Zeta and L functions of Voevodsky motives Bruno Kahn

ICM Satellite conference on Galois representations Goa, Aug. 10, 2010.

Work in progress

Aim of talk: associate to a Voevodsky motive M over a global field K a Dirichlet series

$$L^{\mathrm{near}}(M,s) = \prod_{\mathfrak{p} \text{ finite}} L^{\mathrm{near}}_{\mathfrak{p}}(M,s)$$

with

• $L^{\text{near}}(M, s)$ is absolutely convergent for $\Re(s) \gg 0$ (explicit).

•
$$L_{\mathfrak{p}}^{\mathrm{near}}(M,s) \in \mathbf{Q}(N(\mathfrak{p})^{-s}).$$

• If $M' \to M \to M'' \to M[1]$ exact triangle in $DM_{\rm gm}(K, \mathbf{Q})$,

$$L_{\mathfrak{p}}^{\mathrm{near}}(M,s) = L_{\mathfrak{p}}^{\mathrm{near}}(M',s)L_{\mathfrak{p}}^{\mathrm{near}}(M'',s).$$

• If M = M(X), X smooth projective,

 $L_{\mathfrak{p}}^{\mathrm{near}}(M,s) = \zeta(\mathcal{X}_{\mathfrak{p}},s)$ if X has good reduction at \mathfrak{p}

 $(\mathcal{X}_{\mathfrak{p}} \text{ special fibre of a good model of } X \text{ at } \mathfrak{p}).$

• If $K = \mathbf{F}_q(C)$: $L(M, s) \in \mathbf{Q}(q^{-s})$; functional equation.

Remark 0.1. X/K smooth projective, $i \ge 0$: Serre's L-function

$$L^{\text{Serre}}(H^{i}(X), s)) = \prod_{\mathfrak{p}} L^{\text{Serre}}_{\mathfrak{p}}(H^{i}(X), s),$$
$$L^{\text{Serre}}_{\mathfrak{p}}(H^{i}(X), s) = \det(1 - \varphi_{\mathfrak{p}}N(\mathfrak{p})^{-s} \mid H^{i}(\bar{X}, \mathbf{Q}_{l})^{I_{\mathfrak{p}}})^{-1}$$

 $I_{\mathfrak{p}}$ inertia at \mathfrak{p} (well-defined modulo weight-monodromy conjecture). So

$$L_{\mathfrak{p}}^{\text{near}}(M(X),s) = \prod_{i=0}^{2d} L_{\mathfrak{p}}^{\text{Serre}}(H^{i}(X),s)^{(-1)^{i}}$$

if X has good reduction at \mathfrak{p} .

But cannot expect Serre's L-function extends to Euler-Poincaré characteristic on $DM_{\rm gm}(K)$, because of the invariants under inertia. So, $L^{\rm near} =$ "best triangulated approximation" of Serre's L-function. Since L^{near} differs from L^{Serre} only at finitely many Euler factors, maybe one can use it to study the Beilinson conjectures.

CRASH-REVIEW OF VOEVODSKY'S MOTIVES **1.1. Grothendieck's pure motives.**

 \sim adequate equivalence relation on algebraic cycles

$$\operatorname{Sm}^{\operatorname{proj}}(K) \to \operatorname{Cor}_{\sim}(K, \mathbf{Q}) \xrightarrow{\natural} \mathcal{M}_{\sim}^{\operatorname{eff}}(K, \mathbf{Q}) \xrightarrow{\mathbb{L}^{-1}} \mathcal{M}_{\sim}(K, \mathbf{Q})$$

(\natural pseudo-abelian completion, \mathbb{L}^{-1} : inverting the Lefschetz motive). $\mathcal{M}_{\sim}(K, \mathbf{Q})$ rigid \mathbf{Q} -linear \otimes -category.

1.2. Voevodsky's triangulated motives.

$$Sm(K) \to SmCor(K) \to K^{b}(SmCor(K), \mathbf{Q}) \to K^{b}(SmCor(K), \mathbf{Q})/\langle HI + MV \rangle \xrightarrow{\natural} DM_{gm}^{eff}(K, \mathbf{Q}) \xrightarrow{\mathbf{Z}(-1)} DM_{gm}(K, \mathbf{Q}).$$

 $DM_{\rm gm}(K, \mathbf{Q})$ rigid **Q**-linear \otimes -triangulated category.

1.3. Relationship.

$$\mathcal{M}_{\mathrm{rat}}(K, \mathbf{Q}) \to DM_{\mathrm{gm}}(K, \mathbf{Q})$$

fully faithful \otimes -functor.

Voevodsky's construction extends over a base.

1.4. 6 **operations.** Need a 2-functor

 $\mathbb{D}: \{\mathbf{Z} - \text{schemes ess. of finite type}\}^{op} \to \{\text{triangulated categories}\}$

with

- (i) S regular: $\mathbb{D}(S) = DM_{\text{gm}}(S, \mathbf{Q}).$
- (ii) A theory of six operations $f^*, f_*, f^!, f_!, \otimes, \underline{\text{Hom}}$ (Ayoub, following hints of Voevodsky).
- (iii) *l*-adic realisations: *l* prime invertible on S, $D_c^b(S, \mathbf{Q}_l)$ Ekedahl's triangulated category of *l*-adic sheaves: covariant functor

$$R^l: \mathbb{D}(S) \to D^b_c(S, \mathbf{Q}_l)$$

commuting with the 6 operations.

By Voevodsky and Ayoub, given a 2-functor \mathbb{D} , to have 6 operations one only needs a few of them plus certain axioms, esp. glueing complementary closed/open subsets.

Ayoub proves (his Astérisque, Ch. IV) that $\mathbb{D}(S) = DA^{\text{ét}}(S, \mathbf{Q})$ (defined using étale sheaves without transfers) verifies (ii).

For $S \mapsto DM(S, \mathbf{Q})$, axioms are not easy. Done by Cisinski-Déglise for S normal, but not in general. They also prove that $\mathbb{D} = DA^{\text{ét}}$ verifies (i), even for normal schemes. (More direct variant of this proof by Ayoub.) For (iii): Ivorra constructed contravariant realisations for DM. Need to take their duals. But one should construct them on the other theories and check compatibility with the 6 operations (for $DA^{\text{ét}}$: Ayoub, in progress). In sequel I take $\mathbb{D}(S) = DA^{\text{\'et}}(S, \mathbf{Q})$ (so (i) + (ii) OK, (iii) not completely in the literature).

2. Zeta functions

2.1. Traces in rigid categories. \mathcal{M} rigid F-linear \otimes -category (char F = 0). We assume $\operatorname{End}_{\mathcal{M}}(\mathbf{1}) = F$. $M \in \mathcal{M}, f \in \operatorname{End}(M)$: recall the *trace of* f:

$$\mathbf{1} \xrightarrow{\eta} M^* \otimes M \xrightarrow{1 \otimes f} M^* \otimes M \xrightarrow{\sigma} M \otimes M^* \xrightarrow{\epsilon} \mathbf{1}$$

 $\operatorname{tr}(f) \in \operatorname{End}_{\mathcal{M}}(\mathbf{1}) = F.$

Lemma 2.1 (The trace formula). \mathcal{N} rigid E-linear \otimes -category ($E \supseteq F$), $R: \mathcal{M} \to \mathcal{N}$ K-linear \otimes -functor. Then $\forall M \in \mathcal{M}, \forall f \in \text{End}(M)$:

 $\operatorname{tr}(R(f)) = R(\operatorname{tr}(f)) \quad (= \operatorname{tr}(f), \text{ computed in } E).$

Proof. Trivial.

2.2. The zeta function. $M \in \mathcal{M}, f \in \text{End}(M)$. Definition 2.2.

$$Z(M, f, t) = \exp(\sum_{n \ge 1} \operatorname{tr}(f^n) \frac{t^n}{n}) \in F[[t]].$$

Theorem 2.3 (-). \mathcal{M} abelian semi-simple "of homological origin": (i) $Z(M, f, t) \in F(t)$; deg $(Z(M, f, t) = \chi(M) := tr(1_M)$. (ii) If f invertible, functional equation

$$Z(M^*, {}^t f^{-1}, t^{-1}) = (-t)^{\chi(M)} \det(f) Z(M, f, t)$$

where $\det(f) = value \ at \ t = \infty \ of \ (-t)^{\chi(M)} Z(M, f, t)^{-1}$

(Other formula for det: det $(1 - ft) = Z(M, f, t)^{-1} \in F(t)$.)

U

2.3. Example: numerical motives. Here $F = \mathbf{Q}$, $\mathcal{M} = \mathcal{M}_{num}(k, \mathbf{Q})$, k a field.

Theorem 2.4 (Jannsen). \mathcal{M} is abelian semi-simple.

Moreover \mathcal{M} is of "homological origin" thanks to homological equivalence, so Theorem 2.3 applies.

Example 2.5. $k = \mathbf{F}_q$: every $M \in \mathcal{M}$ has its *Frobenius endomorphism* F_M and

$$Z(h(X), F_{h(X)}, t) = Z(X, t)$$

if X smooth projective.

2.4. Voevodsky's motives over a finite field. k field: the triangulated \otimes -category $\mathcal{M} = DM_{\text{gm}}(k, \mathbf{Q})$ is rigid by de Jong's theorem (\Rightarrow it is generated by the M(X), X smooth projective). So Z(M, f, t) makes sense here.

If $k = \mathbf{F}_q$, every $M \in DM_{\text{gm}}(\mathbf{F}_q, \mathbf{Q})$ has its Frobenius endomorphism F_M .

Awkward problem: would like to define

$$Z(M,t) = Z(M,F_M,t)$$

but this causes compatibility problems with *l*-adic realisation (philosophy: $S \mapsto DM_{\text{gm}}(S, \mathbf{Q})$ is a "homology theory" but to compute L-functions you use cohomology with compact supports). Solution: slightly artificial definition of zeta function. **Definition 2.6.** For $M \in DM_{gm}(\mathbf{F}_q, \mathbf{Q})$: $Z(M, t) = Z(M^*, F_{M^*}, t) = Z(M, F_M^{-1}, t)$ $\zeta(M, s) = Z(M, q^{-s}).$ **Theorem 2.7.** a) $M' \to M \to M'' \to M'[1]$ exact triangle: $\zeta(M,s) = \zeta(M',s)\zeta(M'',s).$

b) $\zeta(M,s) \in \mathbf{Q}(q^{-s})$, degree $\chi(M)$. c) Functional equation

$$\zeta(M^*, -s) = (-q^{-s})^{\chi(M)} \det(F_M)^{-1} \zeta(M, s).$$

d) Identities

$$\zeta(M[1], s) = \zeta(M, s)^{-1}, \qquad \zeta(M(1), s) = \zeta(M, s - 1).$$

e) $f: X \to \mathbf{F}_q$ scheme of finite type:

$$\zeta(f_!\mathbf{Z},s) = \zeta(X,s).$$

(In e), $f_! : \mathbb{D}(X) \to \mathbb{D}(\mathbf{F}_q) = DM_{\text{gm}}(\mathbf{F}_q, \mathbf{Q})$. It is for this formula that I take the weird definition of $\zeta(M, s)$.)

Sketch of proofs. a) uses theorem of J. Peter May on additivity of traces: \mathcal{T} rigid \otimes -triangulated category [coming from a model structure], $M' \rightarrow M'' \xrightarrow{+1}$ exact triangle in \mathcal{T} . Any commutative diagram

may be completed into

so that

$$\operatorname{tr}(f) = \operatorname{tr}(f') + \operatorname{tr}(f'').$$

Want to apply this with $\mathcal{T} = DM_{\text{gm}}(\mathbf{F}_q, \mathbf{Q}), f' = F_{M'}^{-1}, f = F_M^{-1}$. Would like $f'' = F_{M''}^{-1}$. Given May's f'',

$$(f'' - F_{M''}^{-1})^2 = 0.$$

Is the trace of nilpotent endomorphisms 0? Yes, thanks to the l-adic realisation.

b) and c): commutative diagram

 Φ bijective by Bondarko (relying on de Jong), so reduce to pure numerical motives.

d): trivial.

e) $f: X \to \operatorname{Spec} \mathbf{F}_q, g: Z \to \operatorname{Spec} \mathbf{F}_q$ closed subscheme, $h: U \to \operatorname{Spec} \mathbf{F}_q$ open complement; exact triangle

$$h_! \mathbf{Z} \to f_! \mathbf{Z} \to g_! \mathbf{Z} \xrightarrow{+1}$$

If we had resolution of singularities, we could reduce to X smooth projective and then use $\mathcal{M}_{rat}(\mathbf{F}_q, \mathbf{Q})$. (This works if dim $X \leq 2$). de Jong's theorem not sufficient. So, need to use the *l*-adic realisation and the Grothendieck-Verdier trace formula.

(Maybe one can use Fakhruddin-Rajan's proper correspondences on smooth varieties?)

2.5. Zeta functions of motives over a base. $S = \mathbb{Z}$ -scheme of finite type.

Definition 2.8. $M \in \mathbb{D}(S)$:

$$\zeta(M,s) = \prod_{x \in S_{(0)}} \zeta(i_x^*M,s)$$

 $S_{(0)}$ = set of closed points of S.

Theorem 2.9. a) This defines a Dirichlet series, absolutely convergent for $\Re(s) \gg 0$.

b) If $f: S \to T$ is a morphism,

 $\zeta(M,s) = \zeta(f_!M,s).$

c) If $T = \text{Spec } \mathbf{F}_q$ in b), $\zeta(M, s) \in \mathbf{Q}(q^{-s})$. d) If S smooth projective of dimension d in c), functional equation

$$\zeta(M^*, d-s) = (-q^{-s})^{\chi(f_!M)} \det(F_{f_!M})^{-1} \zeta(M, s)$$

with $M^* := \underline{\operatorname{Hom}}(M, \mathbf{Z})$.

Sketch of proof. 2 steps:

1) Prove b) via the *l*-adic realisation (but almost have a proof purely using \mathbb{D}). c) and d) follow from Theorem 2.7 c) and the 6 functors formalism.

2) If $S \to \operatorname{Spec} \mathbf{Z}$ is not dominant, done. If dominant, 1) reduces us to $S = \operatorname{Spec} \mathbf{Z}$, crucial case.

 $f: X \to \operatorname{Spec} \mathbf{Z}$ smooth scheme of finite type: $\zeta(f_!\mathbf{Z}, s) = \zeta(X, s)$ and Serre proved (elementarily) absolute convergence for $\Re(s) > \dim X$. Since the $f_!\mathbf{Z}$ "generate" $\mathbb{D}(\mathbf{Z})$, should suffice. But they generate only up to idempotents (the devil is in the idempotents).

Thus need a more sophisticated and expensive argument: uses *l*-adic realisation, Bondarko's isomorphism, Weil conjecture (Riemann hypothesis) + Deligne's generic constructibility theorem (SGA 4 1/2, th. finitude). \Box **2.6.** A theorem of Serre. (Talk at Chevaleret, Feb. 2010). K number field: for $M \in \mathbb{D}(O_K)$ and $\mathfrak{p} \subset O_K$, define

$$N_M(\mathfrak{p}) = \operatorname{tr}(F_{M_{\mathfrak{p}}^*})$$

the number of points of M modulo \mathfrak{p} .

Theorem 2.10. Let $M \in \mathbb{D}(O_K)$. Suppose that $\zeta(M, s)$ is not a finite product of Euler factors. Then the set

$$\{\mathfrak{p} \mid N_M(\mathfrak{p}) = 0\}$$

has a density $1 - \epsilon$, with

$$\epsilon \ge \frac{1}{b_{\infty}(M)^2}$$

where $b_{\infty}(M) = \sum_{i} \dim H_{l}^{i}(M_{K}).$

Proof Same as Serre's. $H_l(M) \in D_c^b(O_K[1/l], \mathbf{Q}_l)$ l-adic realisation of M. By Deligne's generic base change theorem, \exists open subset $U \subseteq \text{Spec } O_K[1/l]$ such that $H_l(M)|_U$ commutes with any base change. In particular, may compute

$$\operatorname{tr}(F_{M_{\mathfrak{p}}^{\ast}} \mid H_{l}^{\ast}(M_{\mathfrak{p}})), \mathfrak{p} \in U$$

as traces of [conjugacy class of] arithmetic Frobenius $\varphi_{\mathfrak{p}} \in Gal(\overline{K}/K)$ acting on $H_l^*(M_K)$. Statement then reduces to **Theorem 2.11** (Serre). G compact group, K locally compact field of characteristic 0, $\rho : G \to GL_n(K), \rho' : G \to GL_{n'}(K)$ two continous K-linear representations of G. Then

(i) either $\operatorname{tr}_{\rho} = \operatorname{tr}_{\rho'}$;

(ii) or the set $\{g \in G \mid \operatorname{tr}_{\rho}(g) \neq \operatorname{tr}_{\rho'}(g)\}\$ has a Haar density $\geq \frac{1}{(n+n')^2}$.

3. L-FUNCTIONS OVER GLOBAL FIELDS

3.1. Motives with good reduction.

Definition 3.1. S/Z essentially of finite type:

 $\mathbb{D}^{\text{proj}}(S) = \langle f_! \mathbf{Z} \mid f : X \to S \text{ smooth projective} \rangle.$

Example 3.2. $S = \operatorname{Spec} k$: $\mathbb{D}^{\operatorname{proj}}(k) = \mathbb{D}(k)$ (by de Jong).

Definition 3.3. S a trait (spectrum of a dvr), $j : \eta \hookrightarrow S$ generic point: $M \in \mathbb{D}(\eta)$ has good reduction if $M \in \text{ess-im}(\mathbb{D}^{\text{proj}}(S) \xrightarrow{j^*} \mathbb{D}(\eta)).$ **Lemma 3.4.** $i: x \to S$ immersion of the closed point, $M \in \mathbb{D}(S)$. a) \exists natural transformation

$$u_M: i^*M(-1)[-2] \to i^!M.$$

b) If $M \in \mathbb{D}^{\text{proj}}(S)$, u_M isomorphism.

(Proof of a) uses 6 operations. Proof of b) uses an "absolute purity" theorem due to Cisinski-Déglise, relying on Quillen's localisation theorem for algebraic K-theory.) **3.2.** The total L-function. K global field, $C_K = \text{Spec } O_K$, O_K ring of integers (in char. 0), or smooth projective model (in char. p), $j : \text{Spec } K \to C_K$ inclusion of the generic point. $M \in \mathbb{D}(K)$: would like to define an L function of M as the zeta function of

 $j_*M.$

This object exists but in a "large" category (it is not constructible). However,

$$2 - \varinjlim_{U \subseteq C_K} \mathbb{D}(U) \xrightarrow{\sim} \mathbb{D}(K)$$

which leads to:

Definition 3.5. x closed point of C_K , $S_x = \operatorname{Spec} \mathcal{O}_{C_K, x}$, $i_x : x \to S_x$, $j_x : \operatorname{Spec} K \to S_x$. For $M \in \mathbb{D}(K)$,

$$L_x^{\text{tot}}(M,s) = \zeta(i_x^*(j_x)_*M,s)$$
$$L^{\text{tot}}(M,s) = \prod_{x \in C_K} L_x^{\text{tot}}(M,s).$$

Theorem 3.6. $L^{\text{tot}}(M, s)$ is an absolutely convergent Dirichlet series, for $\Re(s) \gg 0$.

Proof: M has good reduction at x for almost all $x \in C_K$. More precisely, $\exists U \subseteq C_K$ and $\mathcal{M} \in \mathbb{D}^{\mathrm{proj}}(U)$ such that $j_U^* \mathcal{M} = M$ for j_U : Spec $K \to U$. For $x \in U$, let $j_{U,x} : S_x \to U$ and $\mathcal{M}_x = j_{U,x}^* \mathcal{M}$. Localisation exact triangle

$$(i_x)_* i_x^! \mathcal{M}_x \to \mathcal{M}_x \to (j_x)_* j_x^* \mathcal{M}_x \xrightarrow{+1}$$

apply i_x^* :

$$i_x^! \mathcal{M}_x \to i_x^* \mathcal{M}_x \to i_x^* (j_x)_* M \xrightarrow{+1}$$

Thus

$$L_x^{\text{tot}}(M,s) = \frac{\zeta(i_x^* \mathcal{M}_x, s)}{\zeta(i_x^! \mathcal{M}_x, s)} = \frac{\zeta(i_x^* \mathcal{M}_x, s)}{\zeta(i_x^* \mathcal{M}_x, s+1)}$$

by Lemma 3.4.

But $\prod_{x \in U} \zeta(i_x^* \mathcal{M}_x, s) = \zeta(\mathcal{M}, s)$ convergent by Theorem 2.9, so we win.

3.3. The nearby L-function.

Lemma 3.7. $f = \sum_{n=1}^{\infty} a_n n^{-s}$ convergent Dirichlet series with complex coefficients, with $a_1 = 1$. Then the equation

$$f(s) = g(s)/g(s+1)$$

has a unique solution as a convergent Dirichlet series (with first coefficient 1), namely

$$g(s) = \prod_{m=0}^{\infty} f(s+m).$$

Moreover, g has the same absolute convergence abscissa as f. If the coefficients of f belong to $F \subseteq \mathbf{C}$, so do those of g. **Definition 3.8.** $M \in \mathbb{D}(K)$:

$$L^{\text{near}}(M,s) = \prod_{x \in C_K} L^{\text{near}}_x(M,s)$$

given by the rule

$$L_x^{\text{tot}}(M,s) = \frac{L_x^{\text{near}}(M,s)}{L_x^{\text{near}}(M,s+1)}$$

cf. Lemma 3.7.

Theorem 3.9. a) $\forall x \in C_K$, $L_x^{\text{near}}(M, s) \in \mathbf{Q}(N(x)^{-s})$. b) $L^{\text{near}}(M, s)$ convergent Dirichlet series. c) If M has good reduction at x and \mathcal{M}_x is a good model at x, then

$$L_x^{\text{near}}(M,s) = \zeta(i_x^*\mathcal{M}_x,s).$$

d) If K function field over \mathbf{F}_q , $L^{\text{near}}(M, s) \in \mathbf{Q}(q^{-s})$, and functional equation between $L^{\text{near}}(M, s)$ and $L^{\text{near}}(M^*, 1-s)$.

Sketch of proof: The main point is a). Pass to *l*-adic realisation:

$$L_x^{\text{tot}}(M, s) = L(i_x^* R(j_x)_* R^l(M), s).$$

If V *l*-adic representation of G_K , need to show that

$$L(i_x^*R(j_x)_*V, s) = f(N(x)^{-s})/f(N(x)^{-s-1})$$

for some $f \in \mathbf{Q}(t)$. We have

$$L(i_x^*R(j_x)_*V,s) = \frac{\det(1-\varphi_x N(x)^{-s} \mid H^1(I_x,V))}{\det(1-\varphi_x N(x)^{-s} \mid H^0(I_x,V))}.$$

This is an Euler-Poincaré characteristic, so may assume V semi-simple. Then I_x acts by a finite quotient by the *l*-adic monodromy theorem, thus

$$H^1(I_x, V) = V_{I_x}(-1) \simeq V^{I_x}(-1)$$

and

$$L(i_x^*R(j_x)_*V, s) = \frac{L^{\text{Serre}}(V, s)}{L^{\text{Serre}}(V, s+1)} \text{ (in the semi-simple case).}$$

Remark 3.10. Last computation gives explicit formula for $L_x^{\text{near}}(M, s)$:

$$L_x^{\text{near}}(M,s) = L_x^{\text{Serre}}(R^l(M)^{ss},s)$$

 $R^{l}(M)^{ss}$ semi-simplification of $R^{l}(M)$.

(Since action of inertia factors through finite quotient, "Serre L-function" could be replaced by "Artin L-function".)