
Differentiability and Derivative: Let D ⊆ R and let x0 ∈ D
such that there exists an interval I of R satisfying x0 ∈ I ⊆ D.

A function f : D → R is said to be differentiable at x0 if
lim
x→x0

f (x)−f (x0)
x−x0 (or, equivalently lim

h→0

f (x0+h)−f (x0)
h

) exists in R.

If f is differentiable at x0, then the derivative of f at x0 is
f ′(x0) = lim

x→x0

f (x)−f (x0)
x−x0 = lim

h→0

f (x0+h)−f (x0)
h

.

f : D → R is said to be differentiable if f is differentiable at
each x0 ∈ D.

Result: If f : D → R is differentiable at x0 ∈ D, then f is
continuous at x0.
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Examples:

1. For n = 1, 2, 3, let fn(x) =

{
xn sin 1

x
if x 6= 0,

0 if x = 0.

2. f (x) =

{
x2 if x ∈ Q,
0 if x ∈ R \Q.

Rules for finding derivatives:

Definition: f : D → R has a local maximum (resp. minimum)
at x0 ∈ D if there exists δ > 0 such that f (x) ≤ f (x0)
(resp. f (x0) ≤ f (x)) for all x ∈ (x0 − δ, x0 + δ) ∩ D.

Result: If f : D → R has a local maximum or local minimum
at an interior point x0 of D and if f is differentiable at x0, then
f ′(x0) = 0.
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Rolle’s theorem: If f : [a, b]→ R is continuous, if f is
differentiable on (a, b) and if f (a) = f (b), then there exists
c ∈ (a, b) such that f ′(c) = 0.

Examples:

(a) The equation x2 = x sin x + cos x has exactly two real
roots.

(b) The equation x4 + 2x2 − 6x + 2 = 0 has exactly two real
roots.

Mean value theorem: If f : [a, b]→ R is continuous and if f is
differentiable on (a, b), then there exists c ∈ (a, b) such that
f (b)− f (a) = f ′(c)(b − a).
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Result: Let f : I → R be differentiable. Then

(a) f ′(x) = 0 for all x ∈ I iff f is constant on I .

(b) f ′(x) ≥ 0 for all x ∈ I iff f is increasing on I .

(c) f ′(x) ≤ 0 for all x ∈ I iff f is decreasing on I .

(d) f ′(x) > 0 for all x ∈ I ⇒ f is strictly increasing on I .

(e) f ′(x) < 0 for all x ∈ I ⇒ f is strictly decreasing on I .

(f) f ′(x) 6= 0 for all x ∈ I ⇒ f is one-one on I .

Examples:

(a) sin x ≥ x − x3

6
for all x ∈ [0, π

2
].

(b) If f (x) = x3 + x2− 5x + 3 for all x ∈ R, then f is one-one
on [1, 5] but not one-one on R.
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Intermediate value property of derivatives: Let f : I → R be
differentiable and let a, b ∈ I with a < b. If f ′(a) < k < f ′(b),
then there exists c ∈ (a, b) such that f ′(c) = k .

Example: Let f : R→ R be differentiable such that
f (−1) = 5, f (0) = 0 and f (1) = 10. Then there exist
c1, c2 ∈ (−1, 1) such that f ′(c1) = −3 and f ′(c2) = 3.

Local maximum & Local minimum : Sufficient conditions:

1. First derivative test

2. Second derivative test

Example: Local maxima and local minima of f , where
f (x) = 1− x2/3 for all x ∈ R.
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L’Hôpital’s rules:

1. Let f : (a, b)→ R and g : (a, b)→ R be differentiable at
x0 ∈ (a, b). Also, let f (x0) = g(x0) = 0 and g ′(x0) 6= 0.

Then lim
x→x0

f (x)
g(x)

= f ′(x0)
g ′(x0)

.

2. Let f : (a, b)→ R and g : (a, b)→ R be differentiable
such that lim

x→a+
f (x) = lim

x→a+
g(x) = 0 and g ′(x) 6= 0 for all

x ∈ (a, b). If lim
x→a+

f ′(x)
g ′(x)

= `, then lim
x→a+

f (x)
g(x)

= `.

Examples: (a) lim
x→0

√
1+x−1
x

(b) lim
x→π

2

1−sin x
1+cos 2x

(c) lim
x→0

x2 sin 1
x

sin x
(d) lim

x→0
( sin x

x
)
1
x (e) lim

x→∞
x−sin x
2x+sin x
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Taylor’s theorem: Let f : [a, b]→ R be such that
f , f ′, f ′′, ..., f (n) are continuous on [a, b] and f (n+1) exists on
(a, b).

Then there exists c ∈ (a, b) such that

f (b) = f (a) + f ′(a)(b− a) + f ′′(a)
2!

(b− a)2 + · · ·+ f (n)(a)
n!

(b− a)n

+ f (n+1)(c)
(n+1)!

(b − a)n+1.

Example: 1 + x
2
− x2

8
≤
√

1 + x ≤ 1 + x
2

for all x > 0.

Power series: A series of the form
∞∑
n=0

an(x − x0)n,

where x0, an ∈ R for n = 0, 1, 2, ... and x ∈ R.

It is sufficient to consider the series
∞∑
n=0

anx
n.
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Convergence - Examples:

(a)
∞∑
n=0

xn

n!
(b)

∞∑
n=0

n!xn (c)
∞∑
n=0

xn

Result:

(a) If
∞∑
n=0

anx
n converges for x = x1 6= 0, then it converges

absolutely for all x ∈ R satisfying |x | < |x1|.

(b) If
∞∑
n=0

anx
n diverges for x = x2, then it diverges for all

x ∈ R satisfying |x | > |x2|.

Radius of convergence: For every power series
∞∑
n=0

anx
n, there

exists a unique R satisfying 0 ≤ R ≤ ∞ such that the series
converges absolutely if |x | < R and diverges if |x | > R .

The series may or may not converge for |x | = R .
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Methods to find the radius/interval of convergence:

Examples: (a)
∞∑
n=0

xn

n2
(b)

∞∑
n=1

(−1)n
n·4n (x − 1)n

Term-by-term operations on power series:

Taylor series & Maclaurin series: Convergence

Examples: Taylor series expansions of ex , sin x and cos x .
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Result on local maxima and local minima:

Let x0 ∈ (a, b) and let n ≥ 2. Also, let f , f ′, ..., f (n) be
continuous on (a, b) and
f ′(x0) = f ′′(x0) = · · · = f (n−1)(x0) = 0 but f (n)(x0) 6= 0.

(a) If n is even and f (n)(x0) < 0, then f has a local maximum
at x0.

(b) If n is even and f (n)(x0) > 0, then f has a local minimum
at x0.

(c) If n is odd, then f has neither a local maximum nor a
local minimum at x0.

Example Local maximum and local minimum values of f ,
where f (x) = x5 − 5x4 + 5x3 + 12 for all x ∈ R.
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