Goa August 12, 2010 On the modulo p Satake isomorphism with weight Marie-France Vignéras

This is a common work with Guy Henniart.

1 Let p be a prime number, k a finite field of characteristic p, F a local non archimedean field of residue field k.

Let \underline{G} be a connected reductive group over F, the group $G = \underline{G}(F)$ of F-rational points of \underline{G} .

A representation of G on a vector space is called smooth when the stabilizer of any vector is open in G.

It is interesting to study the complex irreducible smooth representations of G because they are local components of automorphic representations of adelic groups. The local counterpart of the congruences between automorphic representations are irreducible smooth representations of G over fields of positive characteristic.

Let $K \subset G$ be an open compact subgroup and let $\mathcal{H}(G, K)$ be the convolution ring of $Z[K \setminus G/K]$ (the functions on the double coset space $K \setminus G/K$ with Z-values).

Let \mathbb{C} be the field of complex numbers.

 $W \to W^K$ gives a bijection from the isomorphism classes of complex smooth irreducible representations W of G with $W^K \neq 0$ onto the isomorphism classes of simple $\mathcal{H}(G, K) \otimes_Z \mathbb{C}$ -modules.

When \mathbb{C} is replaced by a field C of characteristic p, this is false. Still it is interesting to study the $\mathcal{H}(G, K, C) := \mathcal{H}(G, K) \otimes_Z C$ -modules.

Let C a commutative ring, B, L, U be closed subgroups of G such that B = U.L is the semi-direct product of U normal with L. When we have an Iwasawa decomposition G = BK and $B \cap K = (L \cap K)(U \cap K)$, there is a natural map

$$S : \mathcal{H}(G, K, C) \to \mathcal{H}(L, L \cap K, C)$$
$$Sf(x) := \sum_{u \in U/U \cap K} f(xu) .$$

One says that S is a Satake isomorphism when S is injective and one can determine its image.

From now on, B is a minimal parabolic subgroup of G with Levi decomposition B = U.L. We say that K is L-special, if K fixes a special vertex of the apartment associated to L in the Bruhat-Tits building of G. Let $W := N_G(L)/L$ be the finite Weyl relative group.

2 The complex case $C = \mathbb{C}$.

Satake in 1963 did not considered S but $S\delta_B^{1/2}$ where δ_B is the modulus of B. For a maximal compact subgroup $K \subset G$ satisfying axiomatic conditions which were known to be true when G is a classical group and K a natural maximal open compact subgroup, the group $L \cap K$ is the unique maximal open compact subgroup of L, the quotient $L/L \cap K$ is commutative free finitely generated, the algebra $\mathcal{H}(L, L \cap K, \mathbb{C})$ is naturally isomorphic to

 $\mathbb{C}[L/L \cap K]$ and that W acts on $L/L \cap K$. Satake showed that $S\delta_B^{1/2}$ is injective of image $\mathbb{C}[L/L \cap K]^W$. He showed also that $\mathcal{H}(G, K, Z) \simeq Z[T_1, \ldots, T_n]$ when G is simple with no center.

Later, Bruhat and Tits showed that any L-special maximal open compact subgroup K of G satisfies the axioms used by Satake, and the article of Cartier in Corvallis became the classical reference for the Satake isomorphism.

The Satake isomorphism, when G is classical and unramified (quasi-split and split over an unramified extension) and K a natural maximal open compact subgroup (an L-hyperspecial group), is the starting point of the definition by Langlands in 1970, of the L-group of G. Langlands sees the Satake isomorphism as a bijection between the isomorphism classes of complex smooth irreducible representations W of G with $W^K \neq 0$ and the irreducible characters of $\mathbb{C}[L/L \cap K]^W$, and those are in bijection with certain semi-simple conjugacy classes in the L-group of G.

Then Langlands define the partial L-functions of automorphic representations using the L-group and the fact that the local components of an irreducible automorphic representation are - except for a finite number of places - irreducible smooth representations associated to semi-simple conjugacy classes in the local L-group.

In 2009, Haines and Rostami considered the connected part K of an L-special maximal open compact \tilde{K} of G, called a maximal L-special parahoric subgroup of G. They show that $\Lambda := L/(L \cap K)$ is commutative finitely generated of torsion subgroup $\Lambda_{tor} = (L \cap \tilde{K})/(L \cap K)$. The quotient group $\tilde{\Lambda} := \Lambda/\Lambda_{tor}$ is $L/(L \cap \tilde{K})$. They adjusted the proof of Cartier to show that $S\delta_B^{1/2}$ is injective of image $\mathbb{C}[L/L \cap K]^W$.

When G splits over an unramifed extension of F, then $K = \tilde{K}$.

An example of a compact torus $G = \tilde{K} \neq K$ (Pappas-Rapoport)

 $p \neq 2$, E/F is a ramified quadratic extension with uniformizers $p_E^2 = p_F$ and $y \to \overline{y}$ the non trivial *F*-automorphism of *E*. Let <u>*G*</u> be the *F*-torus Ker (Norm : $R_{E/F}\mathbb{G}_m \to \mathbb{G}_m$).

Then $G = \{y \in E^* \mid y\overline{y} = 1\}$ is compact and $G = \tilde{K}$. By Hilbert's theorem 90, there exists $x \in O_E$ such that $y = x/\overline{x}$. Then $K = \{y = x/\overline{x} \mid \operatorname{val}_E(x) \text{ even}\}.$

And also the group of unitary similitudes of a hermitian vector space of even dimension ≥ 4 over E for other examples.

3 Let C be a field of characteristic p. We cannot keep δ_B and we loose the symmetry by the Weyl group. Let $K \subset \tilde{K}$ as in Haines-Rostami.

An element $x \in L$ is called anti-dominant if $x^{-n}(U \cap K)x^n$ does not blow up when n goes to ∞ . Then the elements of $x(L \cap \tilde{K})$ are also antidominant. Let $L^-, \Lambda^-, \tilde{\Lambda}^-$, be the monoids of anti-dominant elements. The commutative monoids $\Lambda^-, \tilde{\Lambda}^-$ are finitely generated.

The monoid $\tilde{\Lambda}^-$ is a fundamental domain for the action of W on $\tilde{\Lambda}$ and every element of Λ_{tor} is fixed by W.

Proposition. S is injective of image the functions in $\mathcal{H}(L, L \cap K, C) = C[L/(L \cap K)]$ with support in Λ^- .

In particular, the C-algebra $\mathcal{H}(G, K, C)$ is commutative of finite type.

We can deduce from Haines Rostami that $\mathcal{H}(G, K, Z) \subset \mathcal{H}(G, K, \mathbb{C})$ is commutative hence $\mathcal{H}(G, K, C) = \mathcal{H}(G, K, \mathbb{Z}) \otimes_{\mathbb{Z}} C$ is commutative.

3 The proposition is the particular case V = C of a more general theorem.

Let C be any field and let $K \subset G$ be any open compact subgroup. Let V be an absolutely irreducible smooth C-representation of K. Let $\mathcal{H}(G, K, V)$ be the convolution algebra of functions $f : G \to \operatorname{End}_C(V)$ supported on finitely many cosets of $K \setminus G/K$ and satisfying f(kgk') = kf(g)k' for all $k, k' \in K, g \in G$.

For a smooth C-representation W of G, $\operatorname{Hom}_{K}(V, W)$ is a module for $\mathcal{H}(G, K, V)$.

When $C = \mathbb{C}$, then $W \to \operatorname{Hom}_K(V, W)$ gives a bijection between the isomorphism classes of complex smooth irreducible representations W of G with $\operatorname{Hom}_K(V, W) \neq 0$ and the isomorphism classes of simple $\mathcal{H}(G, K, V)$ -modules.

We can say more when V is a type. When V is trivial on the unique maximal normal pro-p-subgroup K_+ of K, one says that V is of level 0. The algebras $\mathcal{H}(G, K, V)$ for the types of level 0 when $K \subset G$ is a parahoric subgroup have been computed by Morris in 1993.

From now on C is a field of characteristic p and $K \subset \tilde{K}$ as in Haines-Rostami. Then K_+ acts trivially on V. The quotient K/K_+ is a finite group of Lie type. This is the main reason to replace \tilde{K} by the parahoric K.

By the theory of representations of finite groups of Lie type, $\dim_C V^{U\cap K} = 1$ and $L \cap K$ acts on $V^{U\cap K}$ by a character χ , called the highest weight.

Let L_{χ} be the normalizer of χ in L, equal to the subgroup of $x \in L$ such that $\chi(xkx^{-1}) = \chi(k)$ for all $k \in K \cap L$. We have $L \cap K \subset L_{\chi}$ and $(L \cap K) / \text{Ker } \chi$ is commutative.

Theorem (Henniart V.) The map

$$S : \mathcal{H}(G, K, V) \to \mathcal{H}(L, L \cap K, V^{U \cap K})$$
$$Sf(x) := \sum_{u \in U/U \cap K} f(xu) .$$

is injective of image the functions in $\mathcal{H}(L, L \cap K, V^{U \cap K})$ supported on the anti-dominant submonoid L_{χ}^{-} of L_{χ} .

This is a theorem of Barthel and Livne (1993) when G = GL(2, F), of Florian Herzig (2008) when G is unramified, K hyperspecial, F of characteristic 0. The Satake isomorphism with weight V is the first step of the classification by Barthel-Livne and Herzig of the irreducible admissible smooth representations of GL(n, F) over an algebraic closure of k. In the case of Barthel-Livne and of Herzig, $\tilde{K} = K$, L is commutative hence $L = L_{\chi}$. Hence $\mathcal{H}(G, K, V)$ is commutative isomorphic by S to the subalgebra of $\mathcal{H}(L, L \cap K, V^{U \cap K})$ supported on L^- .

On the positive side, $\tilde{K} = K$ and $\mathcal{H}(G, K, V)$ is commutative for all V when G is semisimple simply connected or splits on an unramified extension.

But we have examples where K = K and $\mathcal{H}(G, K, V)$ is NOT commutative.

The commutator $(x, y) = xyx^{-1}y^{-1}$ of two elements of L belongs to $L \cap K$. Let L'_{χ} be the subgroup of $x \in L$ such that $(x, L_{\chi}) \subset \text{Ker } \chi$.

Theorem. The center of $\mathcal{H}(G, K, V)$ is the inverse image by S of the functions in $\mathcal{H}(L, L \cap K, V^{U \cap K})$ supported on the anti-dominant elements in L'_{χ} .

 $\mathcal{H}(G, K, V)$ is a finitely generated module over its center and the center is a C-algebra of finite type.

Corollary. $\mathcal{H}(G, K, V)$ is commutative if and only if $L_{\chi}/\operatorname{Ker} \chi$ is commutative.

4 Example of a non commutative Hecke algebra $\mathcal{H}(G, K, V)$.

When G is a non abelian group of order 8, the center K has order 2 and G/K is abelian non cyclic of order 4. Let χ be a non trivial character of K. We have $G_{\chi} = G$ and $(G, G) \neq \{1\} = \text{Ker } \chi$ hence $\mathcal{H}(G, K, \chi)$ is not abelian.

Suppose p = q = 3. Let E/F be a ramified quadratic extension, let $y \to \overline{y}$ be the non trivial Galois automorphism of E/F, let D/F be a division algebra of center F, reduced degree 4 over F and containing E, let $d \to Nrd(d)$ the reduced norm of D/F. Let

$$G: \{ (d, x, y) \in D^* \times E^* \times E^* \mid Nrd(d)x^2 \frac{y}{\overline{y}} = 1 \}$$

The kernel of $(d, x, y) \mapsto (x, y) : G \to E^* \times E^*$ is the kernel D^1 of the reduced norm. The group G is $\underline{G}(F)$ for a reductive connected F-group \underline{G} , extension of an F-torus \underline{T} by a reductive connected F-group \underline{G}_1

$$1 \to \underline{G}^1 \to \underline{G} \to \underline{T} \to 1$$

Let U_E, U_D the group of units of the integers of E, D. Then

$$K = \tilde{K} = G \cap (U_D \times U_E \times U_E) \quad .$$

We have $|k^*| = |k^*_E| = 2$ and $|k^*_D| = 80 = 16 \times 5$. We have

$$K/K_{+} = \{ (z, t, u) \in k_{D}^{*} \times k^{*} \times k^{*} \mid n(z)t^{2} = 1 \}$$

where $n(z) = z^{1+3+9+27} = z^{40}$. Hence

$$K/K_{+} = \{(z, t, u) \in k_D^* \times k^* \times k^* \mid z \text{ is a square } \}.$$

Lemma. The algebra $\mathcal{H}(G, K, \chi)$ is not commutative when χ is the character of K inflating the character

$$\epsilon(z,t,u) = z^5$$

We have $G_{\chi} = G$. Let $(d, x, y) \in G$. Then $Nrd(d)x^2 \frac{y}{y} = 1$ hence the valuation v of d is even. The conjugation by d induces on k_D the map $z \to z^{3^v}$. Clearly $3^v - 1$ is divisible by 8. When $z \in k_D^*$ is a square then $(z^{3^v-1})^5 = 1$.

We have $(G, G) \not\subset \text{Ker } \chi$. We take two elements of G of the form g = (d, 1, y), $h = (p_D^2, Nrd(p_D)^{-1}, 1)$, for $d \in U_D$ of reduced norm Nrd(d) = -1 hence of reduction z with $z^{40} = -1$, $y \in E^*$ with $y^2 \in F^*$ and p_D an uniformizer of D. The reduction of $p_D^2 dp_D^{-2} d^{-1}$ is z^8 . Hence $\chi(g, h) = z^{40} = -1$.

References

- [BTI] Bruhat F. et Tits J. : *Groupes réductifs sur un corps local*. Inst. Hautes Études Scient. Publications Mathématiques Vol. 41 (1972), part I, pp. 5-252.
- [BTII] Bruhat F. et Tits J. : *Groupes réductifs sur un corps local.* Inst. Hautes Études Scient. Publications Mathématiques Vol. 60 (1984), part II, pp. 197-376.
- [BTIII] Bruhat F. et Tits J. : Groupes réductifs sur un corps local. J. Fac. Sci. Tokyo IA 34 (1987) pp. 671-698.
- [Cart] Cartier P. : Representations of p-adic groups: a survey In Automorphic forms, representations and L-functions Proceedings of Symposia in Pure Mathematics Vol. 33 (1979), part I, pp. 111-155.
- [H] Herzig F. : A Satake isomorphism in characteristic p. Preprint 2009.
- [HR] Haines T. J. and Rostami S.: *The Satake isomorphism for special maximal parahoric algebras.* ArXiv:0907.4506v2 [math.RT] 2009.
- [Langl] Langlands R. P. : Problems in the theory of automorphic forms. Lecture Notes in Math., vol. 170, Springer (1970).
- [Mo] Morris L. : Tamely ramified intertwinning algebras. Invent. math. 114, 1-54 (1993).
- [Sa] Satake I. Theory of spherical functions on reductive algebraic groups over p-adic field. Inst. Hautes Études Scient. Publications Mathématiques Vol. 18 (1963), pp. 1-69.