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A note on Iwasawa μ-invariants of elliptic curves

Rupam Barman and Anupam Saikia

Abstract. Suppose that E1 and E2 are elliptic curves defined over Q and p is an odd
prime where E1 and E2 have good ordinary reduction. In this paper, we generalize a
theorem of Greenberg and Vatsal [3] and prove that if E1[pi ] and E2[pi ] are isomorphic
as Galois modules for i = μ(E1), then μ(E1) ≤ μ(E2). If the isomorphism holds
for i = μ(E1) + 1, then both the curves have same μ-invariants. We also discuss one
numerical example.
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1 Introduction

Let E be an elliptic curve defined over Q with good ordinary reduction at p.
Let 6 denote any finite set of primes containing p,∞, and the primes of bad
reduction for E . Let Q∞ be the cyclotomic-Zp extension of Q. Let ηp be the
unique prime of Q∞ lying over p, and Iηp be the inertia subgroup of G(Q∞)ηp

.
The Selmer group SE[p∞](Q∞) is defined as, following [3],

SE[p∞](Q∞) := ker
(

H 1(Q6/Q∞, E[p∞]) →
∏

l∈6

Hl(Q∞, E[p∞])
)
, (1.1)

where for l 6= p,Hl(Q∞, E[p∞]) :=
∏
η|l H 1((Q∞)η, E[p∞]),with η running

over the primes of Q∞ lying over l, and

Hp
(
Q∞, E[p∞]

)
:= H 1

(
(Q∞)ηp , E[p∞]

)
/Lηp

where Lηp = ker
(

H 1((Q∞)ηp , E[p∞]) → H 1(Iηp , Ẽ[p∞])
)
. This is in fact the

classical Selmer group of E over Q∞. Since it is the object one usually works
with, there is a lot of interest in gaining information about its mu-invariant.

Received 27 October 2009.



“main” — 2010/6/15 — 18:17 — page 400 — #2

400 RUPAM BARMAN and ANUPAM SAIKIA

Let 60 be any subset of 6 which does not contain p. We also consider a
“non-primitive” Selmer group, following [3], defined by

S60
E[p∞](Q∞) = ker

(
H 1(Q6/Q∞, E[p∞]) →

∏

l∈6−60

Hl(Q∞, E[p∞])
)
.

We now define a Selmer group for E[pi ] where i ≥ 1 in the following way. Let

S60
E[pi ](Q∞) := ker

(
H 1(Q6/Q∞, E[pi ]) →

∏

l∈6−60

Hl(Q∞, E[pi ])
)
.

For
l 6= p, Hl

(
Q∞, E[pi ]

)
:=

∏

η|l

H 1
(
Iη, E[pi ]

)
,

and for
l = p, Hp

(
Q∞, E[pi ]

)
:= H 1

(
Iηp , Ẽ[pi ]

)
.

Both SE[p∞](Q∞) and S60
E[p∞](Q∞) are modules over the Iwasawa algebra 3 :=

Zp[[0]], where 0 = G(Q∞/Q). It is a deep theorem of Kato that SE[p∞](Q∞)

is cotorsion over3. This allows us to define the μ-invariant which is the largest
power of p dividing the characteristic polynomial.

Theorem 1.1 (See [3]). We have μ
(

̂SE[p∞](Q∞)
)

= μ
(

̂S60
E[p∞](Q∞)

)
.

Suppose that E1 and E2 are elliptic curves defined over Q. Let p be an odd
prime where E1 and E2 have good ordinary reduction. If E1[p] ∼= E2[p] as GQ-
modules, then in [3], Greenberg and Vatsal proved that SE1[p∞](Q∞)[p] is finite
if and only if SE2[p∞](Q∞)[p] is finite. Consequently, if μ(SE1[p∞](Q∞)) = 0
then μ(SE2[p∞](Q∞)) = 0. The aim of this paper is to prove the following main
result and to discuss a numerical example. The proof of the main result is a
simple generalization of the one given by Greenberg and Vatsal [3].

Theorem 1.2. Suppose that E1 and E2 are elliptic curves defined over Q. Let
p be an odd prime where E1 and E2 have good ordinary reduction. Assume
that E1[pi ] ∼= E2[pi ] as GQ-modules for i = μ(E1). Also assume that both
E1(Q)[p] and E2(Q)[p] are trivial. Then μ(E1) ≤ μ(E2). If E1[pi ] ∼= E2[pi ]
as GQ-modules for i = μ(E1)+ 1, then μ(E1) = μ(E2).

2 Proof of the Main Result

Before giving the proof of the Theorem 1.2, we first state a lemma.
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Lemma 2.1. Let S = SE[p∞](Q∞) and X E(Q∞) be the Pontryagin dual. Let
p be a prime where E has good ordinary reduction. Then

μ(X E(Q∞)) =
∞∑

i=1

corankFp[[T ]]
S[pi ]

S[pi−1]
.

Proof. The proof follows without difficulty from the following exact se-
quences and comparing Fp[[T ]]-coranks

0 →
(̂

S

pr S

)
→

̂(
S

pr+1S

)
→

̂(
pr S

pr+1S

)
→ 0. (2.1)

0 →
(

pr−1S
)
[p] →

(
pr−1S

)
→ (pr−1S) →

pr−1S

pr S
→ 0. (2.2)

�

The following result is an easy generalization of Proposition 2.8 in [3] (also
see [1]).

Theorem 2.2. Let p be an odd prime. Assume that 60 is a subset of 6−
{p,∞}. Assume that E(Q)[p] = 0 and i ≥ 1. Then

S60
E[p∞](Q∞)[pi ] ∼= S60

E[pi ](Q∞).

Proof. Since H 0(Q, E[p]) = E(Q)[p] = 0 and Gal(Q∞/Q) is a pro-p group,
we have H 0(Q∞, E[p∞]) = 0. Consider the exact sequence

0 → E[pi ] → E[p∞]
pi

→ E[p∞] → 0

of Gal(Q6/Q∞)-modules. Taking Gal(Q6/Q∞) cohomology and using the
fact that H 0(Q∞, E[p∞]) = 0, we find the following isomorphism

H 1
(
Q6/Q∞, E[pi ]

) ∼= H 1
(
Q6/Q∞, E[p∞]

)
[pi ].

Comparing the local conditions defining S60
E[p∞](Q∞)[pi ] and S60

E[pi ](Q∞), we
complete the proof of the result. �

Let 6 be a finite set of primes containing p, ∞, and all primes where either
E1 or E2 has bad reduction. Let 60 = 6 − {p,∞}.
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Proof of the Theorem 1.2. From Theorem 2.1 and Theorem 1.1, we have

μ(E1) =
μ(E1)∑

i=1

corankFp[[T ]]

S60
E1[p∞](Q∞)[pi ]

S60
E1[p∞](Q∞)[pi−1]

=
μ(E1)∑

i=1

corankFp[[T ]]

S60
E1[pi ](Q∞)

S60
E1[pi−1](Q∞)

=
μ(E1)∑

i=1

corankFp[[T ]]

S60
E2[pi ](Q∞)

S60
E2[pi−1](Q∞)

=
μ(E1)∑

i=1

corankFp[[T ]]

S60
E2[p∞](Q∞)[pi ]

S60
E2[p∞](Q∞)[pi−1]

≤ μ(E2).

The equalities follow directly from Theorem 2 and the isomorphisms E1[pi ] ∼=
E2[pi ] as GQ-modules for i = μ(E1). Indeed, since E1[pi ] ∼= E2[pi ] as GQ-
modules for i = μ(E1)+ 1, so

corankFp[[T ]]

S60
E1[pi ](Q∞)

S60
E1[pi−1](Q∞)

= 0

implies

corankFp[[T ]]

S60
E2[pi ](Q∞)

S60
E2[pi−1](Q∞)

= 0

for i = μ(E1) + 1. Hence if E1[pi ] ∼= E2[pi ] as GQ-modules for i =
μ(E1)+ 1, then μ(E1) = μ(E2). �

3 Numerical examples

Consider the following elliptic curves:

E1 : y2 = x3 − x2 − 2858x − 10163, [4900a1] (3.1)

E2 : y2 = x3 − x2 − 174358x − 27964663, [4900a2] (3.2)

E3 : y2 = x3 − x2 − 24908x + 1522312, [4900b1] (3.3)

E4 : y2 = x3 − x2 + 24092x + 6422312. [4900b2] (3.4)
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Here the labels in the square brackets denote the Cremona numbers of the
curves. We begin with some facts about these curves. There is a single 3-
isogeny φ : E1 −→ E2 and ψ : E3 −→ E4, defined over Q. All the curves
have good ordinary reduction at 3. A computation using 3-division polynomials
shows that there is no non-trivial 3-torsion point over Q on these curves. Recall
that for an elliptic curve E : y2 = x3 + ax + b over Q, its 3-division polyno-
mial is given by ψ(x) = 3x4 + 6ax2 + 12bx − a2. Let x0, x1 be two different
roots of ψ , so that

ψ(x) = 3(x − x0)
(
x3 + x0x2 +

(
2a + x2

0

)
x + 4b + 2ax0 + x3

0

)
.

Let y2
1 = x3

1 + ax1 + b. Then −4y2
1 x0 = (x2

0 + a + 2x0x1)
2. Hence

y1 = ±
√

−x0

(
x1 +

x2
0 + a

2x0

)
.

Similarly,

y0 = ±
√

−x1

(
x0 +

x2
1 + a

2x1

)
.

Therefore, Q(E[3]) = Q(
√

−x0,
√

−x1,
√

−x2,
√

−x3), which is nothing but
the splitting field of ψ(−X2) = 3X8 + 6aX4 − 12bX2 − a2.

Lemma 3.1. Suppose that for an elliptic curve E/Q,Q(E[3]) denotes the field
of 3-torsion points. Then Q(E1[3]) = Q(E3[3]) and Q(E2[3]) = Q(E4[3]).
Moreover, these fields are of degree 12 over Q. There is a 3-torsion point of
E1 and E3 defined over Q(

√
5), while E2 and E4 have a 3-torsion point defined

over Q(i
√

15).

Proof. Let ψi (X) denote the 3-division polynomial for the Weierstrass equa-
tion of Ei : i = 1, . . . , 4. Using MAGMA the splitting fields of ψ1(−X2) and
ψ3(−X2) as well as ψ2(−X2) and ψ4(−X2) are found to be equal. Further,
the degree of the extensions Q(Ei [3]) over Q is also found to be 12 for each i .
Along with this, we also find 3-torsion points

P1 = (2940, 2333725
√

5), P2 = (−8820, 233.5.72
√

15i),

P3 = (2940, 2433.5.7
√

5), P4 = (−8820, 24.3.54.7
√

15i)

on E1, E2, E3, E4 respectively. Therefore E1 and E3 have a 3-torsion point over
L = Q(

√
5), while E2 and E4 have a 3-torsion point over K = Q(

√
15i). �

Our next goal is to show that E1[3] ∼= E3[3] and E2[3] ∼= E4[3] as GQ-
modules.
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Theorem 3.2. As GQ-modules, E1[3] ∼= E3[3] and E2[3] ∼= E4[3].

Proof. Let ρi denote the GQ-representation associated to Ei [3], for i =
1, . . . , 4 and L = Q(

√
5) and K = Q(i

√
15). Since each of these curves

admit a 3-isogeny, we get

ρ1(g) ∼
(
ε(g) b(g)

0 η(g)

)
and ρ3(g) ∼

(
ε′(g) b′(g)

0 η′(g)

)
∀g ∈ GQ,

where ε, ε ′, η, η′ are all characters of GQ. Since there is 3-torsion point in L ,
we have

ρ1|GL ∼
(

1 ∗
0 χ

)
and ρ3|GL ∼

(
1 ∗
0 χ

)
.

where χ = χ3 (mod 3) is the mod 3 cyclotomic character. Suppose that 1 :=
GQ/GL =< τ >, then ε(τ ) = −1 as there is no non-trivial rational 3-torsion.
Therefore, η(τ) = −χ(τ).

Comparing the traces of ρ1(g) |GL , we get ε(g) + η(g) = 1 + χ(g), for
g ∈ GL . Therefore, by Artin’s theorem on linear independence of characters,
either ε(g) = χ(g) or 1 for g ∈ GL . Suppose that ε(g) = χ(g). Then

ρ1 |GL (g) ∼
(
χ(g) b(g)

0 η(g)

)
,

which means that there is a point in E1[3], say P ′ such that gP ′ = χ(g)P ′.
There is also a point P1 in E1[3] such that gP1 = P1. It is easy to see that P1 is
not in the span of P ′. Hence with respect to these points as basis, we have

ρ1 |GL (g) ∼
(
χ(g) 0

0 η(g)

)
.

Therefore the kernel of ρ1 |GL cuts out a field whose extension degree over L is
2 or 4. This is not possible as the extension degree over L is computed to be 6
in the previous lemma. Hence, ε(g) = 1 and η(g) = χ(g) for g ∈ GL .

Similarly, for the GQ-representation ρ3, we have ε′(τ ) = −1 and η′(τ ) =
−χ(τ). As above, ε′ |GL (g) = 1 and η′ |GL (g) = χ(g). Now, for any
γ = hτ ∈ GQ with h ∈ GL , we have ε′(hτ) = −1 = ε(hτ) and η′(hτ) =
χ(hτ) = η(hτ). This implies that

ρ1 ∼
(
ε b
0 η

)
and ρ3 ∼

(
ε b′

0 η

)
.
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Let F = Z/3Z as a vector space over itself. For g, h ∈ GQ, using ρ1(gh) =
ρ1(g)ρ2(h), it is easy to see that u := η−1b, and v := η−1b′ are 1-cocycles in
Z1(GQ,F(εη−1)). If u, v differ by a 1-coboundary in B1(GQ,F(εη−1)), then it
is easy to see that ρ1 ∼ ρ3. Using the inflation-restriction sequence with respect
to GL ⊂ GQ, we get

0 → H 1
(
1,F(εη−1)GL

)
→ H 1

(
GQ,F(εη−1)

)

→ H 1
(
GL ,F(εη−1)

)1
→ H 2

(
1,F(εη−1)GL

)
.

Since1 acts non-trivially on the one dimensional space F(εη−1) and1 is cyclic,
therefore the first term of this sequence vanishes. Hence we have an inclusion

H 1
(
GQ,F(εη−1)

)
↪→ H 1

(
GL ,F(χ−1)

)1
↪→ H 1

(
GL ,F(χ−1)

)
, (3.5)

where we have used the fact that ε |GL = 1 and η |GL = χ . Let M be the extension
over L cut out by χ , H = G M and D = G(M/L). Then M = K (μ3) so that
D has order 2. Using the inflation restriction sequence again, but with respect
to H ⊂ GL , we get

0 −→ H 1
(
D,F(χ−1)H

)
−→ H 1

(
GL ,F(χ−1)

)

−→ H 1
(
H,F(χ−1)

)D
−→ H 2

(
D,F(χ−1)H

)
.

As D is cyclic and H acts trivially on F, the first term is trivial.
Combining this injection with the injection in (3.5), we get

H 1
(
GQ,F(εη−1)

)
↪→ H 1

(
GL ,F(χ−1)

)
↪→ H 1

(
H,F(χ−1)

)D
.

Let b |GL = a, b′ |GL = a′. By the first injectivity, to show that b, b′ are co-
homologous it is enough to show that a, a′ differ by a co-boundary. We give a
proof of this below.

Since H acts trivially on F(χ−1) therefore H 1(H,F(χ−1))D = Hom(H,F)D .
Hence the image of a, which is a|H , gives a homomorphism H −→ F.

Since Q(E1[3]) = Q(E3[3]), therefore the field cut out by a|H and a′|H are
the same. Hence J := ker(a|H ) = ker(a′|H ) =: J ′. Further, as a|H , and a′|H

are non-trivial, they are surjective. Hence a|H , and a′|H are isomorphisms from
H/J onto F. Finally, since |H/J | = |F| = 3, therefore |Isom(H/J,F)| = 2,
and hence either a|H = a′|H or a|H = −a′|H .

If a|H = a′|H , then by injectivity of the above exact sequence, it follows that
[a] = [a′] and we are done.
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Let a|H = −a′|H = 2a′|H , then [a] = [2a′]. Therefore [b] = [2b′]. As
[2b′] = 2[b′], so (

ε b
0 η

)
∼

(
ε 2b′

0 η

)
.

Now, (
1 0
0 2

)(
ε b′

0 η

)(
1 0
0 2

)−1

=
(
ε 2b′

0 η

)
.

Therefore (
ε b
0 η

)
∼

(
ε b′

0 η

)
.

Henceρ1 ∼ ρ3. This proves that E1[3] and E3[3] are isomorphic as GQ-modules.
In a similar manner, since the elliptic curves E2 and E4 have a 3-torsion point

over K = Q(i
√

15) andQ(E2[3]) = Q(E4[3]), along with the fact thatQ(E2[3])
has degree 12 over Q, we see that ρ2 ∼ ρ4, thereby completing the proof. �

Theorem 3.3. As GQ-modules, E1[9] ∼= E3[9] and E2[9] 6∼= E4[9].

Proof. Using Sage, William Stein has checked that E1[9] and E3[9] are iso-
morphic, in fact “equal”, as subvarieties of J0(4900). The 9-division polyno-
mials of E2 and E4 have factors of degree 1 + 3 + 9 + 27. Using Sage it can
be checked that the two degree 27 polynomials (the largest factors of the two 9-
division polynomials) do not define isomorphic fields. Let f : E2[9] −→ E4[9]
be an isomorphism of Galois modules. Then for each P ∈ E2[9] its field of
definition Q(P) is equal to Q( f (P)). Clearly subgroup of GQ fixing {P,−P}
is the same subgroup for P as for f (P). The fixed field of this subgroup is
Q(x(P)), hence Q(x(P)) = Q(x( f (P)). Since the last fact holds for every
(nonzero) P ∈ E2[9], it follows that the two 9-division polynomials (whose
roots are all the x(P) for nonzero P) match up, in the sense that there is a bi-
jection from the irreducible factors of the first to those of the second such that
for each irreducible factor h2 of the first which matches the factor h4 of the sec-
ond, the fields Q[x]/(h2) and Q[x]/(h4) are isomorphic. But E2[9] and E4[9]
have a single irreducible factor of degree 27 in its 9-division polynomial, but
these do not define isomorphic number fields. This proves that E2[9] 6∼= E4[9]
as Galois modules. �

Using MAGMA, we find that the first coefficients of the p-adic L-functions
of E1 and E3 are not divisible by 3. Therefore, assuming the main conjecture,
the μ-invariant of E1 and E3 are 0. Moreover, since the ratio of the periods is 3
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in each isogeny class, so the μ-invariant of E2 and E4 are 1. This numerically
verifies our Main theorem.
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