Wach modules and modular forms

Sarah Zerbes

joint with Antonio Lei and David Loeffler

1. Setup

Let p be an odd prime, $\mathbb{Q}_n = \mathbb{Q}(\mu_{p^n})$ and $\mathbb{Q}_{p,n} = \mathbb{Q}_p(\mu_{p^n})$. Let $\mathbb{Q}_\infty = \bigcup \mathbb{Q}_n$ and $\mathbb{Q}_{p,\infty} = \bigcup \mathbb{Q}_{p,n}$. Define the Galois group

$$G = \operatorname{Gal}(\mathbb{Q}_{\infty}/\mathbb{Q}) \cong \operatorname{Gal}(\mathbb{Q}_{p,\infty}/\mathbb{Q}_p),$$

which is isomorphic to \mathbb{Z}_p^{\times} via the cyclotomic character χ . We write $G = \Delta \times \Gamma$, where $\Delta \cong \mathbb{Z}/(p-1)$ and $\Gamma \cong \mathbb{Z}_p$. Choose a topological generator γ of Γ . Let

$$\Lambda_{\mathbb{Q}_p}(G) = \mathbb{Z}_p[[G]] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$$
$$\mathcal{H}_{\mathbb{Q}_p}(G) = \mathbb{Q}_p\text{-valued distributions on } G$$
$$= \{f(\gamma - 1) \mid f(X) \in \mathbb{Q}_p[\Delta][[X]], \quad f \text{ converges for } |X| < 1\}$$

Note that under the natural inclusion, the Iwasawa algebra $\Lambda_{\mathbb{Q}_p}(G)$ corresponds to the bounded functions on the open unit *p*-adic disc.

Let $f = \sum a_n q^n$ be a normalised new eigenform of weight $k \ge 2$, level N such that $p \nmid N$ and character ϵ . Let $K = \mathbb{Q}(f)$ be the coefficient field of f, and fix a prime v of K dividing p.

Simplifying assumptions. (1) ϵ is trivial (which implies in particular that $f = \overline{f}$); (2) the completion of K at v is \mathbb{Q}_p .

Let V_f be the *p*-adic representation of $\mathcal{G}_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ attached to f (Deligne), and let T_f be a $\mathcal{G}_{\mathbb{Q}}$ -stable lattice in V_f .

Note 1.1. V_f is a 2-dimensional \mathbb{Q}_p -vector space. Moreover, as a representation of $\mathcal{G}_{\mathbb{Q}_p}$, V_f is crystalline, with Hodge-Tate weights 1 - k and 0.

1.1. Construction of *p*-adic *L*-functions. Let $F(X) = X^2 - a_p X + p^{k-1}$ be the characteristic polynomial of φ on $\mathbb{D}_{cris}(V_f)$.

Theorem 1.2. (Amice-Velu) Let α be a root of F(X) such that $v_p(\alpha) < k - 1$. Then there exists $\mathcal{L}_{p,\alpha} \in \mathcal{H}_{\overline{\mathbb{Q}_p}}(G)$ of order $\log_p^{v_p(\alpha)}$ interpolating critical L-values of f and its twists.

Alternative construction by Kato: Let $H^1_{\text{Iw}}(\mathbb{Q}, T_f) = \varprojlim H^1(\mathbb{Q}_n, T_f)$, where the inverse limit is taken with respect to the corestriction maps, and let $z_{\text{Kato}} \in H^1_{\text{Iw}}(\mathbb{Q}, T_f)$ be Kato's zeta element. Via localisation and twisting, we can consider z_{Kato} as an element in $H^1_{\text{Iw}}(\mathbb{Q}_p, T_f(k-1))$.

For all $\omega \in \mathbb{D}_{cris}(V_f) \otimes_{\mathbb{Q}_p} \overline{\mathbb{Q}_p}$, Perrin-Riou has constructed a $\Lambda_{\mathbb{Q}_p}(G)$ -homomorphism

$$L_{\omega}: H^1_{\mathrm{Iw}}(\mathbb{Q}_p, T_f(k-1)) \longrightarrow \mathcal{H}_{\overline{\mathbb{Q}_p}}(G).$$

Theorem 1.3. (Kato) Let α be as above, and let $\omega_{\alpha} \in \mathbb{D}_{cris}(V_f) \otimes_{\mathbb{Q}_p} \overline{\mathbb{Q}_p}$ be the φ -eigenvector of α (normalised appropriately). Then

$$L_{\omega_{\alpha}}(z_{\mathrm{Kato}}) = \mathcal{L}_{p,\alpha}.$$

1.2. Selmer groups.

Definition 1.4. For a finite extension L of \mathbb{Q} , define the p-Selmer group of f over L as

$$\operatorname{Sel}(f/L) = \ker \left(H^1(L, V_f/T_f(1)) \longrightarrow \prod_v \frac{H^1(L_v, V_f/T_f(1))}{H^1_f(L_v, v_f/T_f(1))} \right),$$

where the product is taken over all primes v of L, and the $H_f^1(L_v, v_f/T_f(1))$ are the usual local conditions. Here, for a field F, $H^1(F, V_f/T_f(1))$ denotes the Galois cohomology group $H^1(\mathcal{G}_F, V_f/T_f(1))$. Let $\operatorname{Sel}(f/\mathbb{Q}_{\infty}) = \varinjlim_n \operatorname{Sel}(f/\mathbb{Q}_n)$ and

$$X(f/\mathbb{Q}_{\infty}) = \operatorname{Hom}_{\operatorname{cts}}\left(\operatorname{Sel}(f/\mathbb{Q}_{\infty}), \mathbb{Q}_p/\mathbb{Z}_p\right) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p.$$

One can show that $X(f/\mathbb{Q}_{\infty})$ is a finitely generated $\Lambda_{\mathbb{Q}_p}(G)$ -module.

2. Main conjectures

2.1. The ordinary case ($\Leftrightarrow v_p(a_p) = 0$). If f is ordinary at p, then there exists a unique root α of F(X) with $v_p(\alpha) = 0$. The corresponding Amice-Velu p-adic L-function $\mathcal{L}_{p,\alpha}$ is bounded, i.e. an element of $\Lambda_{\mathbb{Q}_p}(G)$.

Theorem 2.1. (Kato) $X(f/\mathbb{Q}_{\infty})$ is a finitely generated torsion $\Lambda_{\mathbb{Q}_p}(G)$ -module, and $\mathcal{L}_{p,\alpha} \in \operatorname{char}(X(f/\mathbb{Q}_{\infty}))$.

Cyclotomic Main Conjecture. We have $\operatorname{char}(X(f/\mathbb{Q}_{\infty})) = (\mathcal{L}_{p,\alpha}).$

Remark 2.2. A proof of the Main Conjecture has been announced by Skinner-Urban.

2.2. The supersingular case ($\Leftrightarrow v_p(a_p) > 0$). If f is supersingular at p, then there are two problems:

(1) $X(f/\mathbb{Q}_{\infty})$ has positive $\Lambda_{\mathbb{Q}_p}(G)$ -rank, and

(2) $\mathcal{L}_{p,\alpha_i} \notin \Lambda_{\mathbb{Q}_p}(G)$ for both roots α_1, α_2 of F(X).

2.2.1. The case $a_p = 0$.

Theorem 2.3. (Pollack) There exist two functions $\log_{p,k}^{\pm} \in \mathcal{H}_{\mathbb{Q}_p}(G)$ depending only on p and k, and elements $\mathcal{L}_{p,1}, \mathcal{L}_{p,2} \in \Lambda_{\mathbb{Q}_p}(G)$ such that for i = 1, 2 we have

$$\mathcal{L}_{p,\alpha_i} = \log_{p,k}^+ \mathcal{L}_{p,1} + \alpha_i \log_{p,k}^- \mathcal{L}_{p,2}$$

Remark 2.4. (1) The distributions $\log_{p,k}^{\pm}$ can be described explicitly;

(2) Pollack's theorem gives a joint decomposition of the Amice-Velu p-adic L-functions into a matrix of logarithms and two bounded p-adic L-functions $\mathcal{L}_{p,i}$.

Kobayashi (when f corresponds to an elliptic curve E/\mathbb{Q}) and Lei (in the general case) give an arithmetic interpretation of these new p-adic L-functions $\mathcal{L}_{p,i}$ be constructing corresponding Selmer groups $\operatorname{Sel}^{i}(f/\mathbb{Q}_{\infty})$ for i = 1, 2:

(1) For i = 1, 2, construct $\Lambda(G)$ -homomorphisms

$$\operatorname{Col}_i : H^1_{\operatorname{Iw}}(\mathbb{Q}_p, T_f(k-1)) \longrightarrow \Lambda(G);$$

(2) let

 $H^1_{i,f}(\mathbb{Q}_{p,n}, V_f/T_f(1)) = \text{annihilator of } \left(\ker(\text{Col}_i) \cap H^1(\mathbb{Q}_{p,n}, T_f(k-1)) \right)$

under the Tate pairing.

(3) use the $H^1_{i,f}(\mathbb{Q}_{p,n}, V_f/T_f(1))$ instead of the usual local condition $H^1_f(\mathbb{Q}_{p,n}, V_f/T_f(1))$ in the definition of $\operatorname{Sel}(f/\mathbb{Q}_n)$.

Remark 2.5. For the construction of the Coleman maps Col_i , Kobayashi uses the formal group \hat{E} attached to E, and Lei uses $\mathbb{D}_{\operatorname{cris}}(V_f)$ and Perrin-Riou's exponential map.

Theorem 2.6. (Kobayashi, Lei) For $i = 1, 2, X_i(f/\mathbb{Q}_\infty)$ is a finitely generated torsion $\Lambda_{\mathbb{Q}_p}(G)$ -module, and $\mathcal{L}_{p,i} \in \operatorname{char}(X_i(f/\mathbb{Q}_\infty))$.

Cyclotomic Main Conjecture. We have $\operatorname{char}(X_i(f/Q_\infty)) = (\mathcal{L}_{p,i})$ for i = 1, 2.

2.2.2. The case $a_p \neq 0$. When $a_p \neq 0$ and f corresponds to an elliptic curve with E/\mathbb{Q} (which implies that p = 2, 3), Sprung has generalised Pollack's and Kobayashi's results using (E) and explicit calculation.

3. Our approach

Make the following definitions:

$$\begin{split} \mathbb{B}_{\mathbb{Q}_p}^+ &= \mathbb{Z}_p[[\pi]] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p & \mathbb{Q}_p \text{-valued measures on } \mathbb{Z}_p; \\ \mathbb{B}_{\mathrm{rig},\mathbb{Q}_p}^+ &= \{f \in \mathbb{Q}_p[[\pi]] \mid f \text{ converges for } \mid \pi \mid < 1\} & \mathbb{Q}_p \text{-valued distributions on } \mathbb{Z}_p \end{split}$$

Equip both rings with actions of φ and G which are determined by $\varphi(\pi) = (\pi + 1)^p - 1$ and $g(\pi) = (\pi + 1)^{\chi(g)} - 1$. Then φ is injective, and we can define a left inverse ψ of φ .

Proposition 3.1. We have isomorphisms \mathfrak{M} of $\Lambda_{\mathbb{Q}_p}(G)$ - (resp. $\mathcal{H}_{\mathbb{Q}_p}(G)$ -) modules

$$\Lambda_{\mathbb{Q}_p}(G) \xrightarrow{\cong} (\mathbb{B}^+_{\mathbb{Q}_p})^{\psi=0},$$
$$\mathcal{H}_{\mathbb{Q}_p}(G) \xrightarrow{\cong} (\mathbb{B}^+_{\mathrm{rig},\mathbb{Q}_p})^{\psi=0}$$

which are determined by $\mathfrak{M}(g) = (\pi + 1)^{\chi(g)}$. We call \mathfrak{M} the Mellin transform.

3.1. Coleman maps for crystalline representations with Hodge-Tate weights ≥ 0 .

Definition 3.2. A Wach module N is a free finitely generated $\mathbb{B}^+_{\mathbb{Q}_p}$ -module with commuting actions of G (trivial on N mod π) and $\varphi: N[\pi^{-1}] \to N[\varphi(\pi)^{-1}]$ and some additional technical conditions.

Theorem 3.3. (Wach, Berger) (1) There is an equivalence of categories

$$\{crystalline \ representations \ of \ \mathcal{G}_{\mathbb{Q}_p}\} \Leftrightarrow \{Wach \ modules\}$$
$$V \longrightarrow \mathbb{N}(V);$$

(2) for any crystalline representation V of $\mathcal{G}_{\mathbb{Q}_p}$, we have a comparison isomorphism

(1)
$$\mathbb{N}(V) \otimes_{\mathbb{B}^+_{\mathbb{Q}_p}} \mathbb{B}^+_{\mathrm{rig},\mathbb{Q}_p}[t^{-1}] \cong \mathbb{D}_{\mathrm{cris}}(V) \otimes_{\mathbb{Q}_p} \mathbb{B}^+_{\mathrm{rig},\mathbb{Q}_p}[t^{-1}],$$

where $t = \log(1 + \pi)$, which is compatible with the actions of G and φ ; (3) if V is a crystalline representation with Hodge-Tate weights ≤ 0 , then φ restrict to $\mathbb{N}(V) \to \mathbb{N}(V)$, and we have an isomorphism of φ -modules

 $\mathbb{D}_{\operatorname{cris}}(V) \cong \mathbb{N}(V) \mod \pi.$

Remark 3.4. For any crystalline representation V of $\mathcal{G}_{\mathbb{Q}_p}$, $\mathbb{N}(V)$ is contained in the (φ, G) -module of V.

Theorem 3.5. (Fontaine, Berger) Let V be crystalline with Hodge-Tate weights ≥ 0 , and assume that V has no quotient isomorphic to \mathbb{Q}_p . Then $H^1_{\mathrm{Iw}}(\mathbb{Q}_p, V) \cong \mathbb{N}(V)^{\psi=1}$.

Theorem 3.6. (LLZ, Berger) Let N be a Wach module, and let n_1, \ldots, n_d be a $\mathbb{B}^+_{\mathbb{Q}_p}$ -basis of N. Let $\varphi^*(N)$ be the $\mathbb{B}^+_{\mathbb{Q}_p}$ -span of $\varphi(N)$. Then $(\varphi^*(N))^{\psi=0}$ is a free $\Lambda_{\mathbb{Q}_p}(G)$ -module of rank d, and a basis is given by $(1+\pi)\varphi(n_1), \ldots, (1+\pi)\varphi(n_d)$.

Remark 3.7. For every $x \in (\varphi^*(N))^{\psi=0}$ there exist unique $x_1, \ldots, x_d \in (\mathbb{B}^+_{\mathbb{Q}_p})^{\psi=0}$ such that $x = x_1\varphi(n_1) + \cdots + x_d\varphi(n_d)$.

Definition 3.8. (Coleman maps) Let V be a crystalline representation of dimension d with Hodge-Tate weights ≥ 0 , and assume that V has no quotient isomorphic to \mathbb{Q}_p . Fix a basis n_1, \ldots, n_d of $\mathbb{N}(V)$. For $1 \leq i \leq d$, define

$$\operatorname{Col}_{i}: H^{1}_{\operatorname{Iw}}(\mathbb{Q}_{p}, V) \cong \mathbb{N}(V)^{\psi=1} \xrightarrow{1-\varphi} \left(\varphi^{*}\mathbb{N}(V)\right)^{\psi=0} \cong \Lambda_{\mathbb{Q}_{p}}(G)^{\oplus d} \xrightarrow{\operatorname{pr}_{i}} \Lambda_{\mathbb{Q}_{p}}(G).$$

Note that the Coleman maps are $\Lambda_{\mathbb{Q}_p}(G)$ -homomorphisms.

3.2. The special case $V = V_f(k-1)$ for f ordinary or supersingular. Recall that the Hodge-Tate weights of V_f are 1 - k and 0, so

$$\mathbb{D}_{\operatorname{cris}}(V_f) \cong \mathbb{N}(V_f) \mod \pi.$$

Choose the following basis for $\mathbb{D}_{cris}(V_f)$:

(2)

- if f is supersingular, let $v'_1 \in \operatorname{Fil}^{k-1} \mathbb{D}_{\operatorname{cris}}(V_f)$ and $v'_2 = \varphi(v_1)$;
- if f is ordinary, let v'_i be the φ -eigenvector basis of $\mathbb{D}_{cris}(V_f)$.

Let n'_1, n'_2 be a basis of $\mathbb{N}(V_f)$ lifting v'_1, v'_2 under (2). Let

$$v_i = v'_i \otimes e_{k-1} t^{1-k},$$

$$n_i = n'_i \otimes e_{k-1} \pi^{1-k},$$

which are bases of $\mathbb{D}_{cris}(V)$ and $\mathbb{N}(V)$, respectively. Here, e_{k-1} is the basis of the k-1 st cyclotomic twist.

Let $M \in M_2(\varphi(\mathbb{B}^+_{\mathrm{rig},\mathbb{Q}_p}))$ be the matrix such that $\begin{pmatrix} \varphi(n_1)\\ \varphi(n_2) \end{pmatrix} = M \begin{pmatrix} v_1\\ v_2 \end{pmatrix}$; note that M exists by Berger's comparison isomorphism (1). Moreover, let $\underline{M} = \mathfrak{M}^{-1}((1+\pi)M) \in M_2(\mathcal{H}_{\mathbb{Q}_p}(G))$, where \mathfrak{M}^{-1} is applied entry-wise.

Theorem 3.9. (*LLZ*) For i = 1, 2, the following diagram is commutative:

$$\mathbb{N}(V)^{\psi=1} \xrightarrow{h_{\mathbb{Q}_{p},\mathrm{Iw}}^{1}} H_{\mathrm{Iw}}^{1}(\mathbb{Q}_{p}, V)$$

$$1-\varphi \bigvee (\operatorname{Col}_{1}, \operatorname{Col}_{2}) \bigvee (\varphi^{*}\mathbb{N}(V))^{\psi=0} \xrightarrow{\cong} \Lambda_{\mathbb{Q}_{p}}(G_{\infty})^{\oplus 2}$$

$$M \bigvee \qquad M \bigvee \qquad M \bigvee \qquad L_{v}$$

$$((\mathbb{B}_{\mathrm{rig},\mathbb{Q}_{p}}^{+})^{\psi=0})^{\oplus 2} \xrightarrow{\mathfrak{M}^{-1}} \mathcal{H}(G_{\infty})^{\oplus 2}$$

$$pr_{i} \bigvee \qquad pr_{i} \bigvee \qquad Pr_{i} \bigvee \qquad (\mathbb{B}_{\mathrm{rig},\mathbb{Q}_{p}}^{+})^{\psi=0} \xrightarrow{\mathfrak{M}^{-1}} \mathcal{H}(G_{\infty}).$$

Definition 3.10. For i = 1, 2, let $\mathcal{L}_{p,i} = \operatorname{Col}_i(z_{\operatorname{Kato}}) \in \Lambda_{\mathbb{Q}_p}(G)$.

Corollary 3.11. If f is supersingular, we have

$$\begin{pmatrix} \mathcal{L}_{p,\alpha_1} \\ \mathcal{L}_{p,\alpha_2} \end{pmatrix} = A\underline{M} \begin{pmatrix} \mathcal{L}_{p,1} \\ \mathcal{L}_{p,2} \end{pmatrix},$$

where A is the change-of-basis matrix from v_1, v_2 to the basis of φ -eigenvectors.

Corollary 3.12. As a special case, we recover the decompositions of Pollack and Sprung (when p = 3).

Define the following assumptions:

(A) f is supsersingular, $k \ge 3$ or $a_p = 0$;

(A') f is ordinary, V_f is not locally split at p and $k \ge 3$.

Theorem 3.13. (LLZ) If either f is supersingular or (A') holds,

(1) $\mathcal{L}_{p,i} \neq 0$ for i = 1, 2;

- (2) we have explicit interpolation formulae for the $\mathcal{L}_{p,i}$ at the characters of conductor 1 or p of G;
- (3) if f is supersingular, \mathcal{L}_{p,α_i} has infinitely many zeros for i = 1, 2.

Remark 3.14. The values of the $\mathcal{L}_{p,i}$ at the characters of conductor 1 or p of G do not depend on the choice of the basis n_1, n_2 of $\mathbb{N}(V)$ lifting v_1, v_2 .

As in Section 2.2.1, we use the Coleman maps to define Selmer groups $\operatorname{Sel}^{i}(f/\mathbb{Q}_{\infty})$.

Remarks 3.15. (1) We recover the \pm -Selmer groups of Kobayashi and Sprung (when p = 3). (2) We get a second Selmer group when f is ordinary.

Theorem 3.16. (LLZ) Assume that either (A) or (A') is satisfied. Then $X_i(f/\mathbb{Q}_\infty)$ is a finitely generated torsion $\Lambda_{\mathbb{Q}_n}(G)$ -module for i = 1, 2, and

$$\mathcal{L}_{p,i}^{\eta} \in \operatorname{char}(\mathrm{X}_{\mathrm{i}}(\mathrm{f}/\mathbb{Q}_{\infty})^{\eta}),$$

where $\eta = \begin{cases} any \ character \ \Delta \to \mathbb{Z}_p^{\times} & if \ i = 1 \\ trivial \ character & if \ i = 2 \end{cases}$ Moreover, if the map $\mathcal{G}_{\mathbb{Q}} \to \operatorname{GL}_2(\operatorname{T}_{\mathrm{f}})$ is surjective, then Kato's Main Conjecture (with \mathbb{Q}_p -coefficients) is equivalent to

$$\operatorname{char}(X_i(f/\mathbb{Q}_{\infty})) = \operatorname{char}(\operatorname{image}(\operatorname{Col}_i)/(\mathcal{L}_{p,i}))$$

for either i = 1 or 2.

Remarks 3.17. (1) If f is supersingular and a_p satisfies some additional conditions, Berger-Li-Zhu have constructed an explicit basis of $\mathbb{N}(V)$. Using this basis, we can show that Col_1 is surjective, so Kato's Main Conjecture is equivalent to

$$\operatorname{char}(X_1(f/\mathbb{Q}_\infty)) = (\mathcal{L}_{p,1}).$$

(2) In joint work with Antonio Lei, we give a general description of the image of Col_i using Perrin-Riou's *p*-adic regulator.

(3) We do not know whether Theorem 3.16 holds when we work with \mathbb{Z}_p -coefficients and $a_p \neq 0$.