Vector Bundles and *p*-adic Hodge Theory

Jean-Marc Fontaine Joint work (in progress) with Laurent Fargues

Introduction

F = algebraically closed field complete with respect to a non trivial absolute value.

 $B_{?}$ = the completion of a reasonably choosen subring for a reasonably choosen topology.

If $F = \mathbb{C}$, we have the Weierstrass preparation theorem.

If F is not archimedean, there is an analogue of Weierstrass preparation theorem (Hensel, Lazard,...)

In this talk, I want to

1 - Redo Lazard's work and extends it to the mixed char. case.

2 – If K is a p-adic field, give a rough idea of how one can redo (and extend) p-adic Hodge theory by viewing a p-adic representation of $G_K = \operatorname{Gal}(\overline{K}/K)$ as a special kind of G_K -equivariant vector bundles over a suitable « curve » X.

The ring A^b

For simplicity we assume F = algebraically closed field complete with respect to a non trivial non archimedean absolute value | |,

$$\mathcal{O}_F = ig\{ a \in F \mid |a| \leq 1 ig\} \;, \; \mathfrak{m}_F = ig\{ a \in F \mid |a| < 1 ig\}$$
 and

- (EC) either
$$A^b = \mathcal{O}_F[[\pi]]$$
 (equal char. case),
- (MC) char(F) = p and $A^b = W(\mathcal{O}_F)$ (mixed char. case).
In (EC), set $[a] = a$ for all $a \in \mathcal{O}_F$.
In (MC) set $[a] = (a, 0, 0, ..., 0, ...)$ for all $a \in \mathcal{O}_F$ and $\pi = p$.
Any element of A^b can be uniquely written

$$f = \sum_{n=0}^{\infty} [a_n] \pi^n \;\; ext{with} \;\; a_n \in \mathcal{O}_F \;\; .$$

Let $a_0 \in \mathfrak{m}_F$, non zero and $l_0 = ([a_0], \pi)$. Then A^b is a local ring, $\mathfrak{m}_{A^b} = \sqrt{l_0}$ and A^b is separated and complete for the l_0 -topology.

Some prime ideals of $A^{b}(1)$

 $k_F = \mathcal{O}_F / \mathfrak{m}_F.$

Proposition

The ideal \mathfrak{p}_0 of A^b generated by the [a] for $a \in \mathfrak{m}_F$ is a prime ideal. Its closure $\widehat{\mathfrak{p}}_0$, also a prime ideal, is

$$\widehat{\mathfrak{p}}_0 = \left\{ \sum_{n=0}^{+\infty} [a_n] \pi^n \in \mathcal{A}^b \mid a_n \in \mathfrak{m}_F, \ \forall n \right\},\$$

kernel of the projection of A^b onto $k_F[[\pi]]$ (in the (EC) case) (resp. $W(k_F)$ in the (MC) case).

If $f \in A^b$, we denote \overline{f} its image in $k_F([[\pi]] \text{ (resp. } W(k_F))$ and set

$$\deg(f) = v(\overline{f}) \ (\in \mathbb{N} \cup \{+\infty\})$$
.

$$deg(f) = +\infty \iff f \in \widehat{\mathfrak{p}}_0 ,$$
$$deg(f) = 0 \iff f \text{ is invertible in } A^b$$

The map θ

Let C be an algebraically closed field of char. 0, complete with respect to a non trivial, non archimedean absolute value, whose residue field is of characteristic p > 0.

$$F = F(C) = \left\{ x = (x^{(n)})_{n \in \mathbb{N}} \mid x^{(n)} \in C \ , \ (x^{(n+1)})^p = x^{(n)} \right\}$$

with $(x + y)^{(n)} = \lim_{m \to +\infty} (x^{(n+m)} + y^{(n+m)})^{p^m}$, $(xy)^{(n)} = x^{(n)}y^{(n)}$, is an algebraically closed field of characteristic p, complete for the absolute value

$$|x| = |x^{(0)}|$$
.

The map $\theta: W(\mathcal{O}_F) \to \mathcal{O}_C$, defined by

$$heta((b_0, b_1, \ldots, b_n, \ldots)) = \sum_{n=0}^{+\infty} p^n b_n^{(n)} ,$$

is a surjective homomorphism of rings whose kernel is a principal ideal \mathfrak{p}_{C} . If $\lambda \in \mathfrak{m}_{F}$ is such that $\lambda^{(0)} = p$, then $p - [\lambda]$ is a generator.

Some prime ideals of A^b (2)

Proposition

i) If $f \in A^b$ is of degree 1, the ideal generated by f is prime. ii) Let \mathfrak{p} a non zero prime ideal of A^b of finite type. There exists $\lambda \in \mathfrak{m}_F$ such that \mathfrak{p} is the principal ideal generated by $\pi - [\lambda]$ (of degree 1). iii) If $A^b = W(\mathcal{O}_F)$ and if $\mathfrak{p} = (p - [\lambda])$ with $\lambda \neq 0$, then A^b/\mathfrak{p} is the unit ball $\mathcal{O}_{C_\mathfrak{p}}$ of a field $C_\mathfrak{p}$ of characteristic 0, algebraically closed and complete for a non trivial non archimedean absolute value, whose residue field is of characteristic p.

The map $\mathcal{O}_F \to \mathcal{O}_{F(C_p)}$ sending a to $(\theta_p([a^{p-n}]))_{n\in\mathbb{N}}$ is an isomorphism. Using it to identify these two rings, the projection

$$A^b = W(\mathcal{O}_F) o \mathcal{O}_{\mathcal{C}_p}$$

is the map θ defined on the previous slide.

The closed points of X

If F is of characteristic p, A^b is equipped with the Frobenius automorphism defined by

$$\varphi\Big(\sum_{n=0}^{+\infty} [a_n]\pi^n\Big) = \sum_{n=0}^{+\infty} [a_n^p]\pi^n .$$

Y = set of principal prime ideals of A^b , different from $\{0\}$ and (π) . The cyclic group generated by φ acts on Y. We'll define later, for each integer $h \ge 1$ a scheme X_h , whose closed points will be the quotient $Y/\varphi^{h\mathbb{Z}}$. This will be a cyclic covering of degree h of $X = X_1$.

6

Completions

Fix q > 1. For $0 \le \rho \le 1$, we have an absolute value on B^b defined by :

$$\big|\sum_{n>>-\infty} [a_n]\pi^n\big|_{\rho} = \begin{cases} \sup_{n\in\mathbb{Z}}\{|a_n|\rho^n\} & \text{if } \rho\neq 0 \\ q^{-m} \text{ if } a_n = 0 \text{ for } n < m \text{ and } a_m \neq 0 & \text{if } \rho = 0 \end{cases}.$$

For any interval $I \subset [0, 1[$, let B_I (resp. B_I^+) be the completion of B^b (resp. $B^{b,+}$) for the family $(| |_{\rho})_{\rho \in I}$.

Remark : Let $I \subset [0, 1[$ and $(a_n)_{n \in \mathbb{Z}}$ in F (resp. \mathcal{O}_F) such that $|a_n|\rho^n$ goes to 0 when $n \mapsto +\infty$ and when $n \mapsto -\infty$ for all $\rho \in I$. Then

$$\sum_{n\in\mathbb{Z}}[a_n]\pi^n\in B_I \ (ext{resp. }B_I^+) \ .$$

If (EC), any element of B_I (resp. B_I^+) may be written uniquely like that. Doesn't seem to be always true in mixed char.

Special cases

We have natural injective maps $B_I^+ \subset B_I$, $B_J^+ \subset B_I^+$, $B_J \subset B_I$ (if $I \subset J$). Also $B_{+I} = B_{\tilde{I}^1}^+$ if \tilde{I}^1 is the smallest interval containing I whose closure contains 1.

If char(F) = p, φ extends to $B^{b,+}$, to B^{b} , to isomorphisms

$$B_I o B_{\varphi(I)}$$
 and $B_I^+ o B_{\varphi(I)}^+$ where $\varphi(I) = \{\rho^p \mid \rho \in I\}$,

and to automorphisms of the rings

$$B^+ = B^+_{]0,1[}$$
, $B^- = \lim_{\longrightarrow \rho > 0} B_{[0,\rho]}$ and $B = \lim_{\longrightarrow \rho > 0} B_{]0,\rho]}$.

Get

$$B=B^++B^-~$$
 and $B^{b,+}=B^+\cap B^-$.

Factorisation (1)

(Y= set of prime principal ideals of A^b different from {0} and (π)) If $\mathfrak{p} = (\pi - [\lambda]) \in Y$, set $|\mathfrak{p}| = |\lambda|$ (independent of the choice of λ). If $I \subset [0, 1[$ is an interval, set $Y_I = \{\mathfrak{p} \in Y \mid |\mathfrak{p}| \in I\}$, then

 $B_I/(B_I\mathfrak{p}) = C_\mathfrak{p}$ if $\mathfrak{p} \in Y_I$ and $B_I\mathfrak{p} = B_I$ if $\mathfrak{p} \notin Y_I$.

Same is true for B_I^+ if 1 belongs to the closure of *I*. If *I* is closed, B_I is a principal domain whose maximal ideals are the $B_I \mathfrak{p}$ for $\mathfrak{p} \in Y_I$.

In general, if $f \in B_I$ is non zero, set, for any $\mathfrak{p} \in Y_I$,

 $v_{\mathfrak{p}}(f) =$ biggest integer r such that $f \in (B_I \mathfrak{p})^r$.

If $\rho_1, \rho_2 \in I$ are such that $0 < \rho_1 \le \rho_2$, we have $v_{\mathfrak{p}}(f) = 0$ for almost all \mathfrak{p} satisfying $\rho_1 \le |\mathfrak{p}| \le \rho_2$. For each $\mathfrak{p} \in Y_I$, choose $\lambda_{\mathfrak{p}} \in \mathcal{O}_F$ such that $p - [\lambda_{\mathfrak{p}}]$ generates \mathfrak{p} .

Factorisation (2)

Weierstrass preparation theorem

Let I be an interval contained in [0, 1[and \tilde{I}^0 the smallest interval containing I and 0. If $f \in B_I$ is non zero and if $\rho \in I$, then $f = f_{\leq \rho} \cdot f_{>\rho}$ with

$$f_{\leq
ho} = \prod_{|\mathfrak{p}| \leq
ho} \left(1 - \frac{[\lambda_{\mathfrak{p}}]}{\pi}\right)^{v_{\mathfrak{p}}(f)}$$

and $f_{>\rho} \in B_{\tilde{I}^0}$, invertible in $B_{[0,\rho]}$. Moreover

$$f \in B^+_I \iff f_{>\rho} \in B^{b,+}$$

10			
10			
10			

The schemes X_h

 $char(F) = p, h \ge 1$. We set

 $X_h = \operatorname{Proj}(P_h)$. and $X := X_1$,

where P_h is the graded algebra

$$P_h = \bigoplus_{d \ge 0} \underbrace{\left(B^+\right)^{\varphi^h = \pi^d}}_{P_{h,d}}$$

 $P_{h,0} = \mathbb{F}_{p^h}((\pi))$ in (EC) case (resp. \mathbb{Q}_{p^h} in (MC) case).. Each $P_{h,d}$ is a Banach space over $P_{h,0}$. P_h is generated, as a \mathbb{Q}_{p^h} -algebra, by $P_{h,1}$.

11

Factorisation in P_h

Proposition

Let $h \ge 1$ and $x \in Y/\varphi^{h\mathbb{Z}}$. Choose $\mathfrak{p} = (\pi - [\lambda]) \in x$. The set V_x of the $t \in P_{h,1}$ such that $t \in \mathfrak{p}$ is a one dimensional sub- $P_{h,0}$ -vector space of $P_{h,1}$ independent of the choice of \mathfrak{p} .

Proposition

Let $d \ge 2$ and let $u \in P_{h,d}$ non zero. Then

 $u = t_1 t_2 \dots t_d$

with the t_i 's in $P_{h,1}$, uniquely determined up to permutation and multiplication by a non zero element of $P_{h,0}$.

The curves X_h

$$h \ge 1$$
, $X_h = Proj(P_h)$, $X := X_1$.

Theorem

1. X_h is a regular noetherian scheme of dimension 1

2.
$$X_h \simeq X \otimes_{\mathbb{Q}_p} \mathbb{Q}_{p^h}$$
 via $\underbrace{(B^+)^{\varphi=\pi^d}}_{P_{1,d}} \hookrightarrow \underbrace{(B^+)^{\varphi^h=\pi^{hd}}}_{P_{h,hd}}$

- 3. Choose $t \in P_{1,1} \setminus \{0\}$, then P_1t is an homogeneous prime ideal of P_1 defining a closed point ∞ of X:
 - 3.1 if $\mathfrak{p} \in Y$ contains t, the residue field at ∞ is the fraction field of A^b/\mathfrak{p} .
 - 3.2 $X \setminus \{\infty\} = Spec(B_e)$ with $B_e = \{x \in B^+[\frac{1}{t}] \mid \varphi(x) = x\}$ and B_e is a principal domain !
- 4. The map $t \mapsto \infty$ induces a bijection between the $\mathbb{F}_p((\pi))$ (resp. \mathbb{Q}_p)-lines in $P_{1,1}$ and the set |X| of closed points of X.

Line bundles $h \ge 1, d \in \mathbb{Z}$

 $\mathcal{O}_{X_h}(d) = \widetilde{P_h[d]}$ is a line bundle on X_h .

$$P_h = \bigoplus_{d \in \mathbb{Z}} H^0(X_h, \mathcal{O}_{X_h}(d))$$

٠

Theorem

1.
$$d \mapsto [\mathcal{O}_X(d)]$$
 induces an isomorphism $\mathbb{Z} \xrightarrow{\text{deg}} \operatorname{Pic}(X)$
2. $H^1(X, \mathcal{O}_X) = 0$ (« genus $0 \gg like \mathbb{P}^1$).
3. $H^1(X, \mathcal{O}_X(-1)) \neq 0$ (unlike \mathbb{P}^1)
(\Rightarrow there exists a non split short exact sequence
 $0 \to \mathcal{O}_X \to \mathcal{E} \to \mathcal{O}_X(1) \to 0$.)

Vector bundles (1)

Any non zero vector bundle \mathcal{E} over X has a rank $r(\mathcal{E}) \in N^*$, a degree $d(\mathcal{E}) \in \mathbb{Z}$ and a slope $\mu(\mathcal{E}) = d(E)/r(E) \in \mathbb{Q}$. A vector bundle \mathcal{E} is semi-stable if $\mu(\mathcal{F}) \leq \mu(\mathcal{E})$ for any sub vector bundle \mathcal{F} .

The Harder-Narasimhan theorem holds : If \mathcal{E} is a vector bundle, there is a unique filtration

$$0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \ldots \subset \mathcal{E}_{i-1} \subset \mathcal{E}_i \subset \ldots \subset \mathcal{E}_{m-1} \subset \mathcal{E}_m = \mathcal{E}$$

by strict sub vector bundles such that each $\mathcal{E}_i i / \mathcal{E}_{i-1}$ is non zero and semi-stable and that

$$\mu(\mathcal{E}_1/\mathcal{E}_0) > \mu(\mathcal{E}_2/\mathcal{E}_1) > \ldots > \mu(\mathcal{E}_m/\mathcal{E}_{m-1})$$
.

Moreover, the Harder-Narasiman filtration splits (non canonically).

For $\lambda \in \mathbb{Q}$, set $\lambda = d/h$ with $h \ge 1$ and (d, h) = 1. Set $\mathcal{O}_X(\lambda) = \pi_{h*}\mathcal{O}_{X_h}(d)$. Then

Vector bundles (2)

Theorem

Let $\lambda \in \mathbb{Q}$. Then

- 1. $\mathcal{O}_X(\lambda)$ is stable of slope λ .
- 2. A vector bundle is semi-stable of slope λ if and ony if \mathcal{E} is isomorphic to a direct sum of copies of $O_X(\lambda)$.

A stupid remark : The functor

 $\mathcal{E} \to H^0(X, \mathcal{E})$

induces an equivalence of categories between semi-stable vector bundles over X of slope 0 and finite dimensional \mathbb{Q}_p -vector spaces. The functor $V \mapsto V \otimes \mathcal{O}_X$ is a quasi-inverse.

An other remark :Let \mathcal{E} a non zero vector bundle over X.Then,

 $-H^0(X, \mathcal{E}) = 0$ if and only if all the Harder-Narasimhan slopes are < 0, - The dimension over \mathbb{Q}_p of $H^0(X, \mathcal{E})$ is finite if and only if all the

Harder-Narasimhan slopes are ≤ 0 ,

- If dim_{Q_p} $H^0(X, \mathcal{E})$ is finite, we have dim_{Q_p} $H^0(X, \mathcal{E}) \leq r(\mathcal{E})$ with equality if and only if \mathcal{E} is semi-stable of slope 0.

The arithmetic case

K= field of characteristic 0, complete with respect to a discrete valuation, with perfect residue field of characteristic p > 0. \overline{K} = an algebraic closure of K, C = p-adic completion of \overline{K} , F = F(C), $A^b = W(\mathcal{O}_F)$. Then

1.
$$B^+ = \widetilde{B}^+_{rig} = \cap_{n \in \mathbb{N}} \varphi^n(B^+_{cris}),$$

- 2. $B^- = \widetilde{\mathcal{E}}^{\dagger}$, field of overconvergent functions,
- 3. B = R =Robba's ring,
- 4. With θ and t as above, $B_e = \{x \in B_{cris} \mid \varphi x = x\}$ (where $B_{cris} = B^+_{cris}[\frac{1}{t}]$)

5.
$$B_{dR}^+ = \widetilde{\mathcal{O}}_{X,\infty}$$
 (and $B_{dR} = \text{Frac } B_{dR}^+ = B_{dR}^+[\frac{1}{t}]$).

 $G_{K} = \operatorname{Gal}(\overline{K}/K)$ acts on C, B^{+}, X and fixes ∞ and $X^{0} = X \setminus \{\infty\} = \operatorname{Spec}(B_{e})$. (therefore G_{K} acts on $B_{e}, \mathcal{O}_{X,\infty}, B_{dR}^{+}, B_{dR}, \dots$)

We may consider G_{K} -equivariant bundles over X. From the stupid remark, we get an equivalence of categories

p-adic representations of $G_K \iff$ semi-stable G_K -equiv. bundles of slope 0.

G_{K} -equivariant bundles over X

Let \mathcal{E} be a vector bundle over X. We set

$$\begin{split} \mathcal{E}^0 &= \mathsf{\Gamma}(X \setminus \{\infty\}, \mathcal{E}) \ , \ \widehat{\mathcal{E}}^+_\infty = B^+_{dR} \otimes \mathcal{E}_\infty (\text{ completion of the fiber at } \infty \) \\ & \text{and} \ \iota : B_{dR} \otimes_{B_e} \mathcal{E} \simeq B_{dR} \otimes_{B^+_{dR}} \widehat{\mathcal{E}}^+_\infty \text{ the structural isomomorphism} \end{split}$$

To know $\mathcal{E} \iff$ to know the triple

$$(\mathcal{E}^0,\widehat{\mathcal{E}}^+_\infty,\iota)$$

A G_K -equivariant bundle \mathcal{E} over X may be identified to such a triple, with

- 1. \mathcal{E}^{O} a B_{e} -representation of G_{K} , i.e. a free B_{e} -module of finite rank equipped with a semi-linear action of G_{K} ,
- 2. $\hat{\mathcal{E}}_{\infty}^+$ a B_{dR}^+ -representation of G_K , i.e. a free B_{dR}^+ -module of finite rank equipped with a semi-linear action of G_K ,
- 3. $\iota: B_{dR} \otimes_{B_e} \mathcal{E} \to B_{dR} \otimes_{B_{dR}^+} \widehat{\mathcal{E}}_{\infty}^+$ a G_K -equivariant isomorphism of B_{dR} -vector spaces.

Classification of B_{dR}^+ -representations which are B_{dR} -trivial

There is an obvious equivalence of categories

 B_{dR}^+ -representations of G_K finite dimensional which are B_{dR} -trivial filtered K-vector spaces

$$\widehat{\mathcal{E}}_{\infty}^{+} \mapsto D_{\mathcal{K}} = D_{d\mathcal{R}}(\widehat{\mathcal{E}}_{\infty}^{+}) = (B_{d\mathcal{R}} \otimes_{B_{d\mathcal{R}}^{+}} \widehat{\mathcal{E}}_{\infty}^{+})^{\mathcal{G}_{\mathcal{K}}} \text{ with } F^{i}D_{\mathcal{K}} = (F^{i}B_{d\mathcal{R}} \otimes_{B_{d\mathcal{R}}^{+}} \widehat{\mathcal{E}}_{\infty}^{+})^{\mathcal{G}_{\mathcal{K}}}$$

$$D_{\mathcal{K}} \mapsto \widehat{\mathcal{E}}^+_{\infty} = F^0(B_{dR} \otimes_{\mathcal{K}} D_{\mathcal{K}}) = \Sigma_{i \in \mathbb{Z}} F^{-i} B_{dR} \otimes_{\mathcal{K}} F^i D_{\mathcal{K}} .$$

19

The ring
$$B_{log}$$

Set $B_{rig} = B^+ \begin{bmatrix} \frac{1}{t} \end{bmatrix} = \bigcap_{n \in \mathbb{N}} \varphi^n (B_{cris}).$
If $\mathfrak{m} = \operatorname{Ker} (\theta : B^+ \to C) = (p - [\lambda])$, set
 $u = \log(\frac{[\lambda]}{p}) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{\left(\frac{[\lambda]}{p} - 1\right)^n}{n} \in B_{dR}^+.$

Set

$$B_{log} = B_{rig}[u] \subset B_{dR} \; .$$

u is transcendental over $\operatorname{Frac} B_{rig}$ and $B_{log} = \bigcap_{n \in \mathbb{N}} \varphi^n(B_{st})$ (where $B_{st} = B_{cris}[u]$).

- 1. B_{log} is stable under G_K and $(B_{log})^{G_K} = K_0 = \operatorname{Frac}(W(k))$ (where k is the residue field of K).
- 2. φ extends to B_{log} with $\varphi(u) = pu$.

3.
$$N = -\frac{d}{du} : B_{log} \rightarrow B_{log}$$

4. $N\varphi = p\varphi N$.
5. If $g \in G_K$, $\varphi g = g\varphi$ and $Ng = gN$.

log-crystalline B_e -representations

A B_e -representation \mathcal{E}^0 is log-crystalline if the B_{log} -representation $B_{log} \otimes_{B_e} \mathcal{E}^0$ is trivial.

A (φ, N) -module over K_0 is a finite dimensional K_0 -vector space D equipped with two operators $\varphi, N : D \to D$, with φ semi-linear with respect to the absolute Frobenius on K_0 , N linear and $N\varphi = p\varphi N$.

Proposition

The category of log-crystalline $B_{\rm e}\mbox{-representations}$ is abelian and the functor

log-crystalline B_e-representations \rightarrow (φ , N)modules over K₀

$$E^0 \qquad \qquad \mapsto \quad D(\mathcal{E}^0) = (B_{log} \otimes_{B_e} \mathcal{E}^0)^{\mathcal{G}_K}$$

is an equivalence of categories. A quasi-inverse is given by the functor

$$D \mapsto (B_{log} \otimes_{\mathcal{K}_0} D)_{\mathcal{N}=0, \varphi=1}$$

It is a formal consequence of the fact that $(B_{log})_{N=0,\varphi=1}=B_e.$

log-crystalline G_K -bundles

Let \mathcal{E} be a $G_{\mathcal{K}}$ -equivariant vector bundle over X which is log-crystalline (i.e. the B_e -representation $\mathcal{E}^0 = \Gamma(X \setminus \{\infty\}, \mathcal{E})$ is log-crystalline). The inclusion $B_{log} \subset B_{dR}$ implies that \mathcal{E} is trivial at ∞ . Moreover, if we set

$$D(\mathcal{E}) = D(\mathcal{E}^0) = (B_{log} \otimes_{B_e} \mathcal{E}^0)^{G_K} \;,$$

then $D(\mathcal{E})$ has a natural structure of a *filtered* (φ, N) -module over K, i.e. this is a (φ, N) -module over K_0 and $D_K = K \otimes_{K_0} D(\mathcal{E})$ is a filtered K-vector space (because it may be identified to $D_{dR}(\widehat{\mathcal{E}}^0_{\infty})$).

Theorem

The functor

$$\mathcal{E} \to D(\mathcal{E})$$

induces an equivalence of categories between log-crystalline G_K -bundles and filtered (φ , N)-modules over K.

This is a formal consequences of classifications of B_{dR} -trivial B_{dR}^+ -repr's and of log-crystalline B_e -representations together with the fact that a vector bundle \mathcal{E} over X is determined by the triple

$$(\mathcal{E}^0,\widehat{\mathcal{E}}^+_\infty,\iota)$$

where ι is the natural isomorphim $B_{dR} \otimes_{B_e} \mathcal{E}^0 \simeq B_{dR} \otimes_{B_{dR}^+} \widehat{\mathcal{E}}^+_{\infty}$.

Applications and complements

- The theorem « weakly admissible implies admissible » is a corollary of the previous theorem (We use the stupid remark and apply the theorem to the G_K -equivariant bundles which are semi-stable of slope 0). - One can show that any G_K -equivariant vector bundle \mathcal{E} which is trivial at ∞ , or *de Rham* (i.e. such that $B_{dR} \otimes \mathcal{E}^0$ is trivial) is *potentially log-crystalline* (i.e. becomes log-crystalline after replacing K by a suitable finite extension).

This is actually a result on B_e -representations : to any B_e representation which is de Rham, one can associate a G_K -equivariant vector bundle. The Harder-Narasimhan filtration reduces the proof by dévissage to an old result of Shankar Sen and to a computation in Galois cohomology.

– The theorem \ll de Rham implies potentially log-crystalline \gg is the semi-stable of slope 0 case of this result.

- If \mathcal{E} is a G_K -equivariant bundle over X which is de Rham, there exists an integer $h \leq 1$ and a finite extension L of K contained in \overline{K} such that $\pi_h^* \mathcal{E}$ is a successive extensions of G_L -equivariant line bundles over X_h (generalisation of the notion of trianguline representations).