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1. SETUP

Let p be an odd prime, Q,, = Q(upn) and Qp, = Qp(pn). Let Qo = JQp and Qp oo = JQp,n. Define
the Galois group

G = Gal(Quw/Q) = Gal(Qyp,00/Qp),

which is isomorphic to Z;5 via the cyclotomic character x. We write G = A x T, where A = Z/(p — 1) and
I' 2 Z,. Choose a topological generator v of I'. Let

Mg, (G) = Zp[[G]] ©z, Qp

Hg,(G) = Qp-valued distributions on G

={f(y—=1) | f(X) € Q,[A][[X]], [ converges for | X |< 1}

Note that under the natural inclusion, the Iwasawa algebra Ag,(G) corresponds to the bounded functions
on the open unit p-adic disc.

Let f = > a,q™ be a normalised new eigenform of weight k& > 2, level N such that p { N and character
e. Let K = Q(f) be the coefficient field of f, and fix a prime v of K dividing p.

Simplifying assumptions. (1) € is trivial (which implies in particular that f = f);
(2) the completion of K at v is Q,.

Let V; be the p-adic representation of Gg = Gal(Q/Q) attached to f (Deligne), and let T} be a Gg-stable
lattice in V.

Note 1.1. V; is a 2-dimensional Qp-vector space. Moreover, as a representation of Gg,, Vy is crystalline,
with Hodge-Tate weights 1 — k and 0.

1.1. Construction of p-adic L-functions. Let F(X) = X? —qa,X +p*~1 be the characteristic polynomial
of ¢ on Deyis(Vy).

Theorem 1.2. (Amice-Velu) Let a be a root of F(X) such that vy(c) < k — 1. Then there exists L, o €
'H@(G) of order logzp(a) interpolating critical L-values of f and its twists.

Alternative construction by Kato: Let H[, (Q,T}) = lim H'(Qy,,Tf), where the inverse limit is taken
with respect to the corestriction maps, and let zkato € H, (Q,Tf) be Kato’s zeta element. Via localisation
and twisting, we can consider zkato as an element in H{, (Q,, Ty (k — 1)).

For all w € Deyis(Vy) ®g, Qp, Perrin-Riou has constructed a Ag, (G)-homomorphism

Lo+ Hyy(Qp, Ty (k = 1)) — Hg(G).

Theorem 1.3. (Kato) Let « be as above, and let w, € Dcris(Vf)(X)Qp@ be the p-eigenvector of a (normalised
appropriately). Then

Lw(, (ZKato) = ﬁp,(x-
1.2. Selmer groups.

Definition 1.4. For a finite extension L of Q, define the p-Selmer group of f over L as

Sel(f/L) = ker (Hl(L,Vf/Tf(l)) — 11 Hl(Lme/Tf(l))) ’

L H}(Ly,vp/Tr(1))

where the product is taken over all primes v of L, and the H}c (Ly,vy/Tf(1)) are the usual local conditions.

Here, for a field F, H'(F,V;/T¢(1)) denotes the Galois cohomology group H*(Gp, V;/T(1)).
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Let Sel(f/Qo) = lim Sel(f/Q;) and

X(f/@oo) = Hom,ys (Sel(f/(@oo)7 Qp/Zp) ®Zp Qp-
One can show that X (f/Qu) is a finitely generated Ag, (G)-module.

2. MAIN CONJECTURES

2.1. The ordinary case (< v,(a,) = 0). If f is ordinary at p, then there exists a unique root a of F(X)
with v,(a) = 0. The corresponding Amice-Velu p-adic L-function £, o is bounded, i.e. an element of Ag, (G).

Theorem 2.1. (Kato) X(f/Qu) is a finitely generated torsion Ag,(G)-module, and L, . € char(X(f/
Q).

Cyclotomic Main Conjecture. We have char(X(f/Qx)) = (Lp.a)-
Remark 2.2. A proof of the Main Conjecture has been announced by Skinner-Urban.

2.2. The supersingular case (< v,(a,) > 0). If f is supersingular at p, then there are two problems:
(1) X(f/Qs) has positive Ag, (G)-rank, and
(2) Lp,a, & A, (G) for both roots ay, as of F(X).

2.2.1. The case a, = 0.

Theorem 2.3. (Pollack) There exist two functions logik € Mo, (G) depending only on p and k, and elements
Lp1,Lyp2 € Mg, (G) such that for i = 1,2 we have

Lpa;, = log;k Lp1+a; log;k L.

Remark 2.4. (1) The distributions log;k can be described explicitly;
(2) Pollack’s theorem gives a joint decomposition of the Amice-Velu p-adic L-functions into a matriz of
logarithms and two bounded p-adic L-functions Ly ;.

Kobayashi (when f corresponds to an elliptic curve £/Q) and Lei (in the general case) give an arithmetic
interpretation of these new p-adic L-functions £, ; be constructing corresponding Selmer groups Sel”(f/Qoo)
fori=1,2:

(1) For ¢ = 1,2, construct A(G)-homomorphisms
Col; + Hyy,(Qp, Ty (k — 1)) — A(G);
(2) let
H} ;(Qp,n, V¢ /T¢(1)) = annihilator of (ker(Col;) N H'(Qpn, Ty (k — 1))

under the Tate pairing.
(3) use the H} (Qp,n, Vy/Ts(1)) instead of the usual local condition Hj (Qp,n: Vy/T¢(1)) in the definition

of Sel(f/Qx).

Remark 2.5. For the construction of the Coleman maps Col;, Kobayashi uses the formal group E attached
to E, and Lei uses Deyis(Vy) and Perrin-Riou’s exponential map.

Theorem 2.6. (Kobayashi, Lei) Fori=1,2, X;(f/Qc) is a finitely generated torsion Aqg,(G)-module, and
L,;€ char(Xi(f/Qoo)).

Cyclotomic Main Conjecture. We have char(X;(f/Qu)) = (Lp,;) for i = 1,2.

2.2.2. The case a, # 0. When a, # 0 and f corresponds to an elliptic curve with £/Q (which implies that

p = 2,3), Sprung has generalised Pollack’s and Kobayashi’s results using (F) and explicit calculation.
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3. OUR APPROACH

Make the following definitions:

Bap = Zyp|[7]] @2z, Qp Qp-valued measures on Zy;
B;Eg@p = {f € Qp[[x]] | f converges for | w |< 1} Qp-valued distributions on Z,

Equip both rings with actions of ¢ and G which are determined by ¢(7) = (7 + 1)? — 1 and g(7) =
(m 4+ 1)X(9) — 1. Then ¢ is injective, and we can define a left inverse 1) of .

Proposition 3.1. We have isomorphisms M of Ag,(G)- (resp. Ho,(G)-) modules

Ho, (G) — (Bq,)" "

which are determined by M(g) = (7 + 1)X9). We call M the Mellin transform.
3.1. Coleman maps for crystalline representations with Hodge-Tate weights > 0.

Definition 3.2. A Wach module N is a free finitely generated Bap—module with commuting actions of G
(trivial on N mod 7) and ¢ : N[x~'] — N[p(m)~] and some additional technical conditions.

Theorem 3.3. (Wach, Berger) (1) There is an equivalence of categories

{crystalline representations of Gg, } < { Wach modules}
V. — N(V);

(2) for any crystalline representation V' of Gg,, we have a comparison isomorphism

(1) N(V) ®g By o, [t "] = Daris(V) ®g, B o, [t

where t = log(1 + ), which is compatible with the actions of G and ¢;
(3) if V is a crystalline representation with Hodge-Tate weights < 0, then ¢ restrict to N(V) — N(V), and
we have an isomorphism of p-modules

Dcris(v) = N(V) mod .
Remark 3.4. For any crystalline representation V' of Go,, N(V) is contained in the (¢, G)-module of V.

Theorem 3.5. (Fontaine, Berger) Let V' be crystalline with Hodge-Tate weights > 0, and assume that V
has no quotient isomorphic to Q,. Then H{ (Q,,V) = N(V)¥=1.

Theorem 3.6. (LLZ, Berger) Let N be a Wach module, and let ny,...,nq be a B(Sp—basis of N. Let ¢*(N)
be the B&p-span of o(N). Then (@*(N))wzo is a free Ag,(G)-module of rank d, and a basis is given by
(1 + 71')(,0(711), te (1 + ﬂ-)(p(nd)

Remark 3.7. For every x € (<p* (N))w:O there exist unique x1,...,Tq € (Bap)quo such that x = x1p(n1) +
+xd$0(nd)

Definition 3.8. (Coleman maps) Let V be a crystalline representation of dimension d with Hodge-Tate
weights > 0, and assume that V' has no quotient isomorphic to Q,. Fiz a basis ni,...,nqg of N(V). For
1<i<d, define
.7l o~ p=1 1=% ( ¥=0 ®d _PTi
Col; : H}, (@, V) 2 N(V)P= 25 (0 N(V)) "= = Ag, (6)¥ 25s g, (G).

P P

Note that the Coleman maps are Ag, (G)-homomorphisms.
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3.2. The special case V = Vy(k — 1) for f ordinary or supersingular. Recall that the Hodge-Tate
weights of V¢ are 1 — k and 0, so

(2) Dcris(vf) = N(Vf) mod 7.
Choose the following basis for Deis(V7):

e if f is supersingular, let v} € Fil* ™! Dgs(V}) and vh = (v );

e if f is ordinary, let v be the g-eigenvector basis of Deyis (V).
Let nf,n be a basis of N(Vy) lifting v{, v} under (2)). Let

v; =) ® ep_1t' 7,

n; =n)®ep_1m 7k,

which are bases of Dg,i5(V) and N(V), respectively. Here, ex_; is the basis of the k — 1st cyclotomic twist.

+ - (i) _ g (v1). - i
Let M € M, (cp(Brngp)) be the matrix such that ((p(m)) =M <v2>’ note that M exists by Berger’s

comparison isomorphism . Moreover, let M = 9! ((1 + 7T)M) € M, (HQP(G)), where 9~ is applied
entry-wise.

Theorem 3.9. (LLZ) Fori = 1,2, the following diagram is commutative:

1
hgp 1w

N(V)?= ——— Hy,, (@, V)

1—¢ (Coly,Coly)
("N(V))¥=0 —— Ag, (Go)®?
M M Lo,
(Blyo,)'™") " T H (G
pr; pr;

(B0, — 2 = H(Ga).

rig,Qp
Definition 3.10. Fori= 1,2, let £, ; = Col;(zKato) € Ag, (G).
Corollary 3.11. If f is supersingular, we have
() = (22),
where A is the change-of-basis matriz from vy, vy to the basis of p-eigenvectors.

Corollary 3.12. As a special case, we recover the decompositions of Pollack and Sprung (when p =3).

Define the following assumptions:
(A) f is supsersingular, k > 3 or a, = 0;
(A’) f is ordinary, V} is not locally split at p and k > 3.

Theorem 3.13. (LLZ) If either f is supersingular or (A’) holds,
(1) Ly #0 fori=1,2;

(2) we have explicit interpolation formulae for the L, ; at the characters of conductor 1 or p of G;
(8) if f is supersingular, L, o, has infinitely many zeros for i =1,2.

Remark 3.14. The values of the L, ; at the characters of conductor 1 or p of G do not depend on the choice
of the basis n1,ny of N(V') lifting vy, va.

As in Section we use the Coleman maps to define Selmer groups Sel’(f/Qx).
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Remarks 3.15. (1) We recover the £-Selmer groups of Kobayashi and Sprung (when p =3).
(2) We get a second Selmer group when f is ordinary.

Theorem 3.16. (LLZ) Assume that either (A) or (A’) is satisfied. Then X;(f/Qoo) is a finitely generated
torsion Ag, (G)-module for i =1,2, and

L} ; € char(X;(f/Qx)"),

b any character A — 725 ifi=1
where n = .
K trivial character ifi=2

Moreover, if the map Gg — GL2(T¢) is surjective, then Kato’s Main Conjecture (with Q,-coefficients) is
equivalent to
char (X;(f/Qo)) = char (image(Col;)/(Lp,:))
for either i =1 or 2.

Remarks 3.17. (1) If f is supersingular and a, satisfies some additional conditions, Berger-Li-Zhu have
constructed an explicit basis of N(V'). Using this basis, we can show that Coly is surjective, so Kato’s Main
Conjecture is equivalent to
char (X1(f/Qo)) = (Lp1)-
(2) In joint work with Antonio Lei, we give a general description of the image of Col; using Perrin-Riou’s
p-adic requlator.
(3) We do not know whether Theorem [3.1¢ holds when we work with Z,-coefficients and a, # 0.
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