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Compatibility of Sun Position Models and 3-D
Topographic Data for Prediction of Shadow Zones

Ajay Dashora and Bharat Lohani

Abstract—Solar energy is increasingly being used for a large
number of human activities. Determination of shadow or illu-
minated zones, and, subsequently, the quantity of insolation are
important inputs to these applications. Sun position model and
topographic data form the basic input for shadow determination.
A variety of sun position models and topographic data, with
varying degrees of accuracies, are being used. This paper presents
a methodology for determining the compatibility between any par-
ticular sun position model and a topographic data, thus leading to
an optimal combination in their use. As the interaction of sun rays
and 3-D terrain results in shadow, the compatibility is analyzed
analytically and graphically by modeling error propagation in
determination of shadow coordinates using 3-D topographic data
and sun position algorithms. Results are shown for two distant
locations.

Index Terms—Accuracy of 3-D data, compatibility, sun position
model.

I. INTRODUCTION

T HE sun is a source of renewable energy and an important
natural resource for the hygienic and healthy leaving

conditions on the planet. The main advantage of solar energy
is its no or minimal impact on the environment. Therefore,
exploitation of solar energy for applications like photovoltaic
(PV) solar panels, artificial trees [1], residential buildings, and
vertical farming [2] is in high demand. Remote sensing-based
methods for estimating, modeling, and forecasting the sun
irradiance for PV applications has already been explored ex-
tensively [3]–[6]. Furthermore, Web-based services are also
developed that share the information of available local sun po-
tential in an area for commercial use and public awareness [7],
[8]. All of these applications require prediction of sun position
(i.e., its azimuth and elevation angles) with certain accuracy.
Not only the sun position but also the relative orientation
and location of the receiving surfaces play a significant role,
especially for urban applications [e.g., building integrated PV
(BIPV), vertical farming, sun light, solar cooking, and in-house
electronic appliances). Therefore, this demands highly accurate
3-D data (geometry) of the urban features, e.g., buildings, trees,
ground, and other obstructions.
The 3-D structure of an obstruction controls the illuminated

and shadowed zones in an urban environment. Therefore, the
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calculation of shadow coordinates is always dictated by the ac-
curacies (or quality) of 3-D data of obstructions and the sun po-
sition. The limitation posed by the quality of 3-D terrain data has
been highlighted in numerous researches of large and small ex-
tent. In earlier attempts, the given topographic terrain was gener-
alized by a rough digital elevation model (DEM), as the accurate
3-D data were either not available or considered to be unimpor-
tant [9]. The approximation in terrain representation was also
due to the fact that, for detailed 3-D data acquisition in large
areas, the conventional topographic survey methods proved to
be time-consuming, labor-intensive, and commercially avail-
able. Furthermore, if high-resolution data were available, they
were limited to only 2-D representation and rarely had informa-
tion on 3-D aspects of buildings or trees which are important for
shadow prediction [9].
Various modern survey techniques, including total station,

laser scanning (LiDAR), and GPS, are used these days to cap-
ture the 3-D structure of urban environment with varying ac-
curacy (millimeter to decimeter) and cost. Data derived from
satellite images and interferometry are also in use, though have
coarser accuracy. Using airborne and terrestrial LiDAR survey
(ALS and TLS) techniques, it is possible to collect comprehen-
sive 3-D data with desired fine details for a large area in less
time. Moreover, LiDAR data, due to their dense, accurate, and
fast coverage, are considered to be better for representing 3-D
structures in comparison to the conventional data. Several algo-
rithms and methodologies have been reported in [10]–[13] for
efficient generation of solar energy by computing the solar po-
tential for building roof and facade, by the use of LiDAR data.
A sun position model utilizes an observer’s location on the

earth surface (i.e., longitude and latitude) to determine the sun
azimuth and elevation in local geodetic plane (LG) system
with certain accuracy. Sun position algorithms like Cooper’s,
Spencer’s, Pitmann and Vanthull’s, and Walraven’s, which are
commonly used for most of the solar engineering applications
[14], are categorized as less accurate. On the other hand, the
Astronomic Almanac’s Algorithm (AAA) [15], the PSA Al-
gorithm [14], SPA Algorithm [16], and the ENEA Algorithm
[17] provide more accurate prediction and are preferred for
sophisticated solar applications of dynamic nature (e.g., sun
tracking mechanism).
In an engineering project, the selection of resources (hard-

ware or software) is generally governed by the fact that the
desired project accuracy should be obtainable at minimum fi-
nancial cost. Consequently, before selection of resources for
shadow prediction, it is necessary to evaluate the resources, i.e.,
3-D data and sun algorithm, against this criterion. The condition
of minimum cost of all resources employed can be defined as
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Fig. 1. Propagated error in the location of point A.

“financial compatibility.” Therefore, for shadow prediction, the
cost should consist of the sum of the costs contributed by each
resource, i.e., sunmodel and 3-D data. It is understood that using
3-D data and sun algorithm shadow coordinates due to an ob-
struction can be computed. The computed coordinates will have
errors in two orthogonal directions on the LG plane, with their
quantum being governed by the chosen resources. The “posi-
tional compatibility” is said to be achieved if these two direc-
tional components are of samemagnitude, thereby avoiding bias
or skewness in the uncertainty. The “resource compatibility”
can be defined when both resources involved in shadow predic-
tion contribute equally or in comparable quantities to the total
error. Unilateral increase in the accuracy of one resource is not
justified, as it does not necessarily lead to significant increase
in total accuracy while it may increase the cost in a significant
manner. From the above discussion, it is clear that resource se-
lection for shadow prediction is primarily governed by the finan-
cial compatibility and total accuracy achievable. The positional
compatibility is desirable. The resource compatibility, though
desirable, is rather superseded by the financial compatibility.
In view of the availability of a large range of accuracies for

sun position models and 3-D data, it is important that their finan-
cial compatibility along with accuracies (or precision) should be
investigated in order to choose an optimal combination for pre-
dicting illuminated and shadowed zones. In view of this, this
paper will arrive at methodology to determine financial com-
patibility, the maximum error, and its positional compatibility.
Hence, this paper aims at answering the question that which sun
position algorithm should be an appropriate match in view of the
quality of available 3-D data and vice versa.
This paper uses the term “shadow,” “shadow zone,” or

“shadow coordinates,” though the technique proposed is
equally valid for illuminated area or their coordinates. This
paper first discusses the approach adopted for error propagation
of shadow coordinates and subsequently presents the com-
patibility criteria. The results are shown graphically for better
understanding.

II. CONCEPTUALIZATION AND MATHEMATICAL FORMULATION

A. Concept of Compatibility and Cost

Consider point A in 2-D space which is located at radial dis-
tance and angle from the origin O (Fig. 1). Observational

random errors in distance and angle may displace
the point A along and across the radial directions, respectively.
These 1-D errors will propagate the uncertainty in the posi-

tion of point A in two dimensions (area occupied by dashed lines
in Fig. 1). These two sources of error will be compatible if their
effects (the propagated errors) in the final location are of similar
size or comparable [18]. It is worthwhile to note
that increasing the accuracy of any one (linear or angular) ob-
servation here will not increase the total accuracy significantly,
as the error in the other observation still displaces the point. It
is understood that the cost of resources involved in a project in-
creases exponentially with their accuracy. This therefore neces-
sitates selection of the resources (linear or angular observation
in the above example and topographic data and sun algorithm in
this paper) judiciously so their accuracies are compatible, thus
leading to optimum cost in their use.
Financial cost (both fixed and operational) of all resources

depends upon various heads and factors over the complete life
cycle of the project. As high-precision or high-accuracy instru-
ments (software and hardware) are costlier, therefore, aiming
at higher accuracy certainly demands higher investments and
efforts (computational and manual). This dictates the overall
cost initial cost running cost , including the cost of data
capture and sun position algorithms. Estimating, modeling, and
minimizing the combined cost or total cost of two resources
using corresponding cost indicators, especially when both are
of different characteristics, is a critical and complicated task.
Moreover, desired indicators of cost vary according to require-
ment and time span of a project. As a result, cost indicators are
not available explicitly. Therefore, for all practical reasons, an
approach of assuming simple cost function, which is inversely
proportional to the precision of individual instruments and
subjected to accuracy constraint, cannot be developed. There-
fore, instead of adopting a mathematically based cost function,
the cost is estimated by experience and heuristic methods
considering fixed and running costs including the overheads of
a project.
Cost of shadow determination, whichmay be estimatedmath-

ematically or heuristically, is subjected to the constraint that
maximum error or precision obtained in shadow coor-
dinates should be less than or equal to the maximum allowable
error (i.e., ). The following discussion derives the
expressions of accuracy or maximum errors in shadow coordi-
nates of a point represented by 3-D topographic data.

B. Shadow Coordinates, Propagated Errors, Principal
Components, and Compatibility

Point O with its geographical location known on the
earth surface is an observer’s location where sun position (az-
imuth angle , elevation angle ) is determined using any sun
position model (Fig. 2). A right-handed 3-D Cartesian local
geodetic (LG) coordinate system is centered at O with its -
and -axis along geodetic north and ellipsoidal normal, respec-
tively. Each object in 3-D is expressed by points in
LG system. The shadow of point A is formed on
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Fig. 2. Shadow formation of point A in LG plane.

the LG plane as . Let and be the direction vectors of
sun and LG plane.
Therefore, the shadow coordinates [19] are expressed as

(1)

where

Substituting values in (1) gives shadow coordinates as

(2)

(3)

For an accurate data or model, errors in variables are rep-
resented by precision (or variance) [20]. Consequently, propa-
gated errors are shown by the following expressions (see the
Appendix for details):

(4)

(5)

(6)

where indicates the variance of a variable which is speci-
fied by the subscript. Coefficients – are derived with details
given in the Appendix. and are square values of the prop-
agated random errors in the position of a shadow point in two
orthogonal directions and also form an error ellipse. As stated
earlier, the maximum error in shadow coordinates should not ex-
ceed the maximum allowable error . Consequently, the max-
imum error in error ellipse , which is equal to the first
principal component value (FPCV or ) should be less than
or equal to maximum allowable error . Expressions
of principal components are listed in (11) in the Appendix.
Minimizing the total cost with the accuracy constraint

will certainly provide the optimal solution. Prac-

tically, for a point in 3-D, accuracy is a function of
precision in three axes and . Similarly, the accuracy
of sun model consists of precision of sun azimuth and
sun elevation. Therefore, for all possible combinations of 3-D
data acquisition technique and sun algorithms, the total cost
will accordingly change. The FPCV and second principal
component value (SPCV) represent the uncorrelated maximum
and minimum errors of shadow coordinates in two orthogonal
directions. Therefore, the ratio of SPCV and FPCV gives infor-
mation about the shape of the error ellipse as higher value forms
near the circular shape of ellipse and thus shows the uniformity
or equality in errors in two orthogonal directions. Consequently,
this ratio is an indicator of the positional compatibility.
Considering complicated and lengthy analytical expressions

of FPCV and SPCV and relatively fewer combinations of 3-D
data acquisition techniques and sun algorithms, it is found ap-
propriate to investigate the results by plotting the curves for
FPCV and the ratio of SPCV to FPCV against time in a day
.
Figs. 3–6 show the plots for FPCV and ratio of SPCV to

FPCV versus time for LiDAR data (1 20 cm in
; 15 cm in ) and total station data (1 1 cm in
and ), respectively. Two arbitrary locations are chosen,

first in Jaiselmer (Thar Desert in West India) and second in
Nainitaal situated in the hills of Himalaya (North India). Curves
for these locations are indicated by legend “Desert” and “Hill,”
respectively. Geographical coordinates (longitude and latitude)
of these locations in the WGS84 reference system are used as
input to the ENEA algorithm for 1 October, 2010. Considering
the sunrise and sunset at around 6 am and 6 pm, respectively, in
the month of October at this location, curves are drawn from 8
am to 5 pm (8:00–17:00 hours) Indian Standard Time (IST or
country time of India) at a time step of 6 min (0.1 h). This range
is chosen as most of the solar devices are not expected to work
beyond this duration. The height of the obstruction in this case
is selected as 10 m, which is the average height of a three-story
building. The ENEA sun position model [17] is used here for
calculating the sun elevation and sun azimuth and, therefore,
precision values of sun position obtained by Grena [17] are con-
sidered (viz., ).
It is evident from Figs. 3–6 that, for LiDAR data and Total

Station data, the curves of FPCV and the ratio of SPCV to FPCV
are concave and convex curves, respectively. Furthermore, the
curve of FPCV and the curve of the ratio of SPCV to FPCV
reach their minima and maxima, respectively, around the noon
when the sun elevation approaches maximum values. At lower
sun elevation angles (time closer to sun rise and sun set), for
both combinations of 3-D data and sun algorithms, maximum
error is not only high but the error ellipse also show biased or
skewed behavior as SPCV to FPCV ratio becomes too low. At
both locations, curves show similar characteristics. However,
because of longitude difference, sun rises later at desert location
and the curve for desert location show a non-linearly varying
shift from the curve of the hill location.
The combination of LiDAR data and ENEA algorithm pro-

vide more error in shadow coordinates compared to other com-
bination (ENEA with Total Station). In Figs. 3 and 5, the points
of intersection of horizontal line indicating the maximum al-
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Fig. 3. FPCV curves for LiDAR data.

Fig. 4. Position compatibility (SPCV/FPCV) curves for LiDAR data.

Fig. 5. FPCV curves for Total Station data.

lowable error with these curves can indicate the time zone
or duration, for which the maximum errors are below the accu-
racy desired. Therefore, with LiDAR data, for a maximum al-
lowable error of 0.3 m ( feet) in shadow coordinates, Fig. 3
reveals that 9:00 am to 3:00 pm duration (9:00–15:00 h) is ap-
propriate as a combination of ENEA algorithm and LiDAR data
can be used successfully for the location chosen in the hill. Sim-
ilarly, for the desert location, the duration is from 9:30 am to

Fig. 6. Position compatibility (SPCV/FPCV) curves for Total Station data.

3:30 pm, showing an approximate shift of half an hour. How-
ever, this shift is not constant for other values of FPCV. Fur-
thermore, during the same time, the ratio of SPCV to FPCV is
better than 0.70. In other words, FPCV and SPCV are not off by
more than 30% and thus ensure the positional compatibility by
a factor of one third. On the other hand, the resultant maximum
error in shadow coordinates due to the combination of ENEA
algorithm and Total Station data is highly accurate (more than
ten times than that of LiDAR data and ENEA algorithm). How-
ever, it performs poorer on the issue of positional compatibility
for the same duration (9 am to 3 pm or 9:30 am to 3:30 pm).
In actual practice, the objects in a terrain will have different

heights, and, thus, an average and maximum height should be
considered. However, drawing the curves up to 1000 m showed
the same pattern and similar values for these two curves. There-
fore, the effect of height on the expected errors is negligible.
In practice, for user-defined maximum allowable error and

eccentricity in positional compatibility, Figs. 3–6 can be used to
determine the appropriate time duration for the chosen combi-
nation of sun algorithm and 3-D data at a particular geographical
location. Thus, the proposed procedure can be utilized to assess
the available 3-D data and sun algorithm for their positional and
financial compatibility with given accuracy requirements.

III. CONCLUSION

This paper has addressed the issue of the compatibility (fi-
nancial, positional, and resource) of 3-D data and sun posi-
tion model using the concept of error propagation. A compat-
ibility criterion has been established using the terms derived
from generic expressions of the principal components of errors
ellipse assuming uncorrelated input variables of shadow coor-
dinates. Plots drawn for the first principal component and the
ratio of principal components during the daytime for a chosen
obstruction height reveal the level and extent of maximum error
and positional compatibility. Positional compatibility and max-
imum error analysis with cost considerations can help chose ap-
propriate data and models thus minimizing the cost and efforts,
instead of choosing these arbitrarily. Formore realistic results of
engineering significance, an additional approach of minimizing
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the analytical cost function under constraint can be investigated
for future research works.

APPENDIX

Error propagated in the shadow coordinates (4–6) can be de-
termined by standard error propagation law [21]

(7)

where is the Jacobian matrix and is
the covariance–variance matrix of five input variables

. As 3-D data and the sun position al-
gorithm are independent and further assuming uncorrelated
input variables, is a diagonal matrix consisting
of variances only. Matrix is written as

where

Substituting the values in (7) gives the diagonal and off-diag-
onal elements (variances and covariance of shadow coordinates)
of the resultant matrix as

(8)

(9)

(10)

where and indicate the variance and covariance of vari-
ables which are specified by the subscripts. Coefficients from
to are as follows:

The square of the principal components values of the
propagated variance are given by [22]

(11)
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