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Differentiability and Derivative: Let D C R and let xo € D
such that there exists an interval /| of R satisfying xo € | C D.

A function f : D — R is said to be differentiable at xg if

lim £0=F00) (or equivalently lim feeth)=fC0)) ayists in R
X—+X0 X—Xo &4 y h—0 h ’

If f is differentiable at xg, then the derivative of f at xg is
f'(x0) = lim F)=fx0) _ |jm floth)—f(x)
x—xg XX h—0 h .

f: D — R is said to be differentiable if f is differentiable at
each xg € D.

Result: If f: D — R is differentiable at xg € D, then f is
continuous at xg.
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Examples:
x”sin% if x #0,

1. Forn=1,2,3, let f,,(x):{ 0 £ % 0

[ X ifxeq,
2 f(x)_{ 0 ifxeR\Q.

Rules for finding derivatives:

Definition: f: D — R has a local maximum (resp. minimum)
at xo € D if there exists 6 > 0 such that f(x) < f(xo)
(resp. f(xp) < f(x)) for all x € (xo — d,x0 + ) N D.

Result: If f: D — R has a local maximum or local minimum
at an interior point xp of D and if f is differentiable at xg, then
f/(Xo) =0.
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Rolle’s theorem: If f : [a, b] — R is continuous, if f is
differentiable on (a, b) and if f(a) = f(b), then there exists
¢ € (a, b) such that f’(c) = 0.

Examples:

(a) The equation x*> = xsin x + cos x has exactly two real
roots.

(b) The equation x* + 2x? — 6x + 2 = 0 has exactly two real
roots.

Mean value theorem: If f : [a, b] — R is continuous and if f is
differentiable on (a, b), then there exists ¢ € (a, b) such that
f(b) — f(a) = f'(c)(b— a).
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Result: Let f : | — R be differentiable. Then
(a) f’(x) =0 for all x € I iff f is constant on /.

f’Ex) > 0 for all x € I iff f is increasing on /.

f'(x) <0 for all x € I iff f is decreasing on /.

f'(x) > 0 for all x € | = f is strictly increasing on /.

f'(x) < 0 for all x € | = f is strictly decreasing on /.
(x)

f'(x) # 0 for all x € | = f is one-one on /.

Examples:
(a) sianx—%3 for all x € [0, 7].

(b) If f(x) = x®+ x> —5x + 3 for all x € R, then f is one-one
on [1,5] but not one-one on R.
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Intermediate value property of derivatives: Let f : | — R be
differentiable and let a, b € | with a < b. If f'(a) < k < f'(b),
then there exists ¢ € (a, b) such that f'(c) = k.

Example: Let f : R — R be differentiable such that
f(—1) =5, f(0) =0 and f(1) = 10. Then there exist
c1, ¢ € (—1,1) such that f'(¢) = =3 and f'(c;) = 3.

Local maximum & Local minimum : Sufficient conditions:
1. First derivative test
2. Second derivative test

Example: Local maxima and local minima of f, where
f(x) =1—x?3 for all x € R.
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L'Hopital’s rules:

1.

Let f: (a,b) = R and g : (a, b) — R be differentiable at

xo € (a,b). Also, let f(xp) = g(x0) = 0 and g'(xp) # 0.
Then lim ) — £(0)
x—x0 &%) g'(x0)"

Let f: (a,b) - R and g : (a, b) — R be differentiable
such that ”m+ f(x)= Iim+g(x) =0 and g’'(x) # 0 for all
X—a X—a

x € (a,b). If lim 5 — ¢ then lim Li) = L.
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L'Hopital's rules:
1. Let f: (a,b) > R and g : (a,b) — R be differentiable at
xo € (a,b). Also, let f(xp) = g(x0) = 0 and g'(xp) # 0.
f(x) _ f'(x0)

Then im 560 = g0

2. Let f: (a,b) - R and g : (a, b) — R be differentiable
such that Iim f(x)= Iim g( ) =0 and g’(x) # 0 for all

€ (a, b). |f I|m ") :E then lim 2 — ¢

x—a+ g’'(x) x—a+ & g(x)
Examples: (a) )I(l_rpo b (b) X"L” 11+csc::2Xx
2 l i
(c) lim = sin (d) I|m(s':X)i (e) lim D isinx

x—0 Sinx x—0 X—00
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Taylor's theorem: Let f : [a, b] — R be such that
f,f' ", .., f(") are continuous on [a, b] and F("*1) exists on
(a, b). Then there exists ¢ € (a, b) such that

f(b) = f(a)+F'(a)(b—a)+ 4D (b—a)2+- - -+ L&) (ph— g)n

Fn+1) (¢
(n+1()!)(b — )"t

Example: 1+§—% V1+x <1+ 3 forall x> 0.

[e.e]

Power series: A series of the form ) a,(x — x0)",
n=0

where xg, a, € R for n=0,1,2,... and x € R.

o
It is sufficient to consider the series > a,x".
n=0
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Result:
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n=0
x € R satisfying |x| > |x|.
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Convergence - Examples:
@ > () () Dx
n=0 n=0 n=0
Result:
(a) If i apx" converges for x = x; # 0, then it converges

n=0
absolutely for all x € R satisfying |x| < |xq|.

oo
(b) If > a,x" diverges for x = x,, then it diverges for all
n=0
x € R satisfying |x| > |x|.
oo
Radius of convergence: For every power series > a,x", there

n=0
exists a unique R satisfying 0 < R < oo such that the series

converges absolutely if |x| < R and diverges if [x| > R.

The series may or may not converge for x| = R.
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Methods to find the radius/interval of convergence:

CEENOPYE- S CEk

0 n=1

18

Examples: (a)

n

Term-by-term operations on power series:

Taylor series & Maclaurin series: Convergence

Examples: Taylor series expansions of €*, sin x and cos x.



Result on local maxima and local minima:

Let xo € (a,b) and let n > 2. Also, let f,f’, ..., f(") be
continuous on (a, b) and
f'(x0) = f"(x0) = - - - = F("(xy) = 0 but (M (xg) # 0.



Result on local maxima and local minima:

Let xo € (a,b) and let n > 2. Also, let f,f’, ..., f(") be
continuous on (a, b) and

f'(x0) = f"(x0) = - - - = F("(xy) = 0 but (M (xg) # 0.
(a) If nis even and f("(x) < 0, then f has a local maximum
at xp.

(b) If nis even and f(M(x) > 0, then f has a local minimum
at xp.

(c) If nis odd, then f has neither a local maximum nor a
local minimum at xg.



Result on local maxima and local minima:

Let xo € (a,b) and let n > 2. Also, let f,f’, ..., f(") be
continuous on (a, b) and

f'(x0) = f"(x0) = - - - = F("(xy) = 0 but (M (xg) # 0.
(a) If nis even and f("(x) < 0, then f has a local maximum
at xp.

(b) If nis even and f(M(x) > 0, then f has a local minimum
at xp.

(c) If nis odd, then f has neither a local maximum nor a

local minimum at xg.

Example Local maximum and local minimum values of f,
where f(x) = x5 — 5x* + 5x3 + 12 for all x € R.



