if |r| < 1. If |r| ≥ 1, then the sequence (rn) does not converge and since

a 6= 0, it follows that (sn) does not converge. Hence in this case the given series is not convergent.

Example: The series
∞∑
n=1

1
n(n+1)

is convergent with sum 1.

Proof: Here sn =
n∑
k=1

1
k(k+1)

=
n∑
k=1

( 1
k
− 1

k+1
) = 1− 1

n+1
for all n ∈ N. Since lim

n→∞
sn = lim

n→∞
(1− 1

n+1
) =

1, the given series is convergent with sum 1.

Example: The series 1− 1 + 1− 1 + · · · is not convergent.

Proof: Here sn =

{
0 if n is even,
1 if n is odd,

and so the sequence (sn) is not convergent. Therefore the given series is not convergent.

Example: The series
∞∑
n=1

1
n2 is convergent.

Proof: For all n ≥ 2, we have sn =
n∑
k=1

1
k2
≤ 1 +

n∑
k=2

1
k(k−1) = 1 +

n∑
k=2

( 1
k−1 −

1
k
) = 2− 1

n
< 2. Hence

the sequence (sn) is bounded above and consequently by monotonic criterion for series, the given
series is convergent.

Example: The series
∞∑
n=1

1
n

is not convergent.

Proof: If possible, let the given series be convergent. Then by Cauchy criterion for series, there
exists n0 ∈ N such that 1

n+1
+ 1

n+2
+ · · · + 1

m
< 1

2
for all m > n ≥ n0. In particular, we get

1
n0+1

+ 1
n0+2

+ · · · + 1
2n0

< 1
2
. But 1

n0+1
+ 1

n0+2
+ · · · + 1

2n0
≥ 1

2n0
+ 1

2n0
+ · · · + 1

2n0
= 1

2
, and so we



get a contradiction. Hence the given series is not convergent.

Alternative proof: Let sn = 1+ 1
2

+ · · ·+ 1
n

for all n ∈ N. Then s2n = 1+ 1
2

+(1
3

+ 1
4
)+ · · ·+( 1

2n−1+1
+

· · ·+ 1
2n

) > 1 + 1
2

+ (1
4

+ 1
4
) + · · ·+ ( 1

2n
+ · · ·+ 1

2n
) = 1 + 1

2
+ 1

2
+ · · ·+ 1

2
= 1 + n

2
for all n ∈ N. This

shows the sequence (sn) is not bounded. Hence (sn) is not convergent and consequently
∞∑
n=1

1
n

is

not convergent.

Example: The series
∞∑
n=1

n2+1
(n+3)(n+4)

is not convergent.

Proof: Since n2+1
(n+3)(n+4)

=
1+ 1

n2

(1+ 3
n
)(1+ 4

n
)
→ 1, we have n2+1

(n+3)(n+4)
6→ 0 and so the given series is not

convergent.

Example: The series
∞∑
n=1

(−1)n n
n+2

is not convergent.

Proof: Since (−1)2n 2n
2n+2

= 1
1+ 1

n

→ 1, we have (−1)n n
n+2
6→ 0 and so the given series is not conver-

gent.

Example: The series
∞∑
n=1

1+sinn
1+n2 is convergent.

Proof: We have 0 ≤ 1+sinn
1+n2 ≤ 2

n2 for all n ∈ N. Since
∞∑
n=1

2
n2 is convergent, by comparison test, the

given series is convergent.

Example: The series
∞∑
n=1

1
2n+n

is convergent.

Proof: We have 0 < 1
2n+n

< 1
2n

for all n ∈ N. Since
∞∑
n=1

1
2n

is convergent, by comparison test, the

given series is convergent.

Example: The series
∞∑
n=2

1√
n(n−1)

is not convergent.

Proof: Since 1√
n(n−1)

> 1
n
> 0 for all n ≥ 2 and since

∞∑
n=1

1
n

is not convergent, by comparison test,

the given series is not convergent.

Example: The series
∞∑
n=1

n
4n3−2 is convergent.

Proof: Let xn = n
4n3−2 and yn = 1

n2 for all n ∈ N. Then xn, yn > 0 for all n ∈ N and

lim
n→∞

xn
yn

= lim
n→∞

n3

4n3−2 = lim
n→∞

1
4− 2

n3
= 1

4
6= 0. Since

∞∑
n=1

yn is convergent, by limit comparison

test,
∞∑
n=1

xn is convergent.

Example: For p ∈ R, the series
∞∑
n=1

1
np

is convergent iff p > 1.

Proof: If p ≤ 0, then 1
np
6→ 0 and so the given series is not convergent. Now, let p > 0. Then ( 1

np
)

is a decreasing sequence of non-negative real numbers. Also,
∞∑
n=1

2n · 1
(2n)p

=
∞∑
n=1

( 1
2p−1 )n, being a

geometric series, converges iff 1
2p−1 < 1, i.e. iff p > 1. Hence by Cauchy’s condensation test, the

given series converges iff p > 1.

Example: For p ∈ R, the series
∞∑
n=2

1
n(logn)p

is convergent iff p > 1.

Proof: Let f(x) = 1
x(log x)p

for all x > 1. Then f : (1,∞)→ R is differentiable and



f ′(x) = − (log x)p−1(log x+p)
x2(log x)2p

≤ 0 for all x > max{1, e−p} = a (say). Hence f is decreasing on

(a,∞) and so f(n + 1) ≤ f(n) for all n ≥ n0, where n0 ∈ N is chosen to satisfy n0 > a.

Thus the sequence
(

1
n(logn)p

)∞
n=n0

of non-negative real numbers is decreasing. Since the series

∞∑
n=n0

2n· 1
2n(log 2n)p

=
∞∑

n=n0

1
(log 2)pnp

is convergent iff p > 1, by Cauchy’s condensation test,
∞∑

n=n0

1
n(logn)p

is convergent iff p > 1. Consequently the given series is convergent iff p > 1.

Example: The series
∞∑
n=1

n
2n

is convergent.

Proof: Taking xn = n
2n

for all n ∈ N, we find that lim
n→∞

|xn+1

xn
| = lim

n→∞
1
2
(1 + 1

n
) = 1

2
< 1. Hence by

the ratio test, the given series is convergent.

Example: The series
∞∑
n=1

(2n)!
(n!)2

is not convergent.

Proof: Taking xn = (2n)!
(n!)2

for all n ∈ N, we find that lim
n→∞

|xn+1

xn
| = lim

n→∞
4n+2
n+1

= 4 > 1. Hence by the

ratio test, the given series is not convergent.

Example: The series
∞∑
n=1

(n!)n

nn2
is convergent.

Proof: Taking xn = (n!)n

nn2
for all n ∈ N, we have lim

n→∞
|xn|

1
n = lim

n→∞
n!
nn

= 0 < 1 (since

lim
n→∞

(n+1)!
(n+1)n+1 · n

n

n!
= lim

n→∞
1

(1+ 1
n
)n

= 1
e
< 1). Hence by the root test, the given series is convergent.

Example: The series
∞∑
n=1

5n

3n+4n
is not convergent.

Proof: Taking xn = 5n

3n+4n
for all n ∈ N, we have lim

n→∞
|xn|

1
n = lim

n→∞
5

(3n+4n)
1
n

= 5
4
> 1 (since

lim
n→∞

(3n + 4n)
1
n = 4, as shown earlier). Hence by the root test, the given series is not convergent.

Example: For p ∈ R, the series
∞∑
n=1

(−1)n+1 1
np

is convergent iff p > 0.

Proof: For p ≤ 0, |(−1)n+1 1
np
| = 1

np
6→ 0 and so (−1)n+1 1

np
6→ 0. Hence the given series is not

convergent if p ≤ 0. If p > 0, then ( 1
np

) is a decreasing sequence of positive real numbers with
1
np
→ 0 and hence the given series converges by Leibniz’s test.

Example: The series
∞∑
n=1

(−1)n+1 n
n3+1

is convergent.

Proof: Since (n + 1)2 + 1
n+1

= n2 + 1 + 2n + 1
n+1

> n2 + 1
n

for all n ∈ N, we get n+1
(n+1)3+1

=
1

(n+1)2+ 1
n+1

< 1
n2+ 1

n

= n
n3+1

for all n ∈ N. Hence ( n
n3+1

) is a decreasing sequence of positive real

numbers. Also, n
n3+1

=
1
n2

1+ 1
n3
→ 0. Therefore by Leibniz’s test, the given alternating series is

convergent.

Alternative proof: Since 0 < n
n3+1

< 1
n2 for all n ∈ N and since the series

∞∑
n=1

1
n2 converges, by

comparison test, the series
∞∑
n=1

|(−1)n+1 n
n3+1
| =

∞∑
n=1

n
n3+1

converges. Thus
∞∑
n=1

(−1)n n
n3+1

is an ab-

solutely convergent series and hence it is convergent.

Example: If 1− 1
2

+ 1
3
− 1

4
+ 1

5
− 1

6
+ · · · = s, then 1 + 1

3
− 1

2
+ 1

5
+ 1

7
− 1

4
+ 1

9
+ · · · = 3

2
s.

Proof: We first note that by Leibniz’s test, the series 1− 1
2

+ 1
3
− 1

4
+ · · · converges.

Let 1− 1
2

+ 1
3
− 1

4
+ · · · = s. (i)

Then the series 1
2
− 1

4
+ 1

6
− · · · = 1

2
(1− 1

2
+ 1

3
− · · · ) converges to 1

2
s. It follows that the series



0 + 1
2
− 0− 1

4
+ 0 + 1

6
− 0− 1

8
+ · · · (ii)

also converges to 1
2
s. Hence the series (1 + 0) + (−1

2
+ 1

2
) + (1

3
− 0) + (−1

4
− 1

4
) + (1

5
+ 0) + · · · ,

which is the sum of the series (i) and (ii), converges to s + 1
2
s = 3

2
s. Therefore it follows that

1 + 1
3
− 1

2
+ 1

5
+ 1

7
− 1

4
+ 1

9
+ · · · = 3

2
s.

Continuity

Example: lim
n→∞

sin(
√
n+1−

√
n)√

n+1−
√
n

= 1

Proof: Since
√
n+ 1 −

√
n = 1√

n+1+
√
n
→ 0, using the fact that lim

x→0

sinx
x

= 1, we obtain

lim
n→∞

sin(
√
n+1−

√
n)√

n+1−
√
n

= 1.

Example: The function f : R→ R, defined by f(x) =

{
3x+ 2 if x < 1,

4x2 if x ≥ 1,
is not continuous at 1.
Proof: Since lim

x→1−
f(x) = lim

x→1−
(3x+ 2) = 5 6= 4 = f(1), f is not continuous at 1.

Example: The function f : R→ R, defined by f(x) =

{
x sin 1

x
if x 6= 0,

0 if x = 0,
is continuous at 0.
Proof: For all x( 6= 0) ∈ R, |f(x) − f(0)| = |x sin 1

x
| ≤ |x| and hence given any ε > 0, choosing

δ = ε > 0, we get |f(x)− f(0)| < ε for all x ∈ R satisfying |x− 0| < δ. Therefore f is continuous
at 0.

Example: The function f : R→ R, defined by f(x) =

{
sin 1

x
if x 6= 0,

0 if x = 0,
is not continuous at 0.
Proof: If xn = 2

(4n+1)π
for all n ∈ N, then the sequence (xn) converges to 0, but f(xn) =

sin(4n + 1)π
2

= 1 for all n ∈ N and so f(xn) → 1 6= 0 = f(0). Therefore f is not continu-
ous at 0.

Example: lim
x→0

sin 1
x

does not exist (in R).

Proof: If xn = 2
(4n+1)π

and yn = 1
nπ

for all n ∈ N, then xn → 0 and yn → 0. However, since

sin 1
xn

= 1 and sin 1
yn

= 0 for all n ∈ N, we get sin 1
xn
→ 1 and sin 1

yn
→ 0. Therefore by the

sequential criterion for limit, lim
x→0

sin 1
x

does not exist (in R).

Example: The function f : R→ R, defined by f(x) =

{
1 if x ∈ Q,
0 if x ∈ R \Q,

is not continuous at any point of R.
Proof: If x0 ∈ Q, then there exists a sequence (tn) in R \ Q such that tn → x0. Since f(tn) = 0
for all n ∈ N, f(tn) → 0 6= 1 = f(x0). Hence f is not continuous at x0. Again, if x0 ∈ R \ Q,
then there exists a sequence (rn) in Q such that rn → x0. Since f(rn) = 1 for all n ∈ N,
f(rn)→ 1 6= 0 = f(x0). Hence f is not continuous at x0.

Example: The function f : R→ R, defined by f(x) =

{
x if x ∈ Q,
−x if x ∈ R \Q,

is continuous only at 0.
Proof: Given any ε > 0, choosing δ = ε > 0, we have |f(x) − f(0)| = |x| < ε for all x ∈ R
satisfying |x−0| < δ. Therefore f is continuous at 0. If x0(6= 0) ∈ Q, then there exists a sequence
(tn) in R \ Q such that tn → x0. Since f(tn) = −tn for all n ∈ N, f(tn) → −x0 6= x0 = f(x0).



Hence f is not continuous at x0. Again, if x0 ∈ R \ Q, then there exists a sequence (rn) in Q
such that rn → x0. Since f(rn) = x0 for all n ∈ N, f(rn) → x0 6= −x0 = f(x0). Hence f is not
continuous at x0.

Example: The equation x2 = x sinx+ cosx has at least two real roots.
Proof: Let f(x) = x2 − x sinx − cosx for all x ∈ R. Then f : R → R is continuous and
f(−π) = π2 + 1 > 0, f(0) = −1 < 0 and f(π) = π2 + 1 > 0. Hence by the intermediate value
theorem, the equation f(x) = 0 has at least one root in (−π, 0) and at least one root in (0, π).
Thus the equation f(x) = 0 has at least two real roots.

Example: If f : [0, 1]→ [0, 1] is continuous, then there exists c ∈ [0, 1] such that f(c) = c.
Proof: Let g(x) = f(x) − x for all x ∈ [0, 1]. Since f is continuous, g : [0, 1] → R is continuous.
If f(0) = 0 or f(1) = 1, then we get the result by taking c = 0 or c = 1 respectively. Otherwise
g(0) = f(0) > 0 and g(1) = f(1) − 1 < 0 (since it is given that 0 ≤ f(x) ≤ 1 for all x ∈ [0, 1]).
Hence by the intermediate value theorem, there exists c ∈ (0, 1) such that g(c) = 0, i.e. f(c) = c.

Example: Let f : [0, 2]→ R be continuous such that f(0) = f(2). Then there exist x1, x2 ∈ [0, 2]
such that x1 − x2 = 1 and f(x1) = f(x2).
Proof: Let g(x) = f(x + 1) − f(x) for all x ∈ [0, 1]. Since f is continuous, g : [0, 1] → R is
continuous. Also, g(0) = f(1) − f(0) and g(1) = f(2) − f(1) = −g(0), since f(0) = f(2). If
g(0) = 0, then f(1) = f(0) and we get the result by taking x1 = 1 and x2 = 0. If g(0) 6= 0,
then g(0) and g(1) are of opposite signs and hence by the intermediate value theorem, there exists
c ∈ (0, 1) such that g(c) = 0, i.e. f(c+1) = f(c). We get the result by taking x1 = c+1 and x2 = c.

Example: There does not exist any continuous function from [0, 1] onto (0,∞).
Proof: If f : [0, 1]→ (0,∞) is continuous, then f must be bounded. Since (0,∞) is not a bounded
set in R, it follows that f cannot be onto.

Differentiation

Example: Let f(x) =

{
x sin 1

x
if x( 6= 0) ∈ R,

0 if x = 0.
Then f : R→ R is not differentiable at 0.

Proof: Since lim
x→0

f(x)−f(0)
x−0 = lim

x→0
sin 1

x
does not exist, f is not differentiable at 0.

Example: Let f(x) =

{
x2 sin 1

x
if x(6= 0) ∈ R,

0 if x = 0.
Then f : R→ R is differentiable but f ′ : R→ R is not continuous at 0.
Proof: Clearly f is differentiable at all x( 6= 0) ∈ R and f ′(x) = 2x sin 1

x
− cos 1

x
for all x(6= 0) ∈ R.

Also, for each ε > 0, choosing δ = ε > 0, we find that |f(x)−f(0)
x−0 | = |x sin 1

x
| ≤ |x| < ε for all

x ∈ R satisfying 0 < |x| < δ. Hence lim
x→0

f(x)−f(0)
x−0 = 0 and consequently f is differentiable at 0

with f ′(0) = 0. Thus f : R→ R is differentiable.
Again, since 1

2nπ
→ 0 but f ′( 1

2nπ
)→ −1 6= f ′(0), f ′ : R→ R is not continuous at 0.

Example: Let f(x) =

{
x3 sin 1

x
if x(6= 0) ∈ R,

0 if x = 0.
Then f : R→ R is differentiable, f ′ : R→ R is continuous, but f ′ is not differentiable at 0.
Proof: Clearly f is differentiable at all x( 6= 0) ∈ R and f ′(x) = 3x2 sin 1

x
−x cos 1

x
for all x(6= 0) ∈ R.

Also, for each ε > 0, choosing δ =
√
ε > 0, we find that |f(x)−f(0)

x−0 | = |x2 sin 1
x
| ≤ |x|2 < ε for all



x ∈ R satisfying 0 < |x| < δ. Hence lim
x→0

f(x)−f(0)
x−0 = 0 and consequently f is differentiable at 0

with f ′(0) = 0. Thus f : R→ R is differentiable.
Clearly f ′ : R→ R is continuous at all x( 6= 0) ∈ R. Also, since lim

x→0
x2 sin 1

x
= 0 and lim

x→0
x cos 1

x
= 0

(similar to what we have shown earlier), we obtain lim
x→0

f ′(x) = 0 = f ′(0), which shows that f ′ is

continuous at 0. Thus f ′ : R→ R is continuous.

Again, lim
x→0

f ′(x)−f ′(0)
x−0 = lim

x→0
(3x sin 1

x
− cos 1

x
) does not exist, because if xn = 1

2nπ
and yn =

1
(2n+1)π

for all n ∈ N, then xn → 0 and yn → 0, but lim
n→∞

(3xn sin 1
xn
− cos 1

xn
) = −1 and

lim
n→∞

(3yn sin 1
yn
− cos 1

yn
) = 1. Therefore f ′ is not differentiable at 0.

Example: Let f(x) =

{
x2 if x ∈ Q,
0 if x ∈ R \Q.

Then f : R→ R is differentiable only at 0 and f ′(0) = 0.
Proof: If x0(6= 0) ∈ Q, then there exists a sequence (tn) in R\Q such that tn → x0. Since f(tn) = 0
for all n ∈ N, f(tn) → 0 6= x20 = f(x0). Hence f is not continuous at x0. Also, if u0 ∈ R \ Q,
then there exists a sequence (rn) in Q such that rn → u0. Since f(rn) = r2n → u20 6= 0 = f(u0), f
is not continuous at u0. Thus f is not continuous at any x( 6= 0) ∈ R and therefore f cannot be
differentiable at any x( 6= 0) ∈ R.

Again, for each ε > 0, choosing δ = ε > 0, we find that |f(x)−f(0)
x−0 | ≤ |x| < ε for all x ∈ R sat-

isfying 0 < |x| < δ. Hence lim
x→0

f(x)−f(0)
x−0 = 0 and consequently f is differentiable at 0 with f ′(0) = 0.

Example: The equation x2 = x sinx+ cosx has exactly two (distinct) real roots.
Proof: Let f(x) = x2 − x sinx− cosx for all x ∈ R. Then f : R→ R is differentiable (and hence
continuous) with f ′(x) = x(2 − cosx) for all x ∈ R. Since cosx 6= 2 for any x ∈ R, the equation
f ′(x) = 0 has exactly one real root, viz. x = 0. As a consequence of Rolle’s theorem, it follows that
the equation f(x) = 0 has at most two real roots. Also, since f(−π) = π2 + 1 > 0, f(0) = −1 < 0
and f(π) = π2 + 1 > 0, by the intermediate value property of continuous functions, the equation
f(x) = 0 has at least one root in (−π, 0) and at least one root in (0, π). Thus the equation f(x) = 0
has exactly two (distinct) real roots and so the given equation has exactly two (distinct) real roots.

Example: Find the number of (distinct) real roots of the equation x4 + 2x2 − 6x+ 2 = 0.
Solution: Taking f(x) = x4 + 2x2 − 6x + 2 for all x ∈ R, we find that f : R → R is twice
differentiable with f ′(x) = 4x3 + 4x−6 and f ′′(x) = 12x2 + 4 for all x ∈ R. Since f ′′(x) 6= 0 for all
x ∈ R, as a consequence of Rolle’s theorem, it follows that the equation f ′(x) = 0 has at most one
real root and hence the equation f(x) = 0 has at most two real roots. Again, since f(0) = 2 > 0,
f(1) = −2 < 0 and f(2) = 14 > 0, by the intermediate value property of continuous functions, the
equation f(x) = 0 has at least one real root in (0, 1) and at least one real root in (1, 2). Therefore
the given equation has exactly two (distinct) real roots.

Example: sinx ≥ x− x3

6
for all x ∈ [0, π

2
].

Proof: Let f(x) = sin x − x + x3

6
for all x ∈ [0, π

2
]. Then f : [0, π

2
] → R is infinitely differentiable

and f ′(x) = cosx − 1 + x2

2
, f ′′(x) = sinx + x and f ′′′(x) = 1 − cosx for all x ∈ [0, π

2
]. Since

f ′′′(x) ≥ 0 for all x ∈ [0, π
2
], f ′′ is increasing on [0, π

2
]. Hence f ′′(x) ≥ f ′′(0) = 0 for all x ∈ [0, π

2
].

This shows that f ′ is increasing on [0, π
2
] and so f ′(x) ≥ f ′(0) = 0 for all x ∈ [0, π

2
]. Thus f is in-

creasing on [0, π
2
] and so f(x) ≥ f(0) = 0 for all x ∈ [0, π

2
]. Therefore sinx ≥ x− x3

6
for all x ∈ [0, π

2
].

Example: If f(x) = x3 + x2 − 5x + 3 for all x ∈ R, then f is one-one on [1, 5] but not one-
one on R.
Proof: f : R → R is differentiable with f ′(x) = 3x2 + 2x − 5 for all x ∈ R. Clearly f ′(x) 6= 0
for all x ∈ (1, 5) and hence f is one-one on [1, 5]. Again, since f(0) = 3, f(1) = 0 and f(2) = 5,
by the intermediate value property of continuous functions, there exist x1 ∈ (0, 1) and x2 ∈ (1, 2)
such that f(x1) = 1 = f(x2). Therefore f is not one-one on R.



Example: Let f : R → R be differentiable such that f(−1) = 5, f(0) = 0 and f(1) = 10.
Then there exist c1, c2 ∈ (−1, 1) such that f ′(c1) = −3 and f ′(c2) = 3.
Proof: By the mean value theorem, there exist α ∈ (−1, 0) and β ∈ (0, 1) such that f ′(α) =
f(0)−f(−1)

0−(−1) = −5 and f ′(β) = f(1)−f(0)
1−0 = 10. Hence by the intermediate value property of deriva-

tives, there exist c1, c2 ∈ (α, β) (and so c1, c2 ∈ (−1, 1)) such that f ′(c1) = −3 and f ′(c2) = 3.

Example: If f(x) = 1 − x2/3 for all x ∈ R, then f has no local maximum or local minimum
at any nonzero x ∈ R. Further, f has a local maximum at 0.
Proof: f : R→ R is differentiable at all x( 6= 0) ∈ R and f ′(x) = −2

3
x−1/3 6= 0 for all x(6= 0) ∈ R.

Hence f does not have local maximum or local minimum at any x(6= 0) ∈ R. Again, since
f(x) ≤ 1 = f(0) for all x ∈ R, f has a local maximum at 0 (and the local maximum value is
f(0) = 1).

Alternative method for showing local maximum at 0: Since f ′(x) > 0 for all x < 0 and f ′(x) < 0
for all x > 0, f has a local maximum at 0.

Example: lim
x→0

√
1+x−1
x

= 1
2

Proof: Applying (first version of) L’Hôpital’s rule, we obtain lim
x→0

√
1+x−1
x

=
d
dx

(
√
1+x−1)|x=0

d
dx

(x)|x=0
= 1

2
.

Alternative proof: Applying (second version of) L’Hôpital’s rule, we obtain lim
x→0

√
1+x−1
x

= lim
x→0

1
2
√

1+x

1

= 1
2
.

Example: lim
x→π

2

1−sinx
1+cos 2x

= 1
4

Proof: Applying L’Hôpital’s rule twice, we obtain lim
x→π

2

1−sinx
1+cos 2x

= lim
x→π

2

− cosx
−2 sin 2x

= lim
x→π

2

sinx
−4 cos 2x = 1

4
.

Example: lim
x→0

x2 sin 1
x

sinx
= 0

Proof: For all x( 6= 0) ∈ R, we have 0 ≤ |x sin 1
x
| ≤ |x|. Since lim

x→0
|x| = 0, by sandwich theo-

rem (for limit of functions), we get lim
x→0
|x sin 1

x
| = 0 and hence lim

x→0
x sin 1

x
= 0. It follows that

lim
x→0

x2 sin 1
x

sinx
= lim

x→0

x sin 1
x

sin x
x

=
lim
x→0

x sin 1
x

lim
x→0

sin x
x

= 0
1

= 0.

Example: lim
x→0

( sinx
x

)
1
x = 1

Proof: Let f(x) = ( sinx
x

)
1
x for all x( 6= 0) ∈ R. Then f(x) > 0 for all x ∈ (−1, 1) \ {0} and

we have lim
x→0

log f(x) = lim
x→0

log( sin x
x

)

x
= lim

x→0

x cosx−sinx
x sinx

(applying L’Hôpital’s rule) = lim
x→0

−x sinx
sinx+x cosx

(applying L’Hôpital’s rule again) = lim
x→0

− sinx
sin x
x

+cosx
= 0 (since lim

x→0

sinx
x

= 1). By the continuity of

the exponential function, it follows that lim
x→0

f(x) = e0 = 1.

Example: lim
x→∞

x−sinx
2x+sinx

= 1
2

Proof: Since | sinx
x
| ≤ 1

x
for all x > 0 and since lim

x→∞
1
x

= 0, we get lim
x→∞

sinx
x

= 0. Consequently

lim
x→∞

x−sinx
2x+sinx

= lim
x→∞

1− sin x
x

2+ sin x
x

= 1
2
.

Example: The sequence ( logn
n

) is convergent with lim
n→∞

logn
n

= 0.

Proof: Let f(x) = log x
x

for all x > 0. Then applying L’Hôpital’s rule, we obtain lim
x→∞

f(x) =

lim
x→∞

1/x
1

= 0. Therefore by the sequential criterion of limit, the sequence (f(n)) = ( logn
n

) con-

verges to 0.



Example: 1 + x
2
− x2

8
≤
√

1 + x ≤ 1 + x
2

for all x > 0.

Proof: Let x > 0 and let f(t) =
√

1 + t for all x ∈ [0, x]. Then f : [0, x]→ R is twice differentiable
and f ′(t) = 1

2
√
1+t

, f ′′(t) = − 1
4(1+t)3/2

for all t ∈ [0, x]. By Taylor’s theorem, there exists c ∈ (0, x)

such that f(x) = f(0) + xf ′(0) + x2

2!
f ′′(c) = 1 + x

2
− x2

8
· 1
(1+c)3/2

. Since 0 < 1
(1+c)3/2

< 1, we get

1 + x
2
− x2

8
≤
√

1 + x ≤ 1 + x
2
.

Example: For the power series
∞∑
n=0

xn

n2 , the radius of convergence is 1 and the interval of con-

vergence is [−1, 1]
Proof: If x = 0, then the given series becomes 0 + 0 + · · · , which is clearly convergent. Let

x(6= 0) ∈ R and let an = xn

n2 for all n ∈ N. Then lim
n→∞

|an+1

an
| = |x|. Hence by ratio test,

∞∑
n=1

an

is convergent (absolutely) if |x| < 1, i.e. if x ∈ (−1, 1) and is not convergent if |x| > 1, i.e. if
x ∈ (−∞,−1)∪ (1,∞). Therefore the radius of convergence of the given power series is 1. Again,

if |x| = 1, then
∞∑
n=1

|an| =
∞∑
n=1

1
n2 is convergent and hence

∞∑
n=1

an is also convergent. Therefore the

interval of convergence of the given power series is [−1, 1].

Example: For the power series
∞∑
n=1

(−1)n
n·4n (x − 1)n, the radius of convergence is 4 and the in-

terval of convergence is (−3, 5].
Proof: If x = 1, then the given series becomes 0 + 0 + · · · , which is clearly convergent. Let

x(6= 1) ∈ R and let an = (−1)n
n.4n

(x − 1)n for all n ∈ N. Then lim
n→∞

|an+1

an
| = 1

4
|x − 1|. Hence by

ratio test,
∞∑
n=1

an is convergent (absolutely) if 1
4
|x − 1| < 1, i.e. if x ∈ (−3, 5) and is not conver-

gent if 1
4
|x − 1| > 1, i.e. if x ∈ (−∞,−3) ∪ (5,∞). Therefore the radius of convergence of the

given power series is 4. Again, if x = −3, then
∞∑
n=1

an =
∞∑
n=1

1
n

is not convergent. If x = 5, then

∞∑
n=1

an =
∞∑
n=1

(−1)n
n

is convergent by Leibniz test, since ( 1
n
) is a decreasing sequence of positive real

numbers and lim
n→∞

1
n

= 0. Therefore the interval of convergence of the given power series is (−3, 5].

Example: The Maclaurin series for ex converges to ex for all x ∈ R.
Proof: If f(x) = ex for all x ∈ R, then f : R → R is infinitely differentiable and f (n)(x) = ex

for all x ∈ R and for all n ∈ N. Hence the Maclaurin series for ex is the series 1 +
∞∑
n=1

xn

n!
, where

x ∈ R. For x = 0, the Maclaurin series of ex becomes 1 + 0 + 0 + · · · , which clearly converges
to e0 = 1. Let x(6= 0) ∈ R. The remainder term in the Taylor expansion of ex about the point

0 is given by Rn(x) = xn+1

(n+1)!
f (n+1)(cn) = xn+1

(n+1)!
ecn , where cn lies between 0 and x. Since ecn < ex

if x > 0 and ecn < 1 if x < 0, we get |Rn(x)| ≤ |x|n+1

(n+1)!
ex if x > 0 and |Rn(x)| ≤ |x|n+1

(n+1)!
if x < 0.

Also, since lim
n→∞

|x|n+2

(n+2)!
· (n+1)!
|x|n+1 = lim

n→∞
|x|
n+2

= 0 < 1, we get lim
n→∞

|x|n+1

(n+1)!
= 0 and hence it follows that

lim
n→∞

Rn(x) = 0. Therefore the Maclaurin series of ex converges to ex.

Example: The Maclaurin series for sinx converges to sinx for all x ∈ R.
Proof: If f(x) = sinx for all x ∈ R, then f : R → R is infinitely differentiable and f (2n−1)(x) =
(−1)n+1 cosx, f (2n)(x) = (−1)n sinx for all x ∈ R and for all n ∈ N. Hence the Maclaurin series

for sin x is the series
∞∑
n=1

(−1)n+1 x2n−1

(2n−1)! , where x ∈ R. For x = 0, the Maclaurin series of sinx

becomes 0 − 0 + 0 − · · · , which clearly converges to sin 0 = 0. Let x(6= 0) ∈ R. The remainder

term in the Taylor expansion of sinx about the point 0 is given by Rn(x) = xn+1

(n+1)!
f (n+1)(cn),

where cn lies between 0 and x. Since | sin cn| ≤ 1 and | cos cn| ≤ 1, we get |Rn(x)| ≤ |x|n+1

(n+1)!
. Also,



since lim
n→∞

|x|n+2

(n+2)!
· (n+1)!
|x|n+1 = lim

n→∞
|x|
n+2

= 0 < 1, we get lim
n→∞

|x|n+1

(n+1)!
= 0 and hence it follows that

lim
n→∞

Rn(x) = 0. Therefore the Maclaurin series of sinx converges to sinx.

Example: The Maclaurin series for cos x converges to cosx for all x ∈ R.
Proof: If f(x) = cosx for all x ∈ R, then f : R → R is infinitely differentiable and f (2n−1)(x) =
(−1)n sinx, f (2n)(x) = (−1)n cosx for all x ∈ R and for all n ∈ N. Hence the Maclaurin series

for cosx is the series 1 +
∞∑
n=1

(−1)n x2n

(2n)!
, where x ∈ R. For x = 0, the Maclaurin series of cosx

becomes 1 − 0 + 0 − · · · , which clearly converges to cos 0 = 1. Let x(6= 0) ∈ R. The remainder

term in the Taylor expansion of sinx about the point 0 is given by Rn(x) = xn+1

(n+1)!
f (n+1)(cn),

where cn lies between 0 and x. Since | sin cn| ≤ 1 and | cos cn| ≤ 1, we get |Rn(x)| ≤ |x|n+1

(n+1)!
. Also,

since lim
n→∞

|x|n+2

(n+2)!
· (n+1)!
|x|n+1 = lim

n→∞
|x|
n+2

= 0 < 1, we get lim
n→∞

|x|n+1

(n+1)!
= 0 and hence it follows that

lim
n→∞

Rn(x) = 0. Therefore the Maclaurin series of cosx converges to cosx.

Example: If f(x) = x5 − 5x4 + 5x3 + 12 for all x ∈ R, then f has a local maximum only
at 1 and a local minimum only at 3.
Proof: f : R→ R is infinitely differentiable and f ′(x) = 5x2(x−1)(x−3), f ′′(x) = 10x(2x2−6x+3),
f ′′′(x) = 30(2x2 − 4x + 1) for all x ∈ R. Since f ′(x) = 0 iff x = 0, 1, or 3, f has neither a local
maximum nor a local minimum at any point of R \ {0, 1, 3}. Again, since f ′′(1) = −10 < 0,
f ′′(3) = 90 > 0, f ′′(0) = 0 and f ′′′(0) = 30 6= 0, f has a local maximum at 1 (with local maximum
value f(1) = 13), f has a local minimum at 3 (with local minimum value f(3) = −15) and f has
neither a local maximum nor a local minimum at 0.

Integration

Example: Let f(x) = x4 − 4x3 + 10 for all x ∈ [1, 4]. Then for the partition P = {1, 2, 3, 4} of
[1, 4], U(f, P ) = 11 and L(f, P ) = −40.
Proof: Since f ′(x) = 4x2(x− 3) for all x ∈ [1, 4], we have f ′(x) < 0 for all x ∈ (1, 3) and f ′(x) > 0
for all x ∈ (3, 4). Hence f is strictly decreasing on [1, 3] and strictly increasing on [3, 4]. Conse-
quently sup{f(x) : x ∈ [1, 2]} = f(1) = 7, sup{f(x) : x ∈ [2, 3]} = f(2) = −6, sup{f(x) : x ∈
[3, 4]} = f(4) = 10 and inf{f(x) : x ∈ [1, 2]} = f(2) = −6, inf{f(x) : x ∈ [2, 3]} = f(3) = −17,
inf{f(x) : x ∈ [3, 4]} = f(3) = −17. Therefore U(f, P ) = 7(2− 1) + (−6)(3− 2) + 10(4− 3) = 11
and L(f, P ) = (−6)(2− 1) + (−17)(3− 2) + (−17)(4− 3) = −40.

Example: Let k ∈ R and let f(x) = k for all x ∈ [0, 1]. Then f : [0, 1] → R is Riemann

integrable on [0, 1] and
1∫
0

f(x) dx = k.

Proof: Clearly f is bounded on [0, 1]. Let P = {x0, x1, ..., xn} be any partition of [0, 1]. Clearly

Mi = k = mi for i = 1, ..., n and hence U(f, P ) = L(f, P ) =
n∑
i=1

k(xi − xi−1) = k. Consequently

1∫
0

f(x) dx = k =
1∫
0

f(x) dx. Therefore f is Riemann integrable on [0, 1] and
1∫
0

f(x) dx = k.

Example: Let f(x) =

{
0 if x ∈ (0, 1],
1 if x = 0.

Then f : [0, 1]→ R is Riemann integrable on [0, 1] and
1∫
0

f(x) dx = 0.

Proof: Clearly f is bounded on [0, 1]. Let P = {x0, x1, ..., xn} be any partition of [0, 1]. Then



mi = 0 and Mi ≥ 0 for i = 1, ..., n and so L(f, P ) = 0 and U(f, P ) ≥ 0. Hence
1∫
0

f(x) dx = 0

and
1∫
0

f(x) dx ≥ 0. Again, if 0 < ε < 1, then considering the partition P1 = {0, ε
2
, 1} of [0, 1], we

get 0 ≤
1∫
0

f(x) dx ≤ U(f, P1) = ε
2
< ε and consequently

1∫
0

f(x) dx = 0. Therefore f is Riemann

integrable on [0, 1] and
1∫
0

f(x) dx = 0.

Example: Let f(x) =

{
1 if x ∈ [0, 1] ∩Q,
0 if x ∈ [0, 1] ∩ (R \Q.

Then f : [0, 1]→ R is not Riemann integrable on [0, 1].
Proof: Clearly f is bounded on [0, 1]. Let P = {x0, x1, ..., xn} be any partition of [0, 1]. Since
every interval contains a rational as well as an irrational number, we get Mi = 1 and mi = 0 for

i = 1, ..., n and hence U(f, P ) =
n∑
i=1

(xi − xi−1) = 1 and L(f, P ) = 0. Consequently
1∫
0

f(x) dx = 1

and
1∫
0

f(x) dx = 0. Since
1∫
0

f(x) dx 6=
1∫
0

f(x) dx, f is not Riemann integrable on [0, 1].

Example: Let f(x) = x for all x ∈ [0, 1]. Then f : [0, 1] → R is Riemann integrable on

[0, 1] and
1∫
0

f(x) dx = 1
2
.

Proof: Clearly f is bounded on [0, 1]. For each n ∈ N, Pn = {0, 1
n
, ..., n

n
= 1} is a partition of [0, 1].

Also, L(f, Pn) = 1
n
(0 + 1

n
+ · · ·+ n−1

n
) = 1

2
− 1

2n
→ 1

2
and U(f, Pn) = 1

n
( 1
n

+ · · ·+ n
n
) = 1

2
+ 1

2n
→ 1

2
.

Hence f is Riemann integrable on [0, 1] and
1∫
0

f(x) dx = 1
2
.

Example: Let f(x) = x2 for all x ∈ [0, 1]. Then f : [0, 1] → R is Riemann integrable on

[0, 1] and
1∫
0

f(x) dx = 1
3
.

Proof: Clearly f is bounded on [0, 1]. For each n ∈ N, Pn = {0, 1
n
, ..., n

n
= 1} is a partition of [0, 1].

Also, L(f, Pn) = 1
n
(0 + 1

n2 + · · ·+ (n−1)2
n2 ) = (1− 1

n
)(1

3
− 1

6n
)→ 1

3
and U(f, Pn) = 1

n
( 1
n2 + · · ·+ n2

n2 ) =

(1 + 1
n
)(1

3
+ 1

6n
)→ 1

3
. Hence f is Riemann integrable on [0, 1] and

1∫
0

f(x) dx = 1
3
.

Example: 1
3
√
2
≤

1∫
0

x2√
1+x

dx ≤ 1
3

Proof: Since 1 ≤
√

1 + x ≤
√

2 for all x ∈ [0, 1], we get x2√
2
≤ x2√

1+x
≤ x2 for all x ∈ [0, 1].

Since all the given functions are continuous and hence Riemann integrable on [0, 1], we get
1∫
0

x2√
2
dx ≤

1∫
0

x2√
1+x

dx ≤
1∫
0

x2 dx⇒ 1
3
√
2
≤

1∫
0

x2√
1+x

dx ≤ 1
3
.

Example: lim
n→∞

[ 1
n+1

+ 1
n+2

+ · · ·+ 1
n+n

] = log 2

Proof: Let f(x) = 1
1+x

for all x ∈ [0, 1]. Considering the partition Pn = {0, 1
n
, 2
n
, ..., n

n
= 1} of [0, 1]

for each n ∈ N (and taking ci = i
n

for i = 1, ..., n), we find that

S(f, Pn) =
n∑
i=1

f( i
n
)( i
n
− i−1

n
) =

n∑
i=1

1
n+i

. Since f : [0, 1]→ R is continuous, f is Riemann integrable

on [0, 1] and hence lim
n→∞

n∑
i=1

1
n+i

= lim
n→∞

S(f, Pn) =
1∫
0

f(x) dx = log(1 + x)|1x=0 = log 2.

Example:
∞∫
1

1
tp
dt converges iff p > 1.



Proof: For all x > 1, we have
x∫
1

1
tp
dt = 1

1−p(x1−p − 1) if p 6= 1 and
x∫
1

1
t
dt = log x. Hence

lim
x→∞

x∫
1

1
tp
dt = 1

1−p if p > 1 and lim
x→∞

x∫
1

1
tp
dt =∞ if p ≤ 1. Therefore

∞∫
1

1
tp
dt converges iff p > 1.

Example: The improper integral
∞∫
−∞

et dt is not convergent.

Proof: In order that the improper integral
∞∫
−∞

et dt converges, both
0∫
−∞

et dt and
∞∫
0

et dt must con-

verge. However,
∞∫
0

et dt does not converge, because lim
x→∞

x∫
0

et dt = lim
x→∞

(ex−1) =∞. Hence
∞∫
−∞

et dt

is not convergent.

Example: The improper integral
∞∫
0

1
1+t2

dt converges.

Proof: Since lim
x→∞

x∫
0

1
1+t2

dt = lim
x→∞

tan−1 x = π
2
, the given improper integral converges.

Example: The improper integral
∞∫
1

sin2 t
t2

dt converges.

Proof: Since 0 ≤ sin2 t
t2
≤ 1

t2
for all t ≥ 1 and since

∞∫
1

1
t2
dt converges, by the comparison test,

∞∫
1

sin2 t
t2

dt converges.

Example: The improper integral
∞∫
1

dt
t
√
1+t2

converges.

Proof: Let f(t) = 1
t
√
1+t2

and g(t) = 1
t2

for all t ≥ 1. Then lim
t→∞

f(t)
g(t)

= lim
t→∞

1√
1+ 1

t2

= 1. Since

∞∫
1

g(t) dt converges, by the limit comparison test,
∞∫
1

f(t) dt also converges.

Example: the improper integral
∞∫
0

cos t
1+t2

dt converges.

Proof: Since
1∫
0

cos t
1+t2

dt exists (in R) as a Riemann integral,
∞∫
0

cos t
1+t2

dt converges iff
∞∫
1

cos t
1+t2

dt con-

verges. Now
∣∣ cos t
1+t2

∣∣ ≤ 1
t2

for all t ≥ 1 and
∞∫
1

1
t2
dt converges. Hence by comparison test,

∞∫
1

∣∣ cos t
1+t2

∣∣ dt
converges and consequently

∞∫
1

cos t
1+t2

dt converges. By our remark at the beginning,
∞∫
0

cos t
1+t2

dt con-

verges.

Alternative proof: We have
∣∣ cos t
1+t2

∣∣ ≤ 1
1+t2

for all t ≥ 0. Also, since lim
x→∞

x∫
0

1
1+t2

dt = lim
x→∞

tan−1 x = π
2
,

∞∫
0

1
1+t2

dt converges. Hence by comparison test,
∞∫
0

∣∣ cos t
1+t2

∣∣ dt converges and consequently
∞∫
0

cos t
1+t2

dt

converges.

Example: The improper integral
∞∫
1

sin t
t
dt converges.

Proof: Let f(t) = 1
t

and g(t) = sin t for all t ≥ 1. Then f : [1,∞) → R is decreasing and

lim
t→∞

f(t) = 0. Also, for all x ≥ 1, we have

∣∣∣∣ x∫
1

g(t) dt

∣∣∣∣ = | cos 1 − cosx| ≤ | cos 1| + | cosx| ≤ 2.

Hence by Dirichlet’s test,
∞∫
1

f(t)g(t) dt converges.



Example:
1∫
0

1
tp
dt converges iff p < 1.

Proof:
1∫
0

1
tp
dt exists (in R) as a Riemann integral if p ≤ 0. So let p > 0. Then for 0 < x < 1, we

have
1∫
x

1
tp
dt = 1

1−p(1− x1−p) if p 6= 1 and
1∫
x

1
t
dt = − log x. Hence lim

x→0+

1∫
x

1
tp
dt = 1

1−p if p < 1 and

lim
x→0+

1∫
x

1
tp
dt =∞ if p ≥ 1. Therefore

1∫
0

1
tp
dt converges iff p < 1.

Example: The length of the curve y = 1
3
(x2 + 2)

3
2 from x = 0 to x = 3 is 12.

Proof: Since dy
dx

= x(x2 + 2)
1
2 for all x ∈ [0, 3], the length of the given curve from x = 0 to x = 3

is
3∫
0

√
1 + x2(x2 + 2) dx =

3∫
0

(x2 + 1) dx = 12.

Example: The perimeter of the ellipse x2

a2
+ y2

b2
= 1 is

2π∫
0

√
a2 sin2 t+ b2 cos2 t dt.

Proof: The parametric equations of the given ellipse are x = a cos t, y = b sin t, where 0 ≤ t ≤ 2π.
Since dx

dt
= −a sin t and dy

dt
= b cos t for all t ∈ [0, 2π], the perimeter of the given ellipse is

2π∫
0

√
a2 sin2 t+ b2 cos2 t dt. (This integral does not have a simple expression in terms of a and b.)

Example: The length of the curve x = et sin t, y = et cos t, 0 ≤ t ≤ π
2
.

Proof: Since dx
dt

= et cos t + et sin t and dy
dt

= et cos t− et sin t for all t ∈ [0, π
2
], the required length

is

π
2∫
0

√
(et cos t+ et sin t)2 + (et cos t− et sin t)2 dt =

√
2

π
2∫
0

et dt =
√

2(e
π
2 − 1).

Example: The length of the cardioid r = 1− cos θ is 8.
Proof: Since dr

dθ
= sin θ for all θ ∈ [0, π], by symmetry, the length of the given cardioid is

2
π∫
0

√
(1− cos θ)2 + sin2 θ dθ = 4

π∫
0

sin θ
2
dθ = 8.

Example: The area above the x-axis which is included between the parabola y2 = ax and
the circle x2 + y2 = 2ax, where a > 0, is (3π−8

12
)a2.

Proof: Solving y2 = ax and x2 + y2 = 2ax, we obtain the x-coordinates of the common points on
the given parabola and the circle as 0 and a. Therefore the required area is
a∫
0

(
√

2ax− x2 −
√
ax) dx = (3π−8

12
)a2. (The integral

a∫
0

√
2ax− x2 dx can be evaluated by the sub-

stitution x = 2a sin2 θ.)

Example: The area of the region that is inside the cardioid r = a(1 + cos θ) and also inside

the circle r = 3
2
a is (7π

4
− 9

√
3

8
)a2.

Proof: At a point of intersection of the cardioid r = a(1 + cos θ) and the circle r = 3
2
a, we have

a(1 + cos θ) = 3
2
a. So θ = π

3
corresponds to a point of intersection. Hence by symmetry, the

area of the region that is inside the cardioid r = a(1 + cos θ) and inside the circle r = 3
2
a is

2

[
1
2

π/3∫
0

(3
2
a)2 dθ + 1

2

π∫
π/3

a2(1 + cos θ)2 dθ

]
= (7π

4
− 9

√
3

8
)a2.

Example: A solid lies between planes perpendicular to the x-axis at x = 0 and x = 4. The
cross sections perpendicular to the axis on the interval 0 ≤ x ≤ 4 are squares whose diagonals run
from the parabola y = −

√
x to the parabola y =

√
x. Then the volume of the solid is 16.

Proof: The length of the diagonal of the cross-sectional square at a distance x from the origin is
2
√
x and hence the cross-sectional area at a distance x from the origin is 2x. Therefore the volume



of the solid is
4∫
0

2x dx = 16.

Example: The volume of a sphere of radius r is 4
3
πr3.

Proof: The volume of a sphere of radius r is same as the volume of the solid generated by revolving
the semi-circular area bounded by the curve y =

√
r2 − x2 between x = −r and x = r about the

x-axis. Hence the required volume is
r∫
−r
π(r2 − x2) dx = 4

3
πr3.

Example: A round hole of radius
√

3 is bored through the centre of a solid sphere of radius
2. Then the volume of the portion bored out is 28

3
π.

Proof: The required volume is V1 − V2, where V1 is the volume of the solid sphere of radius 2
and V2 is the volume of the solid generated by revolving the plane region common to x2 + y2 ≤ 4
and y ≥

√
3 about the x-axis. We know that V1 = 32

3
π. Also, solving x2 + y2 = 4 and y =

√
3,

we get x = −1, 1 and so V2 =
1∫
−1
π(4 − x2 − 3) dx = 4

3
π. Therefore the required volume is 28

3
π.

Example: The volume and area of the curved surface of a paraboloid of revolution formed by
revolving the parabola y2 = 4ax about the x-axis, and bounded by the section x = x1 are 2πax21
and 8

3
π
√
a((a+ x1)

3
2 − a 3

2 ) respectively.

Proof: The required volume is
x1∫
0

4πax dx = 2πax21 and the required surface area is

x1∫
0

2π
√

4ax
√

1 + a
x
dx (since dy

dx
= 2a

y
) = 8

3
π
√
a((a+ x1)

3
2 − a 3

2 ).


