M Tech (Fluids and Thermal Engineering)
SEMESTERI
Course No. 
Course Name 
L 
T 
P 
C 
ME 501 
Advanced Engineering Mathematics 
3 
0 
0 
6 
ME 520 
Fluid Mechanics 
3 
0 
0 
6 
ME 521 
Conduction and Radiation 
3 
0 
0 
6 
ME 523 
Advanced Thermodynamics 
3 
0 
0 
6 
ME 502 
Engineering Computing Laboratory 
0 
0 
3 
3 
ME xxx 
Elective – I 
3 
0 
0 
6 

15 
0 
3 
33 
SEMESTERII
Course No. 
Course Name 
L 
T 
P 
C 
ME 522 
Convective Heat Transfer 
3 
0 
0 
6 
ME xxx 
Elective – II 
3 
0 
0 
6 
ME xxx 
Elective – III 
3 
0 
0 
6 
ME xxx 
Elective – IV 
3 
0 
0 
6 
ME xxx 
Elective – V 
3 
0 
0 
6 

15 
0 
0 
30 
SEMESTERIII
Course No. 
Course Name 
L 
T 
P 
C 
ME 503 
Technical Writing 
1 
0 
2 
4 
ME 504 
Project Phase I 
0 
0 
20 
20 

1 
0 
22 
24 
SEMESTERIV
Course No. 
Course Name 
L 
T 
P 
C 
ME 505 
Project Phase II 
0 
0 
24 
24 

0 
0 
24 
24 
ME 520 Fluid Mechanics
Introduction: Review of tensor algebra; continuum hypothesis; Eulerian and
Lagrangian viewpoints; Reynolds transport theorem.
Conservation laws: Mass conservation; Momentum conservation, strain rate
tensor, vorticity transport equation; Conservation of angular momentum.
Approximate solutions for incompressible flow: Plane Poiseuille flow,
linear and rotational Couette flow, Stoke’s oscillating plate.
Potential flows: Stream function, velocity potentials, Kelvin’s circulation
theorem, principle of superposition, Magnus effect, lift and drag on
twodimensional shapes.
Boundary Layer Theory: Derivation of boundary layer equation,
orderofmagnitude analysis, flow over flat plate, Blausius equation,
FalkerSkan equation, momentum integral method, separation of boundary
layers.
Introduction to turbulence: Physical and mathematical description of
turbulence, Reynolds equation of turbulent motion, Turbulence modeling.
Introduction to compressible flows: Isentropic flow, flow with area change.
References
ME 521 Conduction and Radiation
Conduction: Fourier’s law of heat conduction, Initial and Boundary conditions, Steady and unsteady heat conduction problems and their solutions in Cartesian, cylindrical and spherical coordinates, Separation of variables method, Method of superposition, Bessel’s equation and Bessel functions, Semiinfinite media, Laplace Transform, Approximate analytical solution, Conduction with Phase Change (Melting and Solidification).
Radiation: Laws of Radiation, Intensity of Radiation, Irradiation, Radiosity, Radiative properties of surfaces, Radiation exchange between surfaces, View Factor, Radiation exchange in a black enclosure, Radiative heat transfer in participating media(Gas Radiation), Radiative Transfer Equation.
References
ME 522 Convective Heat Transfer
Transport equations and boundary conditions; Order of magnitude analysis, Reynolds analogy.
Forced Convection : Convective heat transfer in external flows: Boundary layer Approximations to momentum and energy equations, Similarity solution techniques, Momentum and energy integral methods and their applications in flow over flat plates with low and high Prandtl number approximations. Convective heat transfer in Laminar internal flow: (a) Exact solutions to NS equations for flow through channels and circular pipe, Fully developed forced convection in pipes with different wall boundary conditions, Forced convection in the thermal entrance region of ducts and channels (Graetz solution), heat transfer in the combined entrance region, (b) Integral method for internal flows with different wall boundary conditions. Elements of turbulent heat transfer.
Natural convection : Introduction to natural convection; Boussinesq approximation and scaling analysis; Similarity solution of natural convection equations for boundary layers; Laminar and turbulent free convection;
Fundamentals of boiling and condensation; Deviations from continuum: wall slip and thermal creep, an introduction to convective transport of heat in microscales; Conjugate heat transfer problems.
References
ME 523 Advanced Thermodynamics
Review of basic thermodynamics: First & Second laws, Concept of entropy and entropy generation, Entropy balance for closed & open systems; Concept of exergy & irreversibility, Exergy analyses of open and closed system
Thermodynamic property relations: Maxwell relations; Relations involving enthalpy, internal energy and entropy; Mayer relation, ClausiusClapeyron equation, JouleThompson experiment.
Properties of gas mixtures: Multicomponent and multiphase systems, Equations of states and properties of ideal and real gas mixtures, Change in entropy in mixing.
Irreversible thermodynamics: Finite time thermodynamic principle, Optimization of various thermodynamic systems, Principles of entropy generation minimization.
Thermodynamics of reactive systems: Combustion and thermochemistry, Reactant and product mixtures, Adiabatic flame temperature, Chemical equilibrium, Equilibrium products of combustion.
Chemical Kinetics: Global versus elementary reactions, Elementary reaction rates, Rates of reaction for multistep mechanisms.
Flames: Types of flames, Simplified analyses of premixed & diffusion flames, Factors influencing flame velocity and thickness, Quenching, flammability and ignition, Flame stabilization.
References
00