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Abstract: Genetic algorithms (GA) are being widely used as an evolutionary 

optimization technique for solving optimization problems involving non-differentiable 

objectives and constraints, large dimensional, multi-modal, overly constrained feasible 

space and plagued with uncertainties and noise. However, to solve different kinds of 

optimization problems, no single GA works the best and there is a need for customizing a 

GA by using problem heuristics to solve a specific problem.  For the airborne flight 

planning problem, there is not much prior optimization studies made using any 

optimization procedure including a GA. In this paper, we make an attempt to devise a 

customized GA for solving the particular problem to arrive at a reasonably good solution. 

A step-by-step procedure of the proposed GA is presented and every step of the 

procedure is explained. Both single and multi-objective versions of the problem are 

solved for a particular scenario of the flight planning for airborne LiDAR data acquisition 

problem to demonstrate the use of a GA for such a real-world problem. The deductive 

approach successfully identifies the appropriate configurations of GA. The paper 

demonstrates how a systematic procedure of developing a customized optimization 

procedure for solving a real-world problem involving mixed variables can be devised 

using an evolutionary optimization procedure. 

 

1. Introduction 

Over the past two decades, there had been remarkable developments in the field of 

evolutionary algorithms for solving real-world and complex optimization problems. 
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Genetic algorithms (GA) have been widely used for this purpose in a variety of   

applications. The reasons for the success of GAs in such complex problem solving tasks 

compared to their classical counterparts are that (i) their operators are flexible and 

modifiable with problem information, (ii) capable of handling mixed variables, (iii) 

capable of handling multi-modal problems, (iv) capable of utilizing information about 

uncertainties in decision variables and noise in objective and constraint value 

computations and (v) capable of working within restricted feasible search space.   

 

In general, there are apparently two branches in the field of GA development and 

research. The first branch deals with the development of new algorithms of GA by 

modifying and configuring various genetic operators (i.e. selection, mutation, crossover, 

elite preservation etc). The developed algorithms of GA are tested against the 30 standard 

optimization problems. On the other hand, in the second branch of GA research, the 

existing algorithms are applied on the optimization problems. In some of the studies, 

researchers also prefer to implement the developed algorithms on the practical problems 

and confirm their applicability and performance. However, as GA is explored and 

configured specifically with an orientation to solve a particular class of problems, there is 

no generic set of GA algorithms, which will certainly work for all problems. As a result, 

there is no generic methodology available or suggested in the literature for the effective 

use of GA for optimization. Further, there is no literature available that compiles a 

complete line of framework suggesting a step-by-step procedure to solve a real-world 

problem wherein the nature and behaviour of the objective and constraint functions is 

unknown. In this paper, authors show a step-wise approach of exploration of GA that can 

be adopted in general to solve many different classes of problems.   

 

The process of GA consists of three sequential steps: initialization, objective and 

constraints evaluation, and regeneration of new solutions. In the initialization step, 

population (or samples) of design vectors are generated either randomly or using some 

knowledge of previously known good solutions. The values of the objective and 

constraint functions for these population members are evaluated in the second step. Based 

on these function values, new population members are created using selection, crossover, 
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mutation and elite preservation techniques in the regeneration step. For a detail 

explanation and description of the genetic operators, readers can refer a book on GA by 

Goldberg [1] or more recent literature.  

 

In this paper, we showcase how a generic framework of a GA can be modified to solve a 

complex optimization problem in systematic manner. Flight planning, which is briefly 

mentioned in Section 2, is one example of such complex problems. For solving any 

optimization problem, procedures of handling mixed variables, initialization, and elite 

preservation strategies are addressed in Section 3. In addition, parameter space niching, 

which helps in maintaining much-desired diversity within a GA population is also 

explored. The developed algorithms resulting from the combination of the various 

strategies of variable handling, initialization, elite preservation techniques, and parameter 

space niching are mentioned in Section 4 and investigated in Section 5 for a set of real-

world problems. Further, the importance of the use of multi-objective optimization is also 

explained in Section 6 to develop a better understanding of the associated optimization 

problem. Based on the observations of the optimization process for the real-world 

problems, conclusions are derived in Section 7.   

 

2.  Flight Planning Problem 

Flight planning problem for airborne LiDAR data acquisition, which is developed and 

discussed in detail by Dashora [2], is considered as an example of a minimization problem. 

The fitness function is formulated as time duration required to travel by an aircraft (or 

helicopter) over a given area of interest (AOI) with given characteristics of terrain for 

collecting the LiDAR data by means of an airborne laser scanner with navigation sensors 

(Global Positioning System or GPS, and Inertial Measurement Unit or IMU). Along with the 

LiDAR data, photographic or image data can also be collected with airborne digital camera 

in the same flight. The starting point of flying operation over AOI is shown by point S in 

Figure 1. Aircraft covers the AOI in the form of parallel strips, each of which has an effective 

width equal to B . After covering a flight strip, which is at flying direction θ w.r.t. x-axis of 

map, the aircraft navigates back to next strip by turning. The next strip may be reached by 

consecutive turning mechanism, non-consecutive turning mechanism, or hybrid turning 
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mechanism. Consecutive turning mechanism is shown in Figure 1 below. In non-consecutive 

turning mechanism, aircraft turns to a non-consecutive flight strip whereas hybrid turning 

mechanism is a combination of consecutive and non-consecutive turning mechanisms. Once 

all strips are covered and data collection is completed, aircraft exits from point E.  

 

 

Fig. 1: Schematic view of AOI, flight strips and turnings [2] 

 

The terrain surface or landscape enclosed by AOI may be flat or undulated. Similarly, 

airborne LiDAR data can be captured with or without photographic (or image) data. 

Therefore, the flight planning problem shows different variants for different terrain types 

for both LiDAR data and simultaneous photographic data acquisition as test problems 

(mentioned in Table 1).  

Table 1: Problem Matrix with Problems Numbered from P1 to P4 

 Type of Terrain 

Data Acquisition Flat Terrain Undulated Terrain 

LiDAR data acquisition (alone) P1 P2 

Simultaneous photographic data acquisition P3 P4 

 

The number of constraints and consequently the complexities in flight planning problem 

increase from problem P1 to P4. Problems P1 and P4 consist of minimum and maximum 

number of constraints, respectively. In the following discussion, flight duration as fitness 
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function and associated constraints are mentioned. Minimum constraints are specified for 

the problem P1, while additional constraints, which are additional with respect to 

previous problem, are specified. For example, the additional constraints for problem P2 

are in addition to the constraints of problem P1. Similarly, the additional constraints for 

problem P3 are in addition to the constraints of problem P2. 

 

2.1 Problem Definition 

As explained earlier, flight duration consists of the strip time and turning time. Turning 

time is calculated as the minimum of the time durations required for consecutive turning, 

non-consecutive turning, or hybrid turning. Considering the complexity, length, and 

definition of the flight planning problem, only formulation for the objective and 

constraint functions are presented here. An arbitrary shaped AOI, as shown in Figure 2, 

which occupies an area equal to 4 km
2
 on map, is used to illustrate the formulation 

procedure.    

 

Fig. 2: AOI for simulation study 
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The objective function, i.e., flight duration (T ), can be expressed as: 

T

n

i

R
i

L
i

T
V

XX
i

L

T +=
∑
=1

),,(θ

  … (1) 

where 


















−
=









y

x

Y

X

θθ
θθ

cossin

sincos
 … (2) 

 






 −
=

B

YY
N minmax        … (3) 

 Nn=         … (4) 

 

=θ  Flying direction w.r.t. x-axis on map in counter-clockwise direction,
 

=L
iX  Value of X coordinate of left edge (or left end) of thi flight strip (or flight line) in 

rotated AOI, 

=R
iX  Value of X coordinate of right edge (or right end) of thi flight strip (or flight line) 

in rotated AOI, 

=−= R
i

L
ii XXL Length of thi flight strip (or flight line) from its start to end, 

=maxY Maximum value of Y coordinate (or ordinate) of rotated AOI, 

=minY Minimum value of Y coordinate (or ordinate) of rotated AOI, and 

=TT  Total turning time computed using a procedure given in technical report on turning 

mechanisms [3] 

 

Following constraints are considered for our problem. Generic constraints, which are 

common to all problems, (i.e. P1, P2, P3, and P4), are described first: 
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Additional constraints exclusive for problems P1 and P3:  

Uρρ ≤  … (12)
 

Additional constraints for problem P2 and P4: 
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Parameters of optimization problems are half scan angle (φ ), scanning frequency ( f ), 

flying height ( H ), speed (V ), flying direction (θ ), and PRF ( F ). The ranges of these 

variables are presented in Table 2.    

Table 2: Working Ranges of Parameters of Optimization Problems 

Parameter Values 

 Range Least Count 

H 80-3500 m Continuous 

Θ 0-360º Continuous 

V 45-72 m/s Continuous 

f 1-70 Hz 1 Hz 

ϕ 1-25º 1º 

F 

{33, 50, 70, 100} kHz (if 80 ≤ H ≤ 1100 m) 

{33, 50, 70} kHz (if 1100 < H ≤ 1700 m) 

{33, 50} kHz (if 1700 < H ≤ 2500 m) 

{33} kHz (if 2500 < H ≤ 3500 m) 

Discrete values 

depending upon H 

 

Note that the half scan angle (φ ) and scanning frequency ( f ) are integer variables. 

Further, PRF ( F ) is also a discrete variable, but depending on the values of the flying 

height ( H ), it takes different values. The remaining variables in the problem are 

environmental constants presented in Table 3.   

Table 3: Values of Constants in Optimization Problem  

Parameter Value 

ρL 10  points/m2 

ρU 11 points/m2 

τρ 30% 

εd 10% 
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Pe 10% 

eV 0.10 m  

eH 0.15 m 

GSDMax 0.15 m 

Pecx 60% 

Pecy 25% 

βmax 25º 

 sp 0.000009 m 

npx 4092 

fc 0.06 m 

tei 2.5 s 

 

Mathematical expressions involved in the calculation of the total turning time are not 

shown here. The technical report [3] explains the procedure for calculating the total 

turning time. Similarly, calculations of 
ppp ZYX σσσ ,,  are adopted from technical report 

[4]. Interested readers may obtain the details from these reports. 

 

According to the problem formulation and also by the ranges and nature of the objective 

function and constraints, these are mathematically non-linear functions. In addition, the 

objective function is a discontinuous function. Moreover, the variables of optimization 

are integer, discrete and continuous variables, which are non-separable in the expressions 

of objective function and constraints. Furthermore, more specifically, as the number of 

options of values of PRF ( F ) depends upon the range of the flying height ( H ), it makes 

the problem a variable-size optimization problem. Therefore, for solving this 

optimization problem, use of genetic (or evolutionary) algorithm is inevitable. 

 

3. Genetic Algorithm Essentials 

Genetic algorithms (GAs) are flexible and versatile evolutionary optimization procedures 

that can be applied to problems having non-differentiability, discontinuity and mixed 

nature of variables. However, a GA is best applied if it is customized to solve a particular 

problem. In the following subsections, we describe the essential features that can be 

customized for an application and mention how they can be achieved for the flight 

planning problem described above.  
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3.1 Fitness Function for Handling Objective Function and Constraints 

The fitness function in the selection operator is simply calculated by equation (1). 

Moreover, constraints are calculated using equations (5) to (16). Constraints are handled 

by the parameter less approach presented in [5].  

 

3.2 Variable Handling 

Variables in the design vector that are either integer, discrete, or their combination can be 

handled with GA. An integer variable, known with its upper and lower bound, is 

generated randomly by a bit string of predefined length. The value of the variable is 

obtained by decoding the bit string to decimal number. For example, the scanning 

frequency (with a range of 1-70 Hz) can be generated by decoding the 7 bit binary 

number which essentially results in integer numbers in the range of 0-127. The decoded 

decimal values beyond the relevant range of variables are rejected by additional 

inequality constraints. However, the GeneAS approach [6] advises to first generate all 

variables as real continuous numbers and then obtain the value of the integer variables by 

rounding the real number to the nearest integer. Moreover, PRF, which is a discrete 

variable, is also referred by lookup table. For this arrangement, as shown by equations 

(31) and (32), the continuous random number in range [0, 1] is mapped to discrete 

numbers of lookup table as each discrete number in lookup table refers to a value of 

discrete variable.  
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In the forthcoming discussions, these two options of variable handling are abbreviated as 

MCV (mixed or binary plus real-coded variables) and RCV (real-coded variables). 

3.3 Sampling of Initial Population 

A population of design vector is generated by ordinary random sampling (ORS) method. 

However, instead of ORS, Latin hypercube sampling (LHS), which is a space filling 

sampling technique, should also be employed and tested for real world problems [7]. 

LHS generates the multivariate samples by random paring of variables that exhibit the 

space filling property and multivariate uniformity [8]. The original LHS method, of 

McKay et al. [9], mentioned by Hess et al. [10] is adopted. 

 

GA generates the values of a real parameter (say V ) between its given lower and upper 

bounds using a random number. The thk sample or candidate of a population for a 

parameter V , which is calculated using a random number ( kr ) in range [0, 1], can be 

written as:  

 maxmin)1( VrVrV kkk +−=       … (33) 

For ordinary random sampling (ORS), the random number is a uniformly distributed 

random number. Therefore,  

kk ur =  … (34) 

However, for LHS, a random number kr  is calculated by generating the non-repeating 

random sequence of numbers 1 to m numbers as [11]-[12]:   

 






 −
=

m

u
r kk

k

π
       … (35) 

Where  

minV = Lower bound of variable V  

maxV = Upper bound of variable V  

kr = Random number for generating a random value of variable V  

m = Population size (number of samples) 

ku = Uniformly distributed random number in range [0, 1] 

kπ = k
th

 member of non-repeating sequence 



 12 

Random number ( kπ ) in non-repeating sequence and uniformly distributed random 

number ( ku ) should be generated independently. The random permutations for each 

variable ensure the random pairing of variables in multi-dimension [13].  

 

The random non-repeating sequence of samples of a particular variable can be generated 

by random permutation algorithm [14]. The random permutation algorithm shuffles a 

sequence of m numbers randomly in an unbiased manner. Independently shuffled 

sequences of m numbers for each variable individually generate random pairs of variables 

with multivariate uniformity and space filling property [13]. 

 

3.4 Elite Preservation 

For a particular generation, a design vector (or a candidate in a given population) which 

provides THE optimal value (minimum value for a minimization problem) is named as 

‘current best’. However, the mechanism of elitism prefers to preserve the candidate that 

brings the optimal fitness function over the generations. The preserved candidate is called 

the ‘best ever’. After a particular generation, if the ‘best ever’ is found to be inferior to 

the ‘current best’, the value stored in the ‘best ever’ is updated by the value of the 

‘current best’. According to the elitism, the ‘best ever’ unconditionally participates in 

next generation by replacing another candidate in a population. Induction of elitism 

avoids the straying of the evaluation process towards a sub-optimal solution and thus 

enhances the probability of detection of global optimal solution. However, on the other 

hand, the elitism principle reduces the diversity of population over generations and 

thereby it is also suspected of early or premature convergence.  

 

Replacement of a candidate in population by the ‘best ever’ is performed with different 

strategies. In this paper, including the elite-less evaluation, the following four 

methodologies are used for elitism.  

 

(a) No elites (NE): Elitism is not adopted and the ‘best ever’ is neither evaluated nor 

recorded. In other words, only the ‘current best’ is evaluated in a generation for reporting 
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purpose. ‘Current best’ can not affect the next generation directly as its unconditional 

participation in the next generation is not allowed. 

 

(b) ‘Best ever’ replaces the current worst (BRCW): Contrary to the ‘current best’, the 

‘current worst’ is defined as a candidate that provides the worst value of fitness function 

(maximum value for a minimization problem) in a generation. The ‘current worst’ is 

replaced by the ‘best ever’ [15]. 

 

(c) 'Best ever' replaces a candidate by niching (BRCN): The ‘best ever’ replaces a 

candidate which is most similar to the ‘best ever’ itself. This process is also known as the 

objective space niching (OSN). For evaluating the most similar candidate, first a specific 

percentage (say 20%) of population is chosen randomly from the population. Among the 

chosen candidates, the most similar candidate has minimum Euclidean distance in 

parameter space from the ‘best ever’. The percentages of chosen candidates may vary 

from 0 to 100%. However, 0% arrangement resembles to ‘No elites (NE)’ and increasing 

percentage of chosen candidates will raise the computation cost considerably. 

 

(d) ‘Best ever’ replaces a candidate randomly (BRCR): The ‘best ever’ replaces a 

candidate which is chosen randomly from a population [15]. 

 

3.5  Parameter Space Niching 

The discussion so far considers the possibility of multiple local optima while assuming 

prominent and dominating global optima compared to local ones. However, during the 

evaluation process by GA, it is possible that in a certain generation, the majority of 

population members are attracted towards a local optimum and very few are attracted 

towards a global optimum. Consequently, due to the higher number of population 

members being attracted towards the local optimum, the GA will be biased towards the 

local optima in the subsequent generations. It generally happens for competing optima 

which are spread across the parameter space that the majority of the population 

candidates may be attracted towards a local optimum. As a result, the evaluation process 

of GA may get trapped around a local optimum. Due to this bias, a global optimum that is 
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located by a smaller number of candidates is apparently ignored. Therefore, in a multi-

modal problem, even the ‘best ever’ evaluated over many generations may possibly be a 

local optimum which may be an inferior result. 

  

The problem of trapping of the GA solution in a local optimum for a multi-modal 

optimization problem is resolved by parameter space niching [16]. The parameter-space 

niching considers objective or fitness values of candidates, which are available in the 

vicinity of a local optimum. According to the expected number of optima in a parameter 

space, Deb [17] suggests to assume the parameter space divided amongst the optima and 

considers a hyper-sphere around an optimum. Degrading the fitness values of all 

candidates falling around a local optimum within the hyper-sphere by a predefined factor 

gives an opportunity to other candidates to play a significant role in the subsequent 

generations. The following formula is mentioned to calculate the value of niching radius 

of hyper sphere ( shareσ ) in normalized parameter space [17] (on page 155): 

 
( ) 










=

pshare
q

/1

5.0
σ        … (36) 

where  

p  = Number of parameters in optimization problem  

q  = Number of expected optima in complete parameter space 

 

In order to implement parameter space niching, Deb [17] recommends to use q in the 

range of 5-10 for the real-world problems. However, our purpose of using parameter 

space niching is to preserve the diversity in the population so that few solutions, which 

are found in the global basin of attraction do not get ignored, we assume that the problem 

has q=10 optima and accordingly we choose shareσ equals to 0.340646 in this study.  

 

The next section discusses the proposed configuration of a GA using the above strategies 

and the subsequent section implements the derived algorithm for solving the flight 

planning problem for airborne LiDAR data acquisition.  
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4.  Proposed GA 

The discussed options for configuration of GA create several combinations of algorithms 

as mentioned strategies are independent and thus can be implemented individually. The 

following table consolidates all discussed options (or strategies) suggested. 

Table 4: Configuration Parameters of RGA Code 

S.N. Strategy (number of options) Details (abbreviated names) of options 

1. Variable handling (2) BCV, RCV 

2. Sampling (2) ORS, LHS 

3. Elitism (4) NE, BRWC, BRCN, BRCR 

4. Parameter space niching or PSN (2) PSN or Without PSN 

 

The options in the above table suggest 32 permutations which can be tested on any real-

world problem. In view of various algorithms, it is required to investigate the possible 

configurations of GA and determine a configuration that can be universally accepted for 

an optimization problem. In order to implement these algorithms, the Real-Coded 

Genetic Algorithms (RGA) code and Non-dominated Sorting Genetic Algorithms-II 

(NSGA-II) code [18], which are available online from KanGAL’s website 

(http://www.iitk.ac.in/kangal/codes.shtml) for solving the single objective and multi-

objective optimization problems, respectively, are used in this study. 

 

The RGA and NSGA-II codes that respectively optimize the single and multi-objective 

optimization problems with normalized constraints, handle continuous and discrete 

variables as real and binary coded design variables, respectively. All the details regarding 

the initialization of population, selection process, crossover, mutation and constraint 

handing strategies are commented in the available codes. The population is generated in 

the initialization process by ordinary random sampling (ORS) method, as discussed in 

Section 3.3. The selection is performed by the tournament selection method. The 

available code uses the single point crossover [1] and simulated binary crossover (or 

SBX) [19] for binary and real variables, respectively. The bit-wise mutation is carried out 

for the binary coded GA while the polynomial mutation [20] is used for the real coded 

GA. The constraints are handled using the Deb's parameter-less approach [5]. For a 

multi-modal problem, the code also has a provision for parameter space niching [17] 

which is already discussed in detail in the previous section. The codes also provide a file 
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output with solution of design vector and values of fitness function and constraints. 

Specific details about the RGA code and NSGA-II code are explicitly mentioned in Deb 

[21] and Deb et al. [18], respectively. 

 

The resulting combinations of test problems (P1 to P4) and 32 different algorithms, 

described in previous sections, result in a large number of options to be evaluated. Thus 

we desire a deductive approach in which 10 algorithms (A1-A10) are considered with 4 

problems (P1 to P4). The purpose of testing multiple algorithms, whose genesis is 

discussed in the above section, is to identify a set of algorithms that show the best 

performance on the test problems. According to the performance, appropriate algorithms 

can be identified and prioritized. As a result, the available default RGA code, as 

algorithm A1, is utilized at first and based on its performance new algorithms are derived. 

The forthcoming discussion details the results of single objective constrained 

minimization of test problems. Moreover, next section also describes a diligent approach 

of implementing the GA algorithms to solve a minimization problem. 

 

5. Results of Single Objective Optimization 

The following discussion designs a set of algorithms with the default RGA code as the 

first or base algorithm. The simulations are performed on computer machines having 

‘Intel Core 2 Q9550 Quad processors (2.83 GHz)’ and ‘Intel Core i3 530 processors (2.93 

GHz)’. The statistical measures (minimum, maximum, average and standard deviation) of 

flight duration are evaluated for 30 runs of each algorithm. Moreover, number of outliers 

is also detected manually. Lower value of standard deviation and less number of outliers 

show the convergence and consistency, respectively, in the results obtained by the 

algorithm. 

 

The default RGA code facilitates the use of binary coded integer and real coded 

continuous variables with ORS and no elite preservation. As the half scan angle (φ ) and 

scan frequency ( f ) are integer variables, the mixed variable approach (combination of 

integer and continuous variables) is used. In order to decide the better variable handling 

strategy, the default algorithm with mixed variables (binary coded discrete variables and 
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real coded continuous variables) and a population count equal to 60 are first employed 

with four elite preservation strategies against the first test problem P1. None of the four 

algorithms perform as desired and thus results are not presented here. Further increasing 

the population count to 200, which is more than 3 times the recommended value, also do 

not find an acceptable solution. The probable reason is that GA is restricted to explore the 

discrete variables amongst the integer numbers with standard indices of crossover and 

mutation operators, as exploring and regenerating in the limited integer numbers cannot 

reach to a specific value. However, as has been discussed earlier, all variables including 

integer ones, can also be treated as real coded variables [6]. When integer variables are 

coded as rounded real variables, the first three algorithms (A1, A2, A3) can find feasible 

results for problem P1 with a population count of 60. A result generated by RGA code is 

declared outlier if the optimum value of the flight duration is not similar to the majority 

of the flight duration values for other runs. Increasing the population to 120 and 200 

reduced both the number of outliers and the standard deviation of the flight duration. 

However, algorithm A4 cannot find any feasible result with any population count (60, 

120, and 200). On the other hand, the solutions determined by the algorithm A2 are 

feasible, though all solutions appeared as outliers when compared with the results of A1 

and A3. The results are tabulated below with the details of the algorithms. Table 5 below 

also indicates the number of outliers and feasible results. 

Table 5: Statistical Results of Simulation of Test Problem P1 with Algorithms A1 to A3 

Problem P1: LiDAR Data Acquisition Alone on Flat Terrain 

Algorithm Minimum 

(seconds) 

Maximum 

(seconds) 
Average 

(seconds) 

Standard 

Dev. 

(seconds) 

Outliers/ 

Feasible 

Results 

Population = 60 

A1  

(RCV+ORS+NE ) 
1572.888 1598.427 1580.223 7.828 11/30 

A2 

(RCV+ORS+BCRW) 
1820.020 1841.703 1822.215 5.303 0/30 

A3 

(RCV+ORS+BRCR) 
1572.513 1603.716 1576.998 7.4 11/30 

Population = 120 

A1  

(RCV+ORS+NE ) 
1572.557 1652.099 1585.951 21.784 5/30 

A2 

(RCV+ORS+BCRW) 
1573.154 1635.079 1585.295 18.442 6/30 

A3 

(RCV+ORS+BRCR) 
1572.552 1583.484 1575.007 30.037 4/30 

Population = 200 
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A1  

(RCV+ORS+NE ) 
1572.77 1655.552 1585.177 19.83 5/30 

A2 

(RCV+ORS+BCRW) 
1573.152 1655.552 1584.701 18.341 4/30 

A3 

(RCV+ORS+BRCR) 
1572.749 1587.435 1573.854 2.739 2/30 

 

The analysis of performance of the algorithms A1 to A4 for test problem P1 indicates that 

three strategies demonstrate the capability of optimization. For algorithm A2, for the 

population count of 60, none of the results are outliers but the obtained fitness value is 

worse than that of other algorithms. This may be due to the premature convergence, 

which generally happens if the population can not explore the complete parameter space 

and consequently reaches to inferior optimum. However, for population count of 120 and 

200, the effect of the premature convergence reduces. On the other hand, the fourth 

strategy (algorithm A4) can not find any feasible solution in all 30 runs. The probable 

reason is difficult to quote without attempting this algorithm for other problems.  

 

With the performance shown above, the simulations are performed for the test problem 

P2 with all four algorithms. All four algorithms are able to resolve the problem of 

minimization for problem P2. However, the number of outliers for the population counts 

of 60 and 120 for over 30 runs are in the range of 9-15. Therefore, the results for the 

population count of 200 only are shown in Table 6.   

Table 6: Statistical Results of Simulation of Test Problem P2 with Algorithms A1 to A4 

Problem P2: LiDAR Data Acquisition Alone on Undulated Terrain 

Population = 200 

Algorithm Minimum 

(seconds) 

Maximum 

(seconds) 
Average 

(seconds) 

Standard 

Dev. 

(seconds) 

Outliers/ 

Feasible 

Results 

A1  

(RCV+ORS+NE ) 
1874.318 1994.195 1918.523 40.679           6/30 

A2 

(RCV+ORS+BCRW) 
1874.318 1994.195 1918.523 40.678 6/30 

A3 

(RCV+ORS+BRCR) 
1864.442 1902.133 1873..662 7.656 3/30 

A4 

(RCV+ORS+BRCN) 
1863.670 1903.895 1872.565 8.153 3/30 

 

As shown in Table 6, algorithms A3 and A4 performed considerably well when 

compared to algorithm A1 and A2 against the criteria of standard deviation and number 
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of outliers. Algorithms A1 and A2 show low consistency figures (higher number of 

outliers) and higher standard deviation values. The low consistency may be due to the 

multiple optima being located very close to each other and GA is occasionally detecting 

any one of them. Moreover, as stated earlier, if inferior optima appear in large numbers, 

these may be detected as optima with a higher probability. Considering this possibility of 

multiple local optimums, parameter space niching is deployed and the algorithms A1 and 

A2 are upgraded. However, no significant improvement is observed even with this 

modification. On the other hand, in anticipation of further improvement in the 

performance, algorithms A3 and A4 are upgraded to the algorithms A5 and A6 by 

adopting the parameter space niching. The niching radius, expressed by equation (36), is 

calculated for an anticipated number of multi-optimums (i.e., equal to 10). Once again, no 

significant improvement is observed in the minimum value of the objective function and 

in the consistency of results. Moreover, algorithm A6, which is an up-gradation of the 

algorithm A4, show slight degradation in the results compared to results of A4. On the 

other hand, parameter space niching is successful in reducing the magnitudes of outliers. 

Table 7: Statistical Results of Simulation of Test Problem P2 with Algorithms A5 to A6 

Problem P2: LiDAR Data Acquisition Alone on Undulated Terrain 

Population= 200, Niching Radius = 0.340646;  

Algorithm Minimum 

(seconds) 

Maximum 

(seconds) 
Average 

(seconds) 

Standard 

Dev. 

(seconds) 

Outliers/ 

Feasible 

Results 

A5 

(RCV+ORS+BRCR+PSN) 
1865.403 1902.398 1874.327 9.593                3/30 

A6 

(RCV+ORS+BRCN+PSN) 
1865.180 1952.882 1879.162 19.275 5/30 

 

A critical observation of the minimum values of the fitness function (Tables 6 and 7), 

obtained by the algorithms A3, A4, A5 and A6, indicates that each algorithm obtains 

similar values of the minimum flight duration at least once over 30 runs. Therefore, a 

more detail analysis of the chosen algorithms is required to investigate what features of 

the algorithms are important.  

 

The standard deviation values are shown in Tables 6 and 7, which suggest that GA is 

severely affected by bias. The anticipated bias, which may be developed in GA 

implementation at any stage, from its initialization to the end of last generation, is 



 20 

generally overcome by increasing the mutation probability or population count. 

Increasing the mutation probability in algorithm A5 and A6 degrades the results. 

However, increasing the population count to 200 or higher reduces the standard deviation 

of fitness values. A higher number of samples generated with increased population count 

perhaps explored the parameter space more rigorously and therefore, it further indicates 

that bias is inducted by the sampling method. Consequently, the sampling by LHS is 

adopted for initialization of the population. The upgraded algorithms are A7, A8, A9 and 

A10. Algorithms A7 and A8 utilize the LHS alone whereas additionally the parameter 

space niching is also applied in algorithms A9 and A10. As sampling method of GA is 

changed, the simulations for all four algorithms (A7, A8, A9 and A10) are attempted for 

population count of 60, 120 and 200. However, for a population count of 60 and 120, the 

numbers of outliers are in the range of 5-8 for A7 and 5-17 for A8, respectively. 

Additionally, with the same population count of 60 and 120 for algorithms A9 and A10, 

the number of outliers is slightly less. However, for population count of 200, all four 

algorithms perform almost in similar manner as there are no major differences in the 

values of outliers or standard deviations. Results of population count 200 are presented in 

Tables 8 and 9. 

Table 8: Statistical Results of Simulation of Test Problem P2 with Algorithms A7 to A8 

Problem P2: LiDAR Data Acquisition Alone on Undulated Terrain 

Population = 200  

Algorithm Minimum 

(seconds) 

Maximum 

(seconds) 
Average 

(seconds) 

Standard 

Dev. 

(seconds) 

Outliers/ 

Feasible 

Results 

A7 

(RCV+LHS+BRCR) 
1865.051 1880.460 1873.351 5.427 4/30 

A8 

(RCV+LHS+BRCN) 
1865.251 1902.768 1872.735 8.619 5/30 

 

Table 9: Statistical Results of Simulation of Test Problem P2 with Algorithms A9 to A10 

Problem P2: LiDAR Data Acquisition Alone on Undulated Terrain 

Population = 200; Niching Radius = 0.340646 

Algorithm Minimum 

(seconds) 

Maximum 

(seconds) 
Average 

(seconds) 

Standard 

Dev. 

(seconds) 

Outliers/ 

Feasible 

Results 

A9 

(RCV+LHS+BRCR+PSN) 
1865.066 1882.392 1874.327 5.047 4/30 

A10 

(RCV+LHS+BRCN+PSN) 
1864.308 1886.427 1871.788 6.188 4/30 
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As is evident from the results presented in Table 9, an insignificant improvement is 

observed due to the parameter space niching. Consequently, due to the extra 

computational load in comparison to the gain in the result by the parameter space 

niching, the algorithms A9 and A10 are discarded. As a result, the algorithms A7 and A8 

are applied on the test problems P3 and P4. The results are shown in Tables 10 and 11. 

Table 10: Statistical Results of Simulation of Test Problem P3 with Algorithms A7 to A8 

Problem P3: LiDAR and Photographic Data Acquisition on Flat Terrain 

Population = 200  

Algorithm Minimum 

(seconds) 

Maximum 

(seconds) 
Average 

(seconds) 

Standard 

Dev. 

(seconds) 

Outliers/ 

Feasible 

Results 

A7 

(RCV+LHS+BRCR) 
1572.604 1576.200 1573.309 0.748 1/30 

A8 

(RCV+LHS+BRCN) 
1572.560 1577.897 1573.531 1.109 0/30 

 

Table 11: Statistical Results of Simulation of Test Problem P4 with Algorithms A7 to A8 

Problem P4: LiDAR and Photographic Data Acquisition on Undulated Terrain 

Population=200 

Algorithm Minimum 

(seconds) 

Maximum 

(seconds) 
Average 

(seconds) 

Standard 

Dev. 

(seconds) 

Outliers/ 

Feasible 

Results 

A7 

(RCV+LHS+BRCR) 
1941.770 1948.097 1944.136 1.804 1/30 

A8 

(RCV+LHS+BRCN) 
1942.317 1949.325 1944.609 2.069 0/30 

 

5.1 Selection of the Best Algorithm 

Apart from the observations on performance and analysis of algorithms for various 

problems (P1 to P4), selection of algorithm is equally important. An algorithm that show 

minimum number of outliers (consistency) and determines the flight duration with 

minimum variation (convergence) is better than other algorithms. 

 

As shown previously that for problems P2, P3, and P4, standard deviations of the flight 

duration values over 30 runs by algorithms A7 and A8 are considerably less compared to 

the other algorithms. Moreover, a pattern of reduction in the numbers of outliers, when 

population increases, is also observed. As a result, it can be inferred that algorithms A7 

and A8 are able to solve the minimization problem with maximum number of constraints 

(i.e. problem P4). However, considering the additional calculations in algorithm A8, due 
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to the objective space niching, the algorithm A7 appears a good trade off in performance 

and speed. There is a possibility of achieving better performance of algorithm A8 by 

increasing the fraction of population considered for evaluating the most similar candidate 

for the ‘best ever’. However, due to the smaller standard deviation observed in the fitness 

values and flight planning parameter values, and less computational load in decision 

making process, the algorithm A7 can be accepted as a better algorithm without 

hesitation. 

 

6.  Results of Multi-Objective Optimization 

As indicated earlier, when a user wants to understand the variation of flight duration or 

trade-off against the constraints, the single-objective minimization approach sometimes 

cannot suffice the purpose. An alternative approach considers the potential of multi-

objective optimization, which allows integration of two or more conflicting objectives in 

a single framework. The multi-objective optimization is performed by the NSGA-II code 

here. The error in LiDAR data has an inverse relationship with the flight duration, as 

improving the former decreases the latter [2]. As both planimetric and altimetric errors 

increase with the decrease in flight duration, the 3D error minimization is considered as 

the second objective in the NSGA-II code. Alike 3D errors, the effective swath ( B ) is 

also conflicting with the flight duration. However, flight planners are generally not 

interested to know about the trade-off between effective swath and flight duration. 

Therefore, in this paper, authors show the compromise solutions of flight duration with 

altimetric and planimetric errors in detail. 

 

6.1 Bi-objective Optimization by NSGA-II Code 

With LHS method and RCV for parameters, simulations are run by NSGA-II code for 

300 generations and a population count of 2,000. The results showing trade-off between 

the two conflicting objectives are obtained by NSGA-II code with the flight duration 

being the first objective (on y-axis) and one of the altimetric error or planimetric error 

being as the second objective (on x-axis).  
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The problems P1 to P4 involve all the mentioned variables (i.e., planimetric error, 

altimetric error), though the multi-objective optimization by NSGA-II code is performed 

only for problems P2 and P4 as both contain the maximum number of constraints for 

simultaneous LiDAR and photographic data acquisition. When the problems, P2 or P4, 

are solved as a single-objective constrained minimization problem, the original 

planimetric and altimetric errors are treated as constraints representing the minimal 

requirement of desired data. In multi-objective optimization, in addition to be used as 

constraints, one of altimetric or planimetric error is also considered as second objective in 

NSGA-II code. The fronts of optimal values showing the compromising results for two 

variables against the flight duration are plotted as shown in Figures 3 to 6. We discuss 

these plots in the following paragraph. 

 

The NSGA-II code plots the values of flight duration for all values of the vertical and 

horizontal errors (1σ) which are less than 10 cm and 15 cm, respectively, as the vertical 

and horizontal errors are restricted up to these values. Moreover in all plots, the zones 

with no points indicate gaps (mainly due to the absence of any feasible solution in these 

regions, which we demonstrate in the next paragraph) in the obtained front. Figures 3 to 4 

and Figures 5 to 6 are drawn for problems P2 and P4, respectively. For problem P4, in 

comparison to problem P2, due to higher number of constraints, the feasible zones are 

smaller for all variables (second objective) as is evident from the comparison of figures.  

 

Before making any inference using these plots, it should be first confirmed whether the 

front containing compromise solutions are truly Pareto-optimal. A Pareto-optimal front 

contains trade-off solutions that cannot be improved for both objectives simultaneously.  

Although mathematical optimality conditions involving derivatives of objectives and 

constraints and certain regularity conditions are needed to prove Pareto-optimality of 

every point, here we make an attempt to build confidence about their optimality by 

solving several single-objective epsilon-constraint (EC) problems. EC method, which is 

briefly explained by Mavrotas [22], minimizes the first objective as a single-objective 

problem with an additional constraint on the second objective that is conflicting with the 

first one. For example, the flight duration is minimized by the RGA code with a 
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constraint that planimetric error should be less than or equal to 13.6 cm (for example) in 

Figure 3. If a Pareto-optimal solution exists between the gap (having planimetric error 

within 13.1cm and 14.3cm), the above epsilon-constraint optimization problem should 

find it.  This would then validate the gap indicated by the NSGA-II solutions. In the 

figure, points obtained by NSGA-II showing the trade-off between the FD and 

planimetric errors are connected by firm lines to show the non-dominated region in the 

upper half of the figure. Constraints on FD and errors are shown by horizontal and 

vertical dashed lines, respectively. 

 

EC method is deployed with 2,000 population members and is run for 300 generations 

with algorithm A7. Solutions are obtained by minimizing the flight duration under the 

original constraints of altimetric and planimetric errors and with the above additional 

constraint (planimetric error is less than or equal to 13.6 cm (marked as constraint 2 in 

Figure 3)). Interestingly, the obtained solution does not lie within the gap, instead it lies 

close to the planimetric error of 13.1 (marked as ‘2’ in the figure 3) – a solution also 

obtained by NSGA-II. This indicates that a feasible solution does not exist within the gap 

and this is the reason NSGA-II found a fragmented set of trade-off solutions. One other 

epsilon-constraint formulation is performed with an additional planimetric error limited 

to 13.2 cm (constraint marked as 1 in Figure 3) and the obtained solution is close to one 

of the NSGA-II solution (marked as ‘1’). Constraints on flight duration at two different 

values (2,200 and 2,500 sec) are tried next and planimetric error objective is minimized. 

Corresponding optimized solutions are marked as ‘a’ and ‘b’, respectively.  All these 

independent single-objective minimizations amply indicate that there does not lie any 

feasible solution in the gaps present in the fragmented NSGA-II front.  

 

To further validate the extreme solutions, we perform independent minimization of each 

objective with the original constraints alone. The optimized solutions are marked with a 

star (FD minimization) and with a ‘x’ (PE minimization). The optimized solutions are 

slightly worse than the respective extreme NSGA-II solutions. The presence of gaps 

certainly makes the search process difficult and this study demonstrates the efficacy of 

the suggested NSGA-II approach for solving the flight planning optimization problem.  
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Similar studies of epsilon-constraint minimization to validate observed gaps in NSGA-II 

fronts and individual objective minimization to validate the extreme NSGA-II solutions 

are performed for other three bi-objective optimization problems in Figures 4, 5 and 6.  

Table 12 displays extreme values of FD and altimetric error, and the salient points 

obtained by EC method by constraining the FD and altimetric error for problem P4.  

Table 12: Extreme Values and Results of EC Method for Problem P4 

Constraint Flight Duration 

(FD) (seconds) 

Altimetric Error 

(AE) (cm) 

Constrained 

Marked by 

Solution 

Marked by 

Minimizing the Altimetric Error (AE) with Constrained Flight Duration (FD) 

FD≤  2100 seconds 2090.80 8.0612  Line A Point a 

FD≤  2800 seconds 2799.66 8.0373  Line B Point b 

FD≤  4500 seconds 2837.46 8.0373 Line C Point c 

Minimizing the Flight Duration (FD) with Constrained Altimetric Error (AE) 

AE≤  8.03 cm 3899.01 8.0241 Line 1 Point 1 

AE≤  8.04 cm 2727.41 8.0385 Line 2 Point 2 

AE≤  8.06 cm 2727.32 8.0385 Line 3 Point 3 

Extreme Values: Minimum Values of Flight Duration (FD) and Altimetric Error (AE) 

Minimizing FD 1931.94 8.0729   Star (*) 

Minimizing AE 5334.03 8.0239  Cross (x) 

  

As indicated in Table 12, the values obtained by EC method are marked in Figure 6 by 

alphabets a, b, c and numbers 1, 2, 3. Interestingly, as evident from the Table 12, point 2 

and 3, and b and c are clustered. 
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Fig. 3: Pareto-optimal front (flight duration v/s planimetric error) for P2. A, B and 

1, 2 constraints are discussed in the text. 

 

 

Fig. 4: Pareto-optimal front (flight duration v/s altimetric error) for P2 
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Fig. 5: Pareto-optimal front (flight duration v/s planimetric error) for P4 

 

 

Fig. 6: Pareto-optimal front (flight duration v/s altimetric error) for P4 
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Having obtained confidence in the NSGA-II front, the next section presents a general 

analysis and interpretation of these results as well as the physical significance of these 

results for the flight planning problem. 

 

6.2  Analysis, Interpretation, and Physical Significance of Multi-Objective Results: 

NSGA-II plots are useful in three ways: 

(i) Plots shown by Figures 3 to 6 shows that almost all points, which are lying on the 

Pareto-optimal front, are detected by NSGA-II, except the extreme minimum values 

of two conflicting objectives. In most of the cases, extreme points are lying outside 

the range of Pareto-optimal front. However, in some of the cases, for example in 

Figures 4 and 6, NSGA-II cannot detect the optima which are indicated by single-

objective minimization. These results (by single-objective minimization) clearly 

suggest that if the desired solution lies in a particular region(s) of the Pareto-optimal 

front, these regions should be thoroughly explored by single objective problem 

under region specific constraints. 

(ii) When the second objective, which is also a constraint, is restricted between lower 

and upper bounds, these plots convey important information about the required FD 

and corresponding values of the flight planning parameters. For example, the 

maximum value of vertical error (1σ) is 10 cm. However, a flight planner may want 

to know the FD information for the vertical error that is in the range of 7-9 cm. 

Though it can be obtained by single objective optimization, limiting the vertical 

error by lower and upper bounds in the single objective optimization will add one 

more constraint and reduces the feasible parameter space for determination of the 

unique solution. A smaller feasible parameter space imposes an increased 

complexity in the problem which therefore demands higher population count and 

thus raising the need of higher computational time. However, the multi-objective 

optimization exhibits the variation between the flight duration and the vertical error, 

which are conflicting objectives, in the form of non-dominated front. Therefore, 

using these plots of Pareto-optimal front, a flight planner can also change the flight 

plan for achieving a better accuracy (or less errors) than 10 cm in vertical direction 
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with the information about the respective increase in the flight duration. Similarly, 

this analysis can also be done for horizontal error, and other conflicting objectives. 

(iii) On the curve of non-dominated front, where no data are available, indicates 

infeasible parameter space i.e. all constraints are not satisfied. Using this 

information, a flight planner can visualize the available infeasible zones in the 

parameter space. For example, Figure 4 shows that an altimetric error in LiDAR 

data in the range of 8.04-8.06 cm, under the current set up of the constraints of the 

problem, cannot be achieved. Similarly, Figure 3 demonstrates that a planimetric 

error in the range of 13.2-14.2 cm cannot be achieved for the specifications of 

problem P2 because all active constraints are not satisfied for this range of 

planimetric errors. This information is also useful for deciding the limits of a 

conflicting variable in a specific range in single objective optimization. Similar 

inferences can be made with Figures 5 to 6 for problem P4. 

(iv)  It should be noted that the multi-objective optimization demonstrates the variation 

between two conflicting objectives and thus a decision should not be made about 

the other objectives. With two particular objectives, the variations of remaining 

objectives are not considered. For example, as the flight duration and altimetric 

error are considered two objectives, the multi-objective optimization by NSGA-II 

code will show the variation of these two variables only as shown in Figure 4 (and 

6). Therefore, as discussed earlier, a decision that fixes the values of these 

objectives using Figure 4 (and 6) can be made. However, by multi-objective 

optimization, any one conflicting objective with respect to flight duration can be 

considered for decision making. Therefore, multi-objective optimization is not a 

substitute of the single objective optimization but both optimization techniques 

complement each other. 

 

7.  Conclusions 

This paper addresses various processes of the GA (e.g. variable handling, sampling, elite 

preservations, and parameter space niching) and their configurations (or algorithms). 

Further, the paper successfully outlined a step-by-step procedure to implement the 

developed algorithms. In order to test the algorithm, it is implemented on a complicated 
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four variants of optimization problem of flight planning for airborne LiDAR data 

acquisition. Four variants of the flight planning problem consist of different number of 

constraints. Performance of the algorithms are analyzed by consistency and convergence 

criteria using various statistical measures, like minimum, maximum, average and 

standard deviation of fitness function over multiple runs. Using a deductive approach, 

better algorithms are developed to solve a complicated single and multi-objective 

optimization version of the flight planning problem. It is noticed that continuous 

variables of optimization problem, initialized by Latin hypercube sampling, elite 

preservation by BRCR, and without parameter-space niching successfully detects the 

minimum in most runs. Moreover, as GA is least expected to show the biased behavior, 

the parameter space niching should not be attempted at first. Before applying the 

parameter space niching for single objective problems, it is recommended to exhaust all 

other possibilities of configuration of parameters of GA. Multi-objective optimization by 

NSGA-II code of flight planning problem provided the trade-off between the conflicting 

objectives (i.e. flight duration against planimetric and altimetric errors in LiDAR data). 

This case study remains as a testimony to developing efficient customized single and 

multi-objective optimization algorithms for solving real-world problems.    
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