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Abstract: Airborne LiDAR with simultaneous photographic data acquisition is an 

effective technique for 3D data collection with colour or textural information. Flight 

planning for airborne LiDAR data collection ensures the desired qualities in the data. 

While the desired quality of data is enforced by adopting the appropriate flight planning 

parameters during the flight operations, attempt is also made to minimize the flight 

duration which leads to minimizing the cost of the project. The flight duration is 

expressed as the sum of strip and turning time. The data requirements, preferences and 

limitations, which are associated with a flight planning problem, are framed as the 

constraints. The scanner parameters (half scan angle, scanning frequency, PRF) and 

flying parameters (flying height, flying speed, flying direction) are identified as variables 

of the optimization. Due to the typical characteristics of flight duration and scanner 

parameters, and the absence of the initial solution, the classical methods of optimization 

are found not deployable. Consequently, genetic algorithms (GA), which is an 

evolutionary algorithm, is employed as an alternative procedure for solving the problem. 

However, GA usually demands longer time for the convergence. Therefore, considering 

the pitfalls of both GA and classical method, a two-step procedure, which consists of GA 

and Hooke and Jeeve’s (HJ) classical method of optimization, is suggested. The two-step 

procedure is implemented for a simulated AOI (Area of Interest for data capture) and an 

AOI of an actual test site with different data requirements. Results obtained by the GA 

show higher confidence in the scanner parameters which are mathematically discrete. 

Considering the scanner parameters as constant in the HJ method, the results of GA are 
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refined by further optimizing the flying parameters with convergence in the objective 

function values. Statistical measures like average, minimum, and maximum indicate the 

improvement in the flight duration values. The suggested two-step procedure successfully 

delineates the optimal flight planning parameters for a fairly complicated flight planning 

problem of airborne LiDAR data acquisition. In order to implement the two-step 

procedure for a large AOI with stringent data requirements, a calculation process, which 

is found to produce least number of outliers in the earlier study, is explained. Results 

obtained in this paper demonstrate that the proposed two-step procedure can be used for 

solving the complex engineering problems like flight planning. 

 

1. Introduction to Flight Planning Problem for ALS 

Airborne LiDAR scanning (ALS) provides 3D topographic data of a terrain surface with 

certain attributes like planimetric (horizontal) and altimetric (vertical) accuracies, data 

density, overlap etc. Due to negligible dependencies on the accessibility and type of 

terrain conditions (rough and undulating, plane or steep), the ALS is considered to be a 

viable option for capturing highly accurate 3D topographic data. As a result, the ALS is 

being used for different types of applications: forest management, mining, oil and gas 

explorations, corridor mapping, environmental monitoring, utility surveillance and 

management, engineering and construction, municipal mapping, real estate development, 

flood plain mapping etc [1]. However, the cost involved is higher due to the expensive 

hardware and complicated operations. Flying for data capture is one such complicated 

operation which directly controls the cost of the project.    

 

Flying operations, apart from the other critical operations, consists of flying the aircraft 

(or helicopter) in stable position (ideally no change or vibrations in attitude and altitude 

with respect to time) over the given area of interest (AOI) on terrain. Moreover, in 

addition to the flying direction and flying height, other parameters (aircraft speed, 

scanning angle, scanning frequency and point repetition frequency) impose the 

constraints on the flight duration. Therefore, it should maintain a known direction of 

flight and height. The problem of altitude and attitude measurement is alleviated as 

inertial measurement unit (IMU) and global positioning system (GPS), which 
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respectively determine attitude (roll, pitch, yaw angles) and the position (3D coordinates 

of aircraft trajectory) of an aircraft with considerable accuracy and precision are 

integrated with LiDAR scanner onboard. However, the quality of the data gathered 

depends on the flight parameters and the nature of ground, where the former include the 

parameters of sensor and aerial platform. Moreover, the cost of flying operation is 

directly dictated by the duration of the flight. Therefore, aerial LiDAR data acquisition 

demands optimum flying parameters that minimize the flight duration while at the same 

time ensure the quality and quantity of data.  

 

This paper first addresses the flight planning problem in detail, formulates the objective 

function, identifies the parameters of flight planning, explains the derived methodology 

to obtain the optimum result, and performs the minimization of the flight duration. The 

basic details of ALS are given in Baltsavias [3] and Wehr and Lohr [2]. The definitions 

of fundamental terms (scanning angle ‘φ ’, scanning frequency ‘ f ’, flying height ‘ H ’, 

flying speed ‘V ’, point repetition frequency or PRF ‘ F ’) and the derived terms 

(effective swath ‘ B ’, point density or data density ‘ ρ ’, along track spacing ‘ AD ’, across 

track spacing ‘ SD ’) related to laser scanning are adopted from Baltsavias [3] and Wohr 

and Lohr [2]. The formulations involved in the objective function are not derived here but 

are done in the technical report describing the turning time calculations [4]. Furthermore, 

planimetric and altimetric errors of 3D data can be found in technical report of error 

calculation for airborne LiDAR data [5].  

 

The paper is organized in nine sections. Introduction to flight planning problem in 

Section 1 is followed by the detailed description of problem with technicalities in Section 

2. Section 3 formulates the flight planning problem as optimization problem and defines 

the objective function and constraints. Sections 4 and 5 select the optimization method 

and also describe two-step procedure of optimization. Sections 6 and 7 perform the 

optimization for flight planning problems, respectively, for simulated and real test sites. 

Section 8 provides a guideline on minimum number of simulations to be performed for 

obtaining the results with higher confidence. Conclusion is presented in Section 9.  
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2. Description of Flight Planning Problem for ALS  

ALS operation consists of scanning over the ground using a LiDAR scanner, mounted in 

an aircraft or helicopter, and thus measuring the range (direct distance from laser emitter 

to the ground) to a ground point. In order to measure the range of the point, LiDAR 

scanner fires a laser pulse that reaches the ground by traveling through the atmosphere 

with the velocity of light and reflects back from the ground to be captured by the 

scanner’s receiver. The time difference between the firing and receiving of the laser pulse 

gives a measure of the distance or range. As mentioned earlier, LiDAR scanner is 

integrated with the GPS and IMU devices that provide 3D coordinates in WGS84 (World 

Geodetic System 1984) reference system [6]. The 3D coordinates of the collected data 

points on the ground surface collectively represent the terrain. Although, the laser pulses 

are fired with regular time interval to form a scanning pattern, data points on the surface 

of ground are collected in a pseudo-random manner. As an example the process of data 

collection using the ALS is illustrated in Figure 1. 

 

 

Fig. 1:  Airborne LiDAR scanning process 
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During the scanning process, the pulses are fired successively in the field of view (FOV). 

The FOV is equally divided on both sides (left and right) with respect to the nadir 

direction at the emitter. The half of the FOV is termed as ‘half scan angle’ and denoted 

byφ . The angle φ  of a scanner mounted in an aircraft, which is flying at a height H  

with reference to a datum, forms ‘swath’ ( sB ) or width of a flight strip on the ground 

(Figure 2) and is expressed as: 

)(tan2 φHBs =  … (1) 

 

 

Fig. 2: Schematic view of half scan angle, flying height, swath, Z shape scanning 

pattern, along track spacing, and across track spacing for ALS 

 

Ideally, the swath is equal to the spacing between the center lines of two adjacent flight 

strips which have no overlap. However, due to the overlap, which is maintained between 

two adjacent flight strips for continuity of data and error removal [7], the distance 

between the flight lines or center lines of flight strips is reduced to the ‘effective swath’. 

The effective swath ( B ) is written as: 

)1( PBB s −=  … (2) 

where P is ‘percentage overlap’ [8] or ‘overlap fraction’ that represents the fraction (or 

percentage) of the swath which lies under the area of overlap at the edges of two adjacent 

flight strips on the map.  
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‘Speed’ )(V of an aircraft along the flight direction realizes the second dimension of 

scanning process as an aircraft moves by a distance equal to the speed in one second [2]. 

Due to the movement in flying direction, the scanning lines, which are obtained across 

flying direction, appear in a Z shape, which is termed as saw tooth or zigzag pattern [3]. 

As shown in Figure 2, all scanning lines, which are formed by movement of oscillating 

mirror in one direction (left to right or right to left) are parallel to each other, however, 

none of these are exactly perpendicular to the flying direction. Figure 2 is an exaggerated 

view of the actual scanning mechanism. In reality, the across track spacing ( SD ) between 

two successive points in a scan line is not uniform and is minimum at the center and 

maximum at the ends. 

 

Apart from the Z shaped pattern, it is possible to generate many more patterns [9] by 

different type of sensors [3]; this study is performed using Optech’s airborne LiDAR 

scanner model ‘ALTM 3100EA’ which creates bidirectional Z shape (zigzag) pattern. 

The characteristics and criticality of the relevant parameters of ‘ALTM 3100EA’ model 

are discussed in Section 5. 

 

An aircraft, after covering one flight strip, navigates back to the starting point of the next 

parallel strip through a 180º level turn or horizontal course reversal. For any strip, which 

is essentially not the first strip, aircraft navigates in opposite direction than that of the last 

strip and thus covers the complete AOI in finite number of strips. Turning from one flight 

line to the next flight line can be performed by consecutive turning, non-consecutive 

turning, or hybrid turning [4].  

 

As stated earlier, flying operations are the most critical part of airborne data collection as 

during this period, the required quality of data is ensured by adopting the appropriate 

flight planning parameters. Moreover, it takes considerable resources amongst all project 

operations. Furthermore, flying an aircraft includes expensive logistics requirements, 

severe risks and consequently accounts for higher cost. Apart from that, unlike 

conventional topographic survey practices performed on ground, airborne survey can not 

be repeated without a justified reason due to intricacies and cost involved. Therefore, 
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minimizing the duration of flight is the only desirable solution for exploiting the real 

potential of the airborne surveys. The next section presents the expression of flight 

duration with minimum derivations and analysis and then leads to the constraints 

imposed due to the LiDAR survey requirements. 

 

3. Objective function and Constraints 

Figure 3 shows the turning by consecutive mechanism on parallel flight strips, each has a 

width equal to the effective swath ( B ). The original AOI is expressed by map 

coordinates ( x , y ). The flying takes place at an angle θ  (also called flying direction), 

which is positive in counterclockwise direction with respect to the x -axis or Easting axis 

of map. Flying operation starts at point S and finishes at point E. Therefore, the flight 

duration consists of the time required to travel over the flight strips (i.e. strip time) and 

time required to complete turns between the flight lines or flight paths (i.e. turning time). 

 

 

Fig. 3: Schematic view of AOI, flight strips and turnings [10] 
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3.1 Objective function 

Flight duration is the sum of the strip time and turning time ( TT ). Strip time is determined 

by estimating the total length of the all flying strips and dividing it by the speed of the 

aircraft. The length of a flying strip is calculated by rotating the original AOI by flight 

direction and dividing it into rectangular strips, each of width equal to the effective 

swath. Therefore, the rotation of AOI, calculation of number of flight lines and the flight 

duration are expressed as: 
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where  

=iL  Length of thi  flight line (flight path on thi  flight line on ground),  

=TT  Total turning time required for ‘ 1−n ’ turns or horizontal course reversals (or 180º 

level turns), 

=maxY Maximum value of Y coordinate (or ordinate) of rotated AOI, 

=minY  Minimum value of Y coordinate (or ordinate) of rotated AOI, 

=L
iX  Value of X coordinate of left edge (or left end) of thi flight strip (or flight line) in 

rotated AOI, and 

=R
iX  Value of X coordinate of right edge (or left end) of thi flight strip (or flight line) in 

rotated AOI. 

 

The length and location of centre line of the thi  strip and the corresponding length of 

turning for given θ , are dictated by the size of the effective swath ( B ) as it affects the 

number of strips (equation 4). Unlike the formulation for strip time as shown above, the 
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derivation of relationship for turning time is complex and cumbersome. Therefore, for the 

conciseness of the discussion, the formulation and algorithm to determine the turning 

time is adopted from the technical report of turning time calculation [4].  Details of the 

algorithms for calculating the turning time are presented in appendix. 

 

3.2 Constraints 

The data captured by the ALS should fulfill certain qualities. In this paper, constraints 

related to the data density, overlap, spacing of data points in along track and across track 

directions, errors in data, simultaneous photographic data acquisition, scanner product, 

and safety regulations are considered and mentioned in the discussion below. 

 

(i) Minimum and maximum data density: It is evident from the explanation of ALS 

mechanism that in one second duration a scanner effectively covers an area equal to the 

product of effective swath and speed )( VB . Furthermore, during the same time period, it 

fires and collects the 3D information for F number of pulses. Therefore, the ‘data 

density )(ρ ’ (also known as ‘point density’) can be written as: 









=

VB

F
ρ                                                         … (6) 

The density of data collected, however, should be in the range of minimum data density 

( Lρ ) and maximum data density ( Uρ ), which are specified by a user. Therefore, the 

constraints on data density are written as:  

UL ρρρ ≤≤  … (7) 

Tolerance in data density ( maxτ ) connects the maximum and minimum data density by 

following relationship [10]: 

)1( ρτρρ += LU  … (8) 

 

(ii) Minimum overlap: Mapping agencies like United States Geological Survey 

(USGS) recommends a minimum of 10% overlap on all parts of terrain surface [11]. As a 

result, at no part of terrain the overlap should be lesser than the minimum overlap ( minP ), 

which is, therefore, the limiting overlap at the highest point of terrain.  A maximum 
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overlap ( maxP ) may also be specified which will be limiting overlap at the lowest 

elevation of terrain. Contrary to overlap, the data density reaches its maximum and 

minimum values at the highest and lowest points of terrain, respectively. Dashora [10] 

provides an algorithm that considers theoretical relationships between the data density 

( ρ ), overlap ( P ), terrain elevation ( dt ), and flying height ( H ). According to the 

algorithm, instead of bounding the data density ( ρ ) by its upper bound value ( Uρ ), the 

tolerance in data density ( ρτ ) is restricted by a maximum value ( maxτ ). The algorithm is 

given in the form of pseudo code as: 

  

Given: 3D information of terrain ( dt ) with known accuracy  

           Tolerance in data density ( ρτ ) constrained in a range from minτ  to maxτ  

Select: Flying height ( H ) and half scan angle (φ ) 

Calculate: Relief ratio HdtPR =   

 Tolerance in data density ( )RR PP −≥ 1ρτ   

  Maximum overlap fraction at datum )1()1(1 minPPP R −−−=  

 Swath at datum φtan2 HBs =   

  Effective swath sBPB )1( −=   

Check the constraint: Calculated ρτ  should be in the range specified ( minτ  to maxτ ) 

Termination: If constraint is not satisfied, repeat with different values of flying height 

( H ) and half scan angle (φ ). 

 

(iii) Spacing of data points: Equation (6) is a general equation representing data 

density independently of the type of scanning pattern, as it is a function of area covered 

in unit time (one second duration). However, within this area ( VB ), the uniformity of the 

3D data is dictated by the spacing between the successive and similar points in 

longitudinal (along-track) and lateral direction (across-track), respectively. In order to 

achieve uniformity in spread of data points (to avoid data clustering), the across track 

spacing and along track spacing should be of comparable magnitude [11]. Therefore, the 
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ratio of absolute difference between the along track spacing ( AD ) and across track 

spacing ( SD ) to the along track spacing ( AD ) should be less than or equal to some user 

defined threshold on spacing ( dε ). Accordingly, the constraint on the spacing of the 

LiDAR data points is written in a generic form as: 

 d

A

SA

D

DD
ε≤

−
 … (9) 

The spacing in the along track and across track directions can be considered by many 

criterions like average, maximum or minimum. For Z shape pattern of scan lines, the 

average values of along track spacing and across track spacing are calculated as [3]:  
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(iv) Planimetric and altimetric errors in data: The planimetric and altimetric errors in 

LiDAR data are restricted by maximum allowable values of respective errors, which are 

decided by a user as per the application. The calculation of the errors for the LiDAR data 

involves propagation of random errors in various measurements by scanner, IMU, GPS, 

and spatial arrangement between these measuring units. The procedure of calculation is 

adopted from the error calculation report [5].  

Hp e≤σ  … (12) 

Vv e≤σ         … (13) 

where  

22

pp YXp σσσ +=        … (14) 

 
pZv σσ =         … (15) 

=
PXσ  1σ error in x- direction of local tangent plane at a point, 

=
PYσ  1σ error in y- direction of local tangent plane at a point, 

=
PZσ  1σ error in z- direction perpendicular to local tangent plane at a point, 
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=He Maximum allowable 1σ planimetric error (or horizontal) in local tangent plane at a 

point, and 

=Ve  Maximum allowable 1σ altimetric (or vertical) error in local tangent plane at a 

point. 

 

(v) Scanner product: This category of constraints includes all constraints, which are 

imposed by the physical limitations of LiDAR or other scanners mentioned by the 

scanner manufacturer. For example, in case of ALTM3100EA scanner instrument, the 

scanner product is given by:  

1000≤φf  … (16) 

 

(vi) Safety regulations: Amongst all safety regulations, the minimum eye safe distance 

( ESD ) for the laser pulse, and minimum flying height or minH  (according to air traffic 

control or ATC standards) are considered. Maximum of the eye safe distance ( ESD ) and 

minimum flying height ( minH ) should be added to maximum elevation of terrain ( maxh ) 

and the flying height ( H ) should be more than the calculated distance values as:  

( )),(max minmax ESDHhH +≥      … (17) 

ESD depends upon the LiDAR scanner and generally mentioned by the manufactures. 

However, for India, a minimum of 305 meters (1000 feet) flying height is recommended 

[12]. 

 

(vii) Simultaneous photographic data acquisition: According to recent practice, along 

with LiDAR data, photographic or image data are also captured using airborne digital 

camera [13]. As flight planning process is optimized for the LiDAR data acquisition, the 

photographic data capture is accommodated with additional constraints.  Following four 

requirements are framed as constraints [10]: 

(a) Camera and LiDAR sensor selection: Dashora [10] derived a relationship for 

calculating the maximum half scan angle ( Maxφ ) of LiDAR sensor that restricts the value 

of half scan angle, for the given field of view (FOV) of camera ( optφ ). It should be noted 

that half scan angle, can be programmed by a flight planner before data acquisition. 
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Consequently, the FOV of LiDAR scanner, which is equal to twice of the half scan angle, 

is decided by the flight planner for LiDAR scanner. The relationship, which ensures the 

minimum side lap of images captured by camera and minimum strip overlap of LiDAR 

data, is given by [10]: 




























−

−
≤ −

2
tan

1

1
tan 1 opt

e

ecy

Max
P

P φ
φ      … (18) 

For a camera of 44º FOV, equation (18) calculates the maximum half scan angle value 

equal to 18.6º. However, if a camera (camera come with fixed FOV) is selected during 

the flight planning, it allows the calculation of maximum half scan angle of the LiDAR 

scanner. Consequently, after calculating the maximum half scan angle value for LiDAR 

scanner, this constraint is not needed to be considered in the solution process as 

henceforth the maximum half scan angle can be considered as the computed one or as the 

one recommended by the USGS (i.e 20º).  

(b) Ground sampling distance (GSD): GSD of captured image should be less than or 

equal to the user defined value of maximum GSD ( MaxGSD ). Therefore,  

MaxGSDGSD≤  … (19) 

(c) Exposure interval: The photographs on a flight line are captured by successive 

exposures of camera. The time period between the two successive exposures of camera is 

termed as ‘exposure interval’ [14]. Therefore, the distance travelled by an aircraft during 

the exposure interval (in seconds) between two successive exposures of a camera should 

be more than the length of the area captured by a pair of stereo images along the flight 

direction. The resulting inequality relationship is [14]: 








 −
≤

V

nPGSD
t

pxcx

ei

)1(
 … (20) 

Recxecxcx PPPP )1( −+=  … (21) 

(d) Horizontal accuracy of orthoimage: A digital map (or orthoimage) is prepared 

from the captured images. For the desired GSD of orthoimage ( orthoGSD ), GSD of image 

should be constrained by the following empirical relationship [10]:   

( ) orthoGSDGSD 884.0≤  … (22) 

where  
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=

c

p

f

sH
GSD  … (23) 

=ps  Size of a pixel of airborne digital camera, 

=cf  Focal length of camera, 

=pxn  Number of pixels in camera in along track direction, 

=Maxφ Maximum allowable value of half scan angle, 

=optφ Camera FOV,
 

=cxP  Endlap (or overlap in along track dierction) between two consecutive images at 

datum, 

=ecxP  Minimum endlap (or overlap in along-track direction) between two consecutive 

images [15], 

=ecyP  Minimum sidelap (or overlap in across-track direction) between two consecutive 

images [15], and 

=eP  Minimum overlap (in across-track direction) between two adjacent strips of LiDAR 

data. 

 

4. Constrained Minimization of Flight Duration 

4.1 Identification of design variables of flight planning problem 

It is evident from the expressions of objective function (equations 3 to 6), that for given 

AOI, data specifications and other environmental variables, the flight duration is a 

function of half scan angle (φ ), flying height ( H ), speed of aircraft (V ), and flying 

direction (θ ). However, the constraints, in addition to these four variables, are also 

dictated by the scanning frequency ( f ), and PRF ( F ). Therefore, there are six variables 

that influence the minimization of flight duration under constraints. The remaining 

variables are either characteristics of sensors (LiDAR scanner, camera, GPS, IMU) or 

environmental variables. Environmental variables, which represent the user defined 

requirements of data or user defined preference for flying operations (i.e. maximum bank 

angle, or cushion period), remain constant for a given problem of flight planning. Values 
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of environmental variables are shown in the following Table 1. The next section 

discusses about the characteristics of sensors used in this study. 

Table 1: Data Requirements in Optimization Problem  

Parameter Symbol Value 

Minimum data density ρL 11 points/m2   

Maximum data density ρU 13 points/m2 

Tolerance in data density τρ 30 % 

Tolerance of spacing constraint εd 10 % 

Minimum overlap  Pe 10 % 

Maximum altemetric error  eV 0.10 m 

Maximum planimetric error  eH 0.15 m 

Maximum GSD GSDMax 0.15 m 

Minimum endlap Pecx 60 % 

Minimum sidelap Pecy 25 % 

Maximum bank angle βmax 25º 

Cushion period tC 30 seconds 

 

4.2 Characteristics of sensors (GPS, IMU, LiDAR scanner) 

The selection of a suitable and appropriate optimization scheme for flight duration 

minimization requires a comprehensive understanding of the characteristics of the 

variables involved and their observation by the sensors. Information about the navigation 

sensors (IMU and GPS units) is important for evaluation and control of the error. Further, 

the spatial interrelationship between the LiDAR scanner and IMU unit should also be 

known. Therefore, it is assumed that the latest calibration reports of all sensors are 

available. The values of precision parameters are selected from the paper by Glennie [16] 

for the calculation of the propagated errors in the LiDAR data [5]. Details of the error 

calculation are beyond the scope of this paper. However, it should be noted that the flying 

height ( H ) and half scan angle (φ ), which are decision variables in optimization process, 

participate in the error calculation. ‘ALTM3100 EA’ LiDAR scanner, which is 

manufactured by ‘Optech Inc.’, is used in this study. Similarly, ‘Applanix DSS 322’, 

which is a medium format digital airborne camera, is selected. Following Tables 2 and 3 

show the salient and relevant features of ‘ALTM3100 EA’ scanner and ‘Applanix DSS 

322’ camera. 
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Table 2: Specifications of ‘ALTM 3100EA’ LiDAR Scanner [17] 

Parameter Values 

 Range Least Count 

Flying height (H) 80-3500 m Continuous 

Scanning frequency (f) 1-70 Hz 1 Hz 

Scanning angle (ϕ) 1-25º 1º 

PRF (F) 

{33, 50, 70, 100}  kHz (if 80 ≤ H ≤ 1100 m) 

{33, 50, 70} kHz (if 1100 < H ≤ 1700 m) 

{33, 50} kHz (if 1700 < H ≤ 2500 m) 

{33} kHz (if 2500 < H ≤ 3500 m) 

 

Table 3: Specifications of ‘Applanix DSS 322’ Camera Scanner [18] 

Parameter Value 

Pixel size (sp) 9 microns 

Number of pixels along-track  (npx) 4092 

Number of pixels across-track  (npy) 5436 

Focal length (fc) 60 mm 

FOV across-track (ϕc) 44º 

Exposure time* (tet) 1/125-1/4000 seconds 

Exposure interval (tei) 2.5 seconds 

* Slower shutter speed (higher exposure time) not recommended 

 

The speed of an aircraft for airborne LiDAR data acquisition can vary in a large range, 

i.e., 10-140 knots (5.14 to 72 m/s) [19]. Specific to the ALTM 3100EA scanner, latest 

practices prefer Cessna aircraft or helicopter. The recommended range of speed of an 

aircraft (aircraft and helicopter) and the least count of scanning frequency and scanning 

angle are obtained by private communications with Mariusz Boba [20] and Jake Carroll 

[21]. 

 

4.3 Selection of optimization method for minimization problem 

Amongst the six variables of design vector of optimization, three variables namely the 

half scan angle (φ ), scanning frequency ( f ) and PRF ( F ) are the features of a LiDAR 

scanner and thus these are addressed as scanner parameters. The remaining three 

variables (flying height, flying speed and flying direction) are related to flying operation 

and therefore, these are termed as the flying parameters. The salient characteristics of the 

scanning parameters, flying parameters, flight duration and constraints are as following:  
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(i) Scanner parameters are discrete parameters. More specifically, the PRF is a 

discontinuous parameter which is decided according to the flying height. However, flying 

parameters are continuous parameters. Therefore, the objective function (flight duration) 

and constraints are functions of discrete as well as continuous variables. 

 

(ii) Flight duration is a sum of the strip time and turning time. The strip time is the 

summation of the time taken to cover individual strips of varying length. For an arbitrary 

shaped AOI, the strip time is discontinuous mathematical functions. Moreover, on the 

other hand, the turning time is a function of the flying speed and maximum banking 

angle. During flying operations, the maximum banking angle remains constant in 

practice. The flying speed is a continuous variable. As an aircraft has to turn to one of the 

flight lines which are finite in number, are regularly spaced and have pre-decided 

locations, the turning mechanism (consecutive, non-consecutive or hybrid turnings) 

makes the flight duration discontinuous. Switching between the parallel flight lines for 

covering all flight lines in minimum time is equivalent to the problem of travelling on 

parallel edges and shifting from one edge to the other in minimum time. The problem of 

travelling on parallel edges and switching between these is non-solvable in polynomial 

time using classical combinatorial optimization techniques [22]. 

 

(iii) The scanner and flying parameters appear as non-separable variables in the 

expressions of flight duration and constraints, where the latter are implicit nonlinear 

mathematical functions. 

 

(iv) The error in 3D coordinates has an inverse relation with the fight duration with 

respect to the changes in flying height and scan angle (i.e., with the increase in flying 

height and scan angle the flight duration will decrease but the errors increase, and vice 

versa.  

 

As per the characteristics of variables, applicable constraints and the objective function 

discussed above, the problem of optimization in the current case is a mixed integer 

nonlinear problem (MINLP). However, the nonlinear implicit equations of 
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mathematically discontinuous objective function and constraints, which are defined in 

terms of discrete and continuous variables, limit the use of conventional (classical) 

optimization methods. Additionally, the existence of derivatives and unimodal property 

of objective function is also not guaranteed in such problems. In view of the nonlinear 

single-objective constrained optimization problem with discontinuous objective function 

and constraints, which are defined in terms of non-separable discrete and continuous 

variables, the evolutionary algorithms can be found useful.  

 

Recently, Rodrigues and Ferreira [23] combined the GA and local search method for 

solving the shortest path of travel on edges (or rural postman problems). Moreover, the 

exploration and development of GA in the last two decades at the Kanpur Genetic 

Algorithm Laboratory (KanGAL) in IIT Kanpur is a strong motivational reason to use it 

as a tool for optimization of complex flight planning problem. Furthermore, the Real-

Coded Genetic Algorithms (RGA) code is available online at KanGAL’s website for 

solving the single objective optimization problem. However, in spite of their 

revolutionizing development and implementation for real life applications at KanGAL 

and world over in the last few years, these are not yet explored for flight planning and 

flight duration constrained minimization problem. Furthermore, for nonlinear functions, a 

classical method demands an initial point or solution of design variables which should be 

in the vicinity of the desired optima.  

 

On the other hand, a general notion is that an optimization problem may take 

significantly longer time for convergence. Moreover, for convergence to the global 

optima, the time required by GA of infinite scale cannot be accommodated in practical 

sense. Conversely, the potential of the classical methods for fast convergence, due to their 

intelligent search procedure in a local neighbourhood of initial point, cannot be ignored. 

Therefore, it is wise to use a hybrid algorithm that utilizes the potentials of both classical 

and evolutionary methods and in turn compensates for the pitfalls of both sides.  

 

There are a number of classical methods available in the literature with different 

applicability. However, as explained in the previous section, the flying speed and various 
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turning mechanisms performed on finite number of flight lines makes the flight duration 

a discontinuous function. A slight variation in flying speed may change the turning 

mechanism from one type to another type. Therefore, a classical method which does not 

require assumptions of continuity and existence of the derivatives of the objective 

function is desired. Fernandes et al. [24] and Costa et al. [25] presented hybrid 

optimization algorithms that combine GA and various classical methods. Fernandes et al. 

[24] combined the branch and bound (B&B) method with GA to solve the MINLP 

problem. The study by Costa et al. [25] devised Hybrid Genetic Pattern Search 

Augmented Lagrangian (HGPSAL) algorithm by integrating the GA with Hooke and 

Jeeve’s (HJ) method, which is a derivative free pattern search method, and constraints are 

handled by the augmented Lagrangian method. Considering the nature of the objective 

function of flight planning problem, hybrid approach of two-step procedure using the HJ 

method and GA is proposed for the flight planning problem in this study. Next section 

explains the GA and HJ method briefly. As the proposed method is not ever implemented 

and tested for the flight planning problem, a simulation study is conducted for the flight 

planning problem which is presented in the subsequent section and later the proposed 

approach is applied on the flight planning problem on an actual test site with defined data 

requirements.   

 

5. Two-step procedure of optimization 

5.1 Introduction to genetic algorithms (GA) 

Genetic algorithms (GA) are amongst the most popular evolutionary methods. GA are 

advanced statistical methods that are independent of the initial estimates of parameters. 

Furthermore, these are not limited by the restrictive assumptions like unimodality, 

continuity of design variables (parameters), objective functions (or fitness function), 

constraints, and the existence of derivatives of objective functions or constraints [26]. 

  

The search procedures in GA start with the multiple numbers of the trial values of 

parameter vectors (also known as population of design vector or parameter vector), in 

contrast to the conventional optimization technique which begins with a single initial 

value of the design vector. The value of objective function is utilized to generate a 
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population for the next search using the probability transition rules instead of the 

derivatives, auxiliary knowledge, or deterministic rules. A simple GA that yields good 

result is usually composed of three operators: reproduction, crossover, and mutation. 

Reproduction is a process in which the individual trial design vectors (vector of design 

variables) are selected to participate in the next generation of offspring as parents, 

according to their objective function values. In a minimization problem, the design 

vectors with a lower value of objective function have a higher probability of contributing 

towards the production of offspring in the next generation. Crossover follows the 

reproduction and proceeds in two steps. First, the members of newly produced vectors are 

mated at random and secondly each pair of design vector undergoes crossing over by 

random swapping. Although the reproduction and crossover efficiently search and 

recombine good extant notions, occasionally they may also lose some potential genetic 

material. Such irrecoverable loss is protected by mutation. Mutation is occasional random 

alteration of the value of a parameter in a design vector [26]. 

 

5.2 Hooke and Jeeve’s method 

Explanation and implementation of HJ method is adopted from the Kaupe Jr. [27]. After 

explanation of the method in a generic sense in the forthcoming discussion, it is modified 

for the flight planning problem with flying height ( H ), flying direction (θ ) and the 

flying speed (V ) as variables.  

 

For HJ method, the initial point or guess ( 0
p ), which is an estimate of the optimal 

solution in multidimensional parameter space, is a prerequisite. Moreover, for the first 

iteration, a step length ( 1∆ ) for each dimension (or variable) of optimization problem is 

predefined. The HJ method performs optimization as explained in the following steps: 

(i) At the start of the optimization process, the given initial point or guess ( 0
p ) is 

considered as the current position for the first iteration. In the process of 

optimization, in the thk  iteration, the current position and step length are denoted by 

1−k
p and k∆ , respectively. 
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(ii) The HJ method, in the thk  iteration, explores the parameter space by shifting the 

current position ( 1−k
p ) by a step length ( k∆ ) along a variable’s coordinate axis in 

both negative and positive directions. At the shifted positions, the objective function 

values are evaluated. If a shift by step length gives a superior result of objective 

function, the current position ( 1−k
p ) is updated by step length to occupy the new 

position ( k
p ). This process is repeated for all direction axes. 

(iii) In the step (ii), if improvement in objective function value is recorded, step (ii) is 

repeated for the next iteration with the same step length. 

(iv) In case of no improvement or inferior result, the current position is not updated (or 

current position itself becomes new position for the next iteration). The HJ method, 

at this stage, reduces the step length ( 1−−=∆ kkk
pp ) of thk  iteration by a predefined 

factor ( HJr ) to calculate the step length of the next iteration. The factor ( HJr ) used 

for reduction of step length should be close and lesser than one for exhaustive 

exploration and smooth transitioning through the parameter space. 

(v) The above three steps are repeated in succession till an improvement in the value of 

the objective function is found below a certain threshold. Moreover, the algorithm 

is also terminated intermediately if the maximum allowable number of iterations is 

reached. 

 

For the flight duration minimization, the step length vectors ( 1∆ ) for three variables are 

calculated by dividing the range of individual variables by the population size. The 

following sections implement the suggested two-step procedure for the simulated AOI. 

After implementing the method for the simulated AOI, the two-step procedure is applied 

on an actual test site. 

 

6. Simulation study for the flight planning problem 

In view of the nature of objective function and characteristics of variables of design 

vector specific to the flight planning problem, a simulation study is first conducted on an 

arbitrary shaped AOI. The arbitrarily shaped simulated AOI, which occupies 

approximately 4 km
2
 area on map, is shown in local map coordinates in Figure 5. The 
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difference between the maximum and minimum elevation point is assumed to be 200 

meters.  

 

 

Fig. 5: AOI for simulation study [28] 

 

A thorough investigation with the possible configurations of RGA code has been done for 

the flight planning problem for simulated AOI [28]. Optimization parameters or variables 

of design vector in optimization problem are considered continuous variables i.e. integer 

variables (half scan angle, scanning frequency) are obtained by rounding the continuous 

variable to the nearest integer. However, as shown in Table 2, for ALTM 3100EA 

scanner, the discrete variable like PRF is a discontinuous variable and is a function of 

flying height ( H ) which is a continuous parameter. A continuous random variable ( Fu ) 

is generated in the range [0 1] and mapped to discrete values of PRF as following:  





















≤<

≤<

≤<

≤≤

=

35002500)(25.0

25001700)(50.0

17001100)(75.0

110080)(00.1

Hu

Hu

Hu

Hu

u

F

F

F

F

F      … (23) 

1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

x Coordinates (meters)

y
 C

o
o
rd

in
a
te

s
 (
m

e
te

rs
)

 



 23 





















≤<

≤<

≤<

≤≤

=

00.175.0100

75.050.070

50.025.050

25.000.033

F

F

F

F

ukHz

ukHz

ukHz

ukHz

F      … (24) 

 

The results presented in the report [28] reveal that optimization parameters as continuous 

variables, sampling by Latin hypercube sampling (LHS), and elite preservation by BRCR 

and BRCN strategies with population size of 200 can efficiently determine the optimal 

solution. Relevant and brief description on these strategies is presented here; however, 

detailed descriptions of these strategies for configurations can be referred from [28]. 

Latin hypercube sampling (LHS) achieves the multi-dimensional uniformity and is a 

space filling method [29]. Elite preservation strategies, namely BRCR and BRCN, stands 

for ‘best ever replacing a candidate randomly’ and ‘best ever replacing a candidate by 

niching’, respectively. The first one is BRCR, wherein a sample from current generation 

is selected randomly and replaced by ‘best ever’. For the second strategy, first 20% 

samples of population of current generation are randomly selected. Amongst these 

samples, the sample which is nearest to the ‘best ever’ in terms of Euclidian distance is 

replaced by the ‘best ever’. The former strategy of elite preservation achieves optima 

with less computational effort, however, is suspected to loose the diversity and may 

detect an inferior solution. On the other hand, latter strategy (BRCN) preserves the 

diversity in the population but requires more number of computations compared to 

former one (BRCR). Statistical measures like maximum, minimum and average values of 

objective function are used to characterize the performance of an algorithm. Moreover, in 

addition to the statistical figures, the number of outliers and the number of feasible results 

for an algorithm are also observed. The study mentioned in [28] determined the 

configuration(s) that can be universally accepted for the flight duration minimization 

problem. For the purpose of the completeness of the suggested two-step procedure, the 

results of best configurations of algorithmic strategies, which are listed in [28], are 

directly adopted and presented in Table 4. 
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Table 4: Statistical Results of Simulation of Test Problem with Algorithms ABRCR to ABRCN 

Algorithm Minimum 

(seconds) 

Maximum 

(seconds) 
Average 

(seconds) 

Standard 

Dev. 

(seconds) 

Outliers/ 

Feasible 

Results 

ABRCR 
(RCV+LHS+BRCR) 

1941.770 1948.097 1944.136 1.804 1/30 

ABRCN 

(RCV+LHS+BRCN) 
1942.317 1949.325 1944.609 2.069 0/30 

 

GA successfully resolved MINLP of flight problem which classical methods could not 

handle efficiently. Following are the critical observations: 

 

(a) GA, being free of any assumption and without any estimate about the initial point, 

could reach very close to the global optima. The solution obtained by GA can be used 

as initial guess or initial point for the classical method. 

(b) The scanner parameters, which are either integer variables or discrete variables, are 

detected by the GA with higher confidence as their values are constants over multiple 

runs of GA. However, the flying parameters (flying height, flying speed and flying 

direction), which are mathematically continuous variables, display variation from run 

to run. 

(c) None of the algorithms is free of outliers. In addition to that, the standard deviation of 

the flight duration, which is the measure of consistency for an algorithm, also shows 

variation from run to run. Even increasing the population size cannot improve its 

consistency or reduce the standard deviation. 

 

As a result of the above observation, the scanner parameters (half scan angle, scanning 

frequency, PRF) can be considered constant and classical method can be used to further 

optimize the flying parameters (flying height, flying speed, flying direction) for the 

convergence. Therefore, after rejecting the outliers, the solutions obtained by the 

algorithms ABRCR and ABRCN for two problems with the population size of 200, are 

supplied as the initial guesses for the HJ method. During the iterations in HJ method, a 

solution is accepted if it provides less value of flight duration and satisfies all constraints.  
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Figures 6 and 7, respectively, illustrate the progression of GA and HJ over generations 

and iterations for a representative run. 

  

 

Fig. 6: Convergence of flight duration values for a representative run by the GA 

 

 

Fig. 7: Convergence of flight duration values for a representative run by the HJ 

method 
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As GA detects the feasible zone which should be optimal too, Figure 6 shows the 

oscillations in the value of the ‘best ever’ candidate for initial generations. Once feasible 

zones are thoroughly explored and feasible zone is detected, GA starts convergence to 

solution which is most likely optimal.  

 

The solution obtained by the GA is improved by the HJ method till convergence is 

achieved. In Figure 7, according to the initial values of flight planning parameters, which 

are obtained by GA, the flight duration is around 1943 seconds and gradually it reduces 

and finally converges to a value of around 1942 seconds by HJ method. Although the 

improvement is not substantial, however, there is no further tangible improvement 

possible in flight duration values as convergence has been achieved. Therefore, HJ 

method ensures that improved solution is optima that is initially detected by GA and later 

refined by the classical method.  

 

The resulting statistics of the objective function is presented in Table 5. The minimum, 

maximum and average values of flight duration for test problem, as shown in Table 5, are 

lower in comparison to their counterparts obtained by GA in Table 4. This improvement 

is due to the local search by HJ method in the vicinity of the GA solution. Moreover, HJ 

method obtains the value of the objective function by convergence over iterations. Figure 

7 shows the convergence of HJ method for one of the initial guesses, obtained by GA. 

However, it is interesting to note that due to the improvement in the results of GA by HJ 

method, the standard deviation of the HJ results are sometimes higher than the initial 

guess provided by GA solutions.  

Table 5: Statistical Results of Simulation of Test Problems P2 and P4 with Hybrid Algorithm 

Algorithm 
Minimum 

(seconds) 

Maximum 

(seconds) 

Average 

(seconds) 
Standard Dev. 

(seconds) 

ABRCR 
(RCV+LHS+BRCR) 

1941.619 1947.964 1943.218 1.921 

ABRCN 

(RCV+LHS+BRCN) 
1941.086 1948.352 1943.349 2.026 
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It may be noted that though there is an insignificant improvement by HJ method, the 

purpose of this discussion is to show the utility of GA supported by classical method for 

reaching the minima with convergence.  

 

7. Implementation of two-step procedure for actual test site 

The AOI of selected actual site is Little Smith Creek (LSC) which is situated in 

Mackenzie valley of Canada. The coordinates of AOI vertices and data requirements are 

mentioned by Department of Indian Affairs and Northern Development (DIAND), North 

Territories Region (Govt. of Canada) [30]. AOI of LSC occupies approximately 55 km
2 

on map in UTM coordinates and the difference of maximum and minimum elevation 

across the LSC AOI is found to be approximately 57 meters on the Google Earth. The 

LSC AOI is shown in Figures 8 to 9, on Google Earth and as a UTM plot, respectively. 

Survey specifications as adopted by DIAND for LSC AOI are shown in Table 6. 

 

 

Fig. 8: Google Earth image of LSC AOI located in Mackenzie valley (Canada) 

 

 

  

Little Smith Creek AOI  
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Fig. 9: AOI of Little Smith Creek (LSC) shown in UTM map projection 

 

Table 6: Specifications of LiDAR and Photographic Data for LSC AOI [30] 

S.N. Specifications Value 

1. Minimum Data Density 1.5 points/m2  

2. Altimetric Accuracy (90% CI or at 1.645σ level) 15 cm 

3. Maximum GSD of Orthoimage Data 20 cm 

 

Considering the maximum altimetric error (15 cm at 90% confidence interval or at 

1.645σ), the maximum allowable altimetric error (1σ) is restricted to 9.11 cm, by using 

the normal distribution tables. The maximum planimetric error (1σ) is limited to two 

times the altimetric error (i.e. 18 cm). Using the relation shown by equations (18), the 

maximum image GSD of size 17.5 cm is estimated by multiplying the 20 cm orthoimage 

GSD size by a factor of 0.884. The mentioned online specification by [30] also writes 

that a uniform data density is desired. However, specifications do not contain any 

criterion on the maximum data density. In the view of this, with 10-15% tolerance in data 

density, a maximum data density of 1.725 points/m
2 

is considered. Moreover, the 10% 
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tolerance in average across-track spacing and average along-track spacing is allowed. 

Regarding the images and LiDAR data overlaps, standard specifications that are 

mentioned in Table 1 for simulated AOI, are used. Applanix DSS 322 camera model, 

which has 44º across-tracks FOV, is deployed. Considering stringent requirements on the 

errors, Applanix POSAV 610 unit is selected as IMU. The precision values of roll, pitch 

and yaw for post processing mode of data are obtained as ±0.0025º, ±0.0025º, and 

±0.005º, respectively, from specifications of instrument which are available online [31]. 

 

Simulations are performed for 30 runs with ABRCR and ABRCN algorithms. Initially, flight 

planning is performed with 10% tolerance in data density. However, algorithms ABRCR 

and ABRCN failed to detect a feasible solution. Therefore, tolerance in data density is 

increased to 15%. Following results, as shown in Table 7, are obtained. 

Table 7: Statistical Results of Simulation for LSC AOI with Algorithms ABRCR and ABRCN 

Algorithm Minimum 

(seconds) 

Maximum 

(seconds) 

Average 

(seconds) 
Standard 

Dev.  

(seconds) 

Outliers/ 

Feasible 

Results 

ABRCR 3304.78 3457.65 3366.58 41.23 2/30 

ABRCN 3196.92 3255.57 3230.59 20.16 0/30 

 

Results in Table 7 show that both algorithms ABRCR and ABRCN can perform under the 

specified requirements. It is also observed that algorithm ABRCR detects two flying 

directions for LSC AOI. This is due to the fact that the flight durations in two directions 

are similar. Contrary to this, the algorithm ABRCN, though detects a single flying 

direction, shows higher value of standard deviation. Therefore, in view of the 

performance as listed above, both algorithms ABRCR and ABRCN should be attempted for 

flight planning problems and the better result should be used. According to the flying 

height obtained, LSC AOI is relatively flat as the relief ratio ( RP ) is less than 10%. The 

high variations in the scanning frequency and aircraft speed are due to the adopted value 

of tolerance in data density (15%) for a minimum data density of 1.5 points/m
2
 which is 

very small quanity. Moreover, the scan frequency ( f ) and the aircraft speed (V ) show 

considerable variation while the half scan angle (φ ) show less variation. The results 

obtained by GA are employed as the initial guess to the HJ method. Results of HJ method 
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are accepted if results provided by GA are improved by HJ method. The results obtained 

by hybrid method are shown in Table 8.  

Table 8: Statistical Results of Hybrid Algorithm for LSC AOI 

Algorithm Minimum 

(seconds) 

Maximum 

(seconds) 

Average 

(seconds) 
Standard 

Dev.  

(seconds) 

ABRCR 3174.15 3457.65 3263.67 76.14 

ABRCN 3196.91 3255.57 3230.57 20.15 

 

As shown in Table 8, minimum, maximum and the average of the flight duration values 

have improved over the results of GA. Due to this improvement, which occurs to some of 

the values, the standard deviation has become larger. The obtained parameters of flight 

planning are shown in Table 9. Flight plan, which shows the flight strips, is drawn for the 

simulated and LSC AOIs and shown in Figures 10 and 11. Point S in the figures shows 

the starting point of aerial operation on map for data acquisition and the arrow indicates 

the flying direction on the first flight line which is originating from point S. 

Table 9: Flight Planning Parameters for AOIs by Two-Step Procedure of Optimization  

AOI Name φ  

(deg) 

f  

(Hz) 

H  

(m) 

V  

(m/s) 

θ  

(deg) 

F  

(kHz) 

FD 

(seconds) 

Simulated AOI 7 70 886.3 45.9 9.875 100 1942. 6 

LSC AOI 18 38 1156.6  62.1 110.36 70 3174.2 
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Fig. 10: Flight plan for simulated AOI shown in local map projection 

 

 

Fig. 11: Flight plan for Little Smith Creek (LSC) in UTM map projection 
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It is interesting to observe in Figure 11 that GA detects the flight direction along the 

longest direction of LSC AOI. The longest direction is reported more economical by 

other authors also than any other direction, as it results in minimum number of turns [32, 

33]. However, also for an AOI as for simulated AOI in Figure 10, which is not 

significantly elongated the GA detects the most optimal direction for the given data 

requirements. 

 

8. A note on minimum number of runs for an algorithm 

An algorithm, with certain population count and probable number of outliers, should be 

run a minimum number of times and the best results thus obtained should be used as the 

initial value to the classical method. It is expected that with the initial values of starting 

point, the classical method will converge to the local optimum, which should be at least 

the same or better than the optimum reported by the GA.  

 

Considering the two possibilities that a solution obtained by GA is either an outlier or a 

correct one, the probability of obtaining at least one correct solution as the successful 

event can be determined. For at least one correct solution with sp probability, the required 

number of runs k  is calculated as: 
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where =or number of runs, 

=tr number of runs that result in outliers. 

 

Therefore, out of 30 runs, if two runs provide results which are outliers, a minimum of 

four runs are required for the 99.99% probability that these four runs will contain at least 

one correct result. Therefore, the minimum integer numbers of runs required for the test 

problem corresponding to two algorithms (ABRCR and ABRCN) are 3 and 1, respectively. 

The calculation of minimum numbers of runs shown above is important for AOI which 

has large number of flight lines and thus demands higher computational time.  
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9. Conclusions 

This paper describes the flight planning problem for airborne LiDAR and simultaneous 

photographic data acquisition in the form of objective function and constraints. Flight 

duration, which is the objective function, is taken as the sum of the strip time and turning 

time. Due to turning from one flight line to another, flight duration is a discontinuous 

function. The variables involved in the objective function and constraints are studied and 

classified into the scanner parameters and the flying parameters. Scanner parameters are 

found to be integer and discrete parameters whereas the flying parameters are continuous 

parameters. Furthermore, it is noted that due to the absence of any estimate solution, the 

classical methods of optimization can not be used. As a result, genetic algorithms (GA), 

which is an evolutionary algorithm, are proposed as an optimization technique. On the 

other hand, due to the very large time required by GA for the convergence, a two-step 

procedure comprising of GA and Hooke and Jeeve’s (HJ) method of classical 

optimization is attempted. For a study conducted with two-step procedure for the 

simulated AOI, it is observed that GA detects the optima with higher confidence in 

scanner parameters and varying flying parameters over multiple runs. The minimum, 

maximum, average and standard deviation of the objective function with the number of 

outliers are observed. The solutions obtained by GA by multiple runs with constant 

scanner parameters are provided as initial point to classical method for optimizing the 

flying parameters. HJ method is found to further improve the optimal results. The 

improvement is indicated by the reduction in the maximum and minimum values of the 

objective function. The two-step procedure is implemented on an actual test site situated 

in Mackenzie valley of Canada with different data requirements. The suggested approach 

successfully obtained the results by GA followed by HJ method. Finally, for larger areas, 

which may need a large number of flight lines, a procedure is given to calculate the 

minimum number of runs for acceptable results. The results obtained in this study prove 

that the suggested approach of flight planning using GA is successful and can be applied 

for the similar problems.  This is a novel attempt to use GA for flight planning and has 

potential for commercial applications.   
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