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Definition: Let D(# () CR and let f : D — R.

We say that f is continuous at x € D if for each € > 0, there
exists 0 > 0 such that |f(x) — f(x)| < & for all x € D
satisfying |x — xo| < 9.

We say that f : D — R is continuous if f is continuous at
each xg € D.

Definition: Let D C R and let x; € R such that for some

h > 0, (XO_ h,X0+h)\{Xg} CD.

If f: D — R, then ¢ € R is said to be the limit of f at xg if
for each € > 0, there exists 6 > 0 such that |f(x) — ¢| < € for
all x € D satisfying 0 < |x — x| < 0.

We write: lim f(x) = /.
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Examples:

3x+2 ifx<1,
4x%>  if x > 1.

xsini if x #£0,
0 if x=0.

1 ifxeqQ,
0 ifxeR\Q.

x ifxeQ,
—x ifxeR\Q.
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Result: Let f,g: D — R be continuous at xg € D. Then
(a) f+ g, fg and |f] are continuous at xo,
(b) f/g is continuous at x if g(x) # 0 for all x € D.

Result: Composition of two continuous functions is continuous.

Further examples of continuous functions:

Polynomial function, Rational function, sine function, cosine
function, exponential function, etc.

Result: If f: D — R is continuous at xo € D and f(xp) # 0,
then there exists ¢ > 0 such that f(x) # 0 for all x € D
satisfying |x — x| < 4.
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(b) If f:]0,1] — [0,1] is continuous, then there exists
c € [0,1] such that f(c) = c.
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Result: If f : [a, b] — R is continuous, then f : [a, b] — R is
bounded.

Example: There does not exist any continuous function from
[0, 1] onto (0, c0).

Result: If f : [a, b] — R is continuous, then there exist
X0, Yo € [a, b] such that f(xg) < f(x) < f(yp) for all x € [a, b].



