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Abstract. The aim of this article to give a self-contained exposition on Ribet’s con-
struction of a cusp eigenform of weight 2 with certain congruence properties for its eigen-
values. These congruence properties are essential in showing that the associated Galois
representation gives an unramified p-extension of Q(u p), where y p denotes the p-power
roots of unity for an odd prime p.
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1. Preliminaries

We begin by recalling some of the rudiments of modular forms. Other basic ingredi-
ents are included in the Appendix.

1.1 Modular forms

Let p be an odd prime. Let h denote the upper half complex plane, i.e.,

h={z e ClIm(z) > 0}.

Let SL2(Z), T'o(p) and ' (p) respectively denote the following groups:

SLy@) = | _‘C’
([a

Lo(p) = c
I'i(p) = B

|a,b,c,d€Z,ad—bc=l}

€ SLy(Z)|c = 0 modulo p},

€ I'o(p)la = 1 modulo p, d = 1 modulo p],

Let GL2(Q) (GL2(R)) denote the 2 x 2 invertible matrices with rational (real) coeffi-

cients. It is easy to note all these matrix groups act on h by sending z to

az+b

CZ+d.Fora

function f : h— C and any fixed integer k > 0, we can define a function f|[y ]x as

FIDR@ = 2+ fG @) ¥y =[

a
C

fl] € GLy(Q).
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A function f : h—C is called weakly modular of weight k with respect to T if
Sfllylx = f forall y € T where I" can mean anyone of SLy(Z), I'o(p) or I'1(p). Itis

clear that [ ] € I' and hence we must have f(z 4+ 1) = f(z) for a weakly modular

function. If f is holomorphlc on f), we can look at the Fourier expansion of f in terms
of g = 2% ie., Zn__oo anq". We say f is holomorphic at oo if its g-expansion
does not 1nvolve negative powers of ¢, i.e.,a, = Oforn < 0.1f a, = 0 forn < 0, then
we say that f vanishes at co. Note that g = e>7?* — 0 as Im(z) — oo, justifying the
terminology. We say that f is a modular form of weight k with respect to I if

(i) f is weakly modular of weight k with respect to I'.
(i1) f is holomorphic on b.
(iii) f|[y Jx is holomorphic at co for all y € SLy(Z).
(iv) If, in addition, the g-expansion of f|[y Ix has a(0) = O for all y € T, then f is
said to be a cusp form.

Note that it is enough to check the last two conditions for a finite number of coset
representatives {a;} of I in SL,(Z). The set {a;(c0)} is known as the cusps of I'. Let
us denote the space of all modular forms (cusp forms) of weight k& for I' by M (I")
(S (T") respectively). These turn out to be finite dimensional vector spaces. The quo-
tient vector space of My (I") by Si(I') is known as the Eisenstein space, denoted by
Ex(IN). It can be identified as the orthogonal complement of Si(I') under Petersson
inner product, and hence can be thought of as a subspace of M (I") (see section 6.6 of
Appendix).

1.2 Semi-cusp forms

Definition 1.1. A semi-cusp form f is a modular form whose leading Fourier coeffi-
cient is 0, though f|[y lx need not have its leading Fourier coefficient O for all y €
SLy(Z). In other words, a semi-cusp form vanishes at oo, but it need not vanish at the
other ‘cusps’. We shall denote the space of semi-cusp forms of I by S; (T').

Consider the map

B :To(p)—(Z/pZ)*, y = [Ccl Z] > d mod p.

(Note that (d, p) = 1 for y € I'o(p) as ad — bc = 1 and p|c). Clearly, I'i(p)is
the kernel of A, and the quotient is (Z/pZ)*. For a character € of ( pZ ) we can
define a subspace My (I'1(p), €) of My(I'1(p)), which consists of modular forms f

such that f|[y]lx = e(d) f forany y = [‘Cl Z] € I'o(p). We can define S, (I'1(p), €)

and S (I'1(p), €) analogously. Note that any character of (plz)x is of the form w’,
i=0,1,...,(p—2) where w is the Teichmuller character (see section 6.5 Appendix).

1.3 Examples of modular forms

For a non-trivial even character € of ( pZ , we have the following Eisenstein series
[

of weight 2 and type € (cf chapter 4 of [Di S]
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Gae = ¥ + D> eldydq", (1)
n>1 djn
=D > e (g) dq". 2)
n>1 djn

These two form a basis for the Eisenstein space Er(I'1(p), €) (cf theorem 4.6.2
[Di-S]). Note that 53 ¢ is a semi-cusp form. Moreover, both of these are eigenvectors
for all Hecke operators 7; with (I, p) = 1 (cf proposition 5.2.3 [Di-S]):

Tis2,e = (L +€(D))s2,e, T1Gre = (1 +e())Grpe.

(See section 6.7 of the Appendix for Hecke operators.)
If € is an odd character of (plz) ", we have an Eisenstein series of weight 1 and type
€ given by (cf section 4.8 in [Di-S])

The above three forms have coefficients defined over Q(u ,—1), where u,,_1 denotes
the (p — 1)" roots of 1. Let g denote any of the unramified primes of Q(u p—1) lying
above p. Clearly, all the Eisenstein forms given above have @ integral coefficients
(except possibly for the constant terms, but see lemma 3.1 later).

For the trivial character ¢ = 1, we have the following Eisenstein series
(cf Theorem 4.6.2 in [Di-S]) in My (T'o(p)) = M (T'1(p), 1):

By k—1
Gk=_E+ZZd g" for k>4, (3)
n>1 djn
B> ;
G2 = Ex(z) — pE2(pz), where Ex(z) = 7 + ;dzlnldq , 4)

2. Key steps in the construction of the unramified p-extension

For Ribet’s construction of an unramified extension of Q(z ), it is enough to have a
Galois representation on which the Frobenius elements act in a suitable way. We can
use the representation associated with a cusp eigenform (cf chapter 9 of [Di-S]). But
we need to show that there indeed exists a cusp eigenform whose eigenvalues have
certain congruence properties.

The Eisenstein series G2 ¢ is a simultaneous eigenform for the Hecke operators 7;
where [ is a prime other than p, with corresponding eigenvalues 1 + e(l)/ = 1 + [¥~!
modulo . Here, g denotes a prime of Q(u,—1) lying above p. It turns out that we
need precisely these congruence properties for the Hecke eigenvalues of a cusp form.
Ribet’s idea is to subtract off the constant term of the Eisenstein series G in a
way that preserves the congruence properties of the coefficients and leaves us with a
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semi-cusp form f which is an eigenvector modulo g for all Hecke operators 7; with
(I, p) = 1. Then one can invoke a result of Deligne and Serre and obtain a semi-cusp
form f’ which is also an eigenvector for the 7;’s with eigenvalues congruent to those
of f modulo . The congruence properties of f’ then ensure that f’ is actually a cusp
form. Any cusp form in S>(I'1(p)) is bound to be a newform. Thus, one can invoke
the theory of newforms to conclude that f” is in fact a cusp eigenform, that is, an
eigenvector for all Hecke operators including 7;,’s with p|n.

To remove the constant term of the Eisenstein series G, without affecting the
congruence properties of its coefficients modulo ¢, it suffices to produce another
Eisenstein series whose constant term is a g-unit. This will be done in the next section.

3. Construction of an Eisenstein series with g-unit constant term

As before, we will denote by ¢ a prime of Q(u,—1) lying above p. Note that o is
unramified. We continue to denote the Teichmuller character by w.

Lemma 3.1. Let k be even and 2 < k < p — 3. Then the q-expansions of the modular
forms G, -2 and Gy k-1 have gp-integral coefficients in Q(u 1) and are congru-
ent modulo g to the g-expansion

By k—1
5% +ZZd q".

n>1 djn

Proof. Since w(d) = d mod p, wk=2(d)d = d*~' mod p and w*~1(d) = d¥~! mod
p. Hence it suffices to investigate the constant terms only. We know that (see (6) and
(7) of Appendix)

— p—l
L0, €) = 71 > et (n- g) ,
n=1

-1 p—1 p2
L(—1,¢)= 5 Ze(n) (n2 — pn — ?)
n=1

Since we know that w(n) = n? mod (p?) (cf section 6.5 of Appendix), we find that

p—1
pLO, w* ™ = =" n'""PED mod 2,
n=1
122
pL(—1, 0" ?) = = Z; n?tP=2) mod 2.
n=

Note that Z,I:;ll €(n)n = 0 mod g when € is an even character. Moreover, we know
that (see proposition 6.6 of Appendix)

p—1
pB, = Zn’ mod p2.
n=1
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Therefore, we have

1 1 B B
k—1y _ _ kB
L0, w I_EBH-p(k—l) =—§(1+P(k— 1))7 =% mod g,

_ 1 1 By By

For the second equivalence of each statement above, we use Kummer congruence as
explained in proposition 6.4 in the Appendix. Note that

l+pk—1)=k+(p—1)(k—1)=kmod (p — 1),
24+ pk—2)=k+(p—1)k—2)=kmod (p —1). O
The following corollary is now obvious.

Corollary 3.2. Let k be even and2 < k < p — 3. Let n, m be even integers such that
n+m=kmod(p—1)and2 < n,m < p — 3. The the product Gy yn-1G jm-1
is a modular form of weight 2 and type w*=2 whose g-expansion coefficients are
go-integral in Q(up—1). Its constant term is a @-adic unit if neither B, nor By, is

divisible by p.
The next theorem guarantees the existence of the Eisenstein series we are looking for.

Theorem 3.3. Let k be an even integer 2 < k < p — 3. Then there exists a modular
form g of weight 2 and type w*=? whose q-expansion coefficients are g-integers in
Q(u p—1) and whose constant term is a @-unit.

Proof.
Case (i). If p /B, we can take G, ,x—2 by lemma 3.1.

Case (ii). If we have a pair of even integers m n such that n +m = k mod (p — 1),
2 <n,m < p —3and p fBy, By, then we can take G| ,,»-1G ,m-1 by corollary 3.2.

Case (iii). Suppose neither of the above two cases are true. We will show that con-
sequently too many Bernoulli numbers will be p-divisible, which will lead to violation
of an upper bound for the p-part /7, of the relative class number of Q(x,). Let 7 be
the number of even integers n, 2 < n < p — 3 such that p divides B,,. It is easy to
see that t > pT_l if the cases (i) and (ii) do not arise. But then, p’ must divide h; (see
section 6.2 of Appendix). However, that contradicts a result of Carlitz, which says that

p—1 . . . . .
h; < p(T). Hence we must be in either in case (i) or case (ii). O

4. Existence of a semi-cusp form with suitable eigenvalues

In this section, we will first construct a semi-cusp form f which is a simultaneous
eigenvector modulo g for all Hecke operators 7; with (p, ) = 1. Then we will lift f
to a semi-cusp form f” which is an eigenvector for all such 7;’s.

Fix an even integer k, 2 < k < p — 3 and assume that p|By. Consider € = w
Since By = %, k is at least 4, and hence € is a non-trivial even character. We will only
be interested in modular forms of weight 2 and type €.

k=2
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Proposition 4.1. There exists a semi-cusp form f = 3, .| anq" such that a, are
go-integers in Q(up—1) and such that f = Gy = Gy mod p.

Proof. Consider f = G2, — c.g, where c is the constant term of G, (. Then f is a
semi-cusp form. Now, ¢ € @ as p|Bx. Hence, f = G2 = Gy mod gp. O

Observe further that f is a mod go-eigenform for all Hecke operators 7; with (I, p) =
1, as the Eisenstein series G ¢ is an eigenform form for all such 7; with eigenvalue
(1 4+ €()]). Therefore,

Ti(f) = Ti(Ga,e) = (1 + (D)) G2,e = (1 + €(1)]) f modulo . &)
4.1 Deligne—Serre lifting lemma

The following result of Deligne and Serre [D-S] ensures that there exists a semi-cusp
form f’ which is an eigenvector for the 7;’s (({, p) = 1) with eigenvalues congruent
modulo g to those of the mod-g eigenvector f obtained previously.

Lemma 4.2. Let M be a free module of finite rank over a discrete valuation ring R
with residue field k, fraction field K and maximal ideal m. Let S be a (possibly infinite)
set of commuting R-endomorphisms of M. Let 0 # f € M be an eigenvector modulo
mM for all operators in S, i.e., Tf = ar f mod mM YT € S (ar € R). Then there
exists a DVR R’ containing R with maximal ideal W' containing m, whose field of
fractions K' is a finite extension of K and a non-zero vector f' € R’ @ g M such that
Tf' =ayf' forall T € S with eigenvalues a’y. satisfying a’, = ar mod w/'.

Proof. Let T be the algebra generated by S over R. Clearly T € Endr(M). As M is an
free R-module of finite rank, so is Endg (M). Therefore, T is also free module of finite
rank over R, generated by 71, ..., T, € S. Let h; denote the minimal polynomial of
T; acting on K ® g M. If we adjoin the roots of all such minimal polynomials to K, we
get a finite extension K’ of K. The integral closure of R in K’ gives us a DVR R’ with
maximal ideal m’ lying over m, and with residue field ¥’ containing k. By replacing
M with R’ ® M and T with R’ ® T, we will continue to write R, m, k, K in stead of
R’, metc.

Consider the ring homomorphism A : T—k given by T + ar mod m for all T in
S. Clearly, ker(1) is a maximal ideal of T. Choose a minimal prime g in ker(4). Then,
¢ is contained in the set of zero-divisors of T (see proposition 6.9 of Appendix).
As T is a free R-module, R contains no zero-divisors of T and hence, p N R = {0}.
Thus, T/p is a finite integral extension of R. Let L denote the field of fractions of the
integral domain T /p. Let Ry be the integral closure of R in L, then Ry is a DVR with
maximal ideal m containing m and residue field / containing k.

Consider the map A’ : T—T/p(— Ry) given by reduction modulo p. Let
M(T) = af forall T € S. Clearly, A’ maps the maximal ideal ker(1) of T into the
maximal ideal my of Ry. But (T — ar) € ker(A), hence A'(T — ar) € my ie.,
ay = ar modulo my.

Now consider the ring K ®g T. It is an Artinian ring, hence it has finitely many
maximal ideals with residue fields all isomorphic to K. Let P be the prime ideal in
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K ® T generated by p. It will suffice to show that P is an associated prime of K ® M.
Note that ¢ C ker(A) implies g annihilates f in M/m. Now let x € AnnT/m(f), say

x=g(Ty,...,T,). Then,x = g(a’Tl, el a/Tl) modulo (Tl—a’Tl, el Tn—a/Tn). Thus,
xf = g(a/Tl, ces a/Tl)f modulo m; M, noting that T — a’ € g, and @ annihilates
f modulo myp M. As a/T = ar mod my, we must have g(ar,,...,ar,)f = 0 mod

mpM. As f # 0, we must have g(ar,,...,ar;) = 0in /. Thus, x € p, and p =
AnnT/w(f) is an associated prime of M /m. For proof of the following two statements,
see section 6.8.2 of Appendix.

(i) p is in Assoct/m(M/m), hence in Suppr/,(M/m), and hence Annt/p
(M/m) C gp.

(ii)) Now, it follows that AnnggT(K ® M) C P, hence P € SuppxeT(K ® M) and
therefore P is in AssocggT(K @ M).

Now, P is the annihilator of some 0 # f” € K ® M, hence P annihilates some
fle M AsT —a} € p,wehave T —aj, € P and (T — a7)(f') = 0. Thus,
Tf' = ajy f' where a} = ar modulo m, which concludes our proof. O

4.2 Lifting the semi-cusp form to an eigenvector for T, for (n, p) = 1

The following theorem ensures that we have a semi-cusp form which is an eigenvector
for all Hecke operators 7,, with p fn.

Theorem 4.3. There is a semi-cusp form f' = > o2 c,q" of weight 2 and type
€ such that all its coefficients are defined over a finite extension of L of Q(up—1)
and are g -integral where gy is a prime above p. Further, T; f' = (1 + e(D]) f’
modulo gr .

Proof. There is a basis B of S,(I'1(p), €) consisting of semi-cusp forms all of
whose coefficients are defined over a finite extension K of Q(u,—1). Let R be the
localization of the ring of integers of K at a prime gk above g. Let M be the free
R-module of semi-cusp forms generated by B. Let S = {T,,|(p, n) = 1}. We know by
proposition 4.1 and (5) that there exists f € M such that

T;(f) = (1 + e()!) f modulo .

By applying the lifting lemma 4.2, we can conclude that there is a finite exten-
sion L of K with a prime ¢y over gk such that there exists a semi-cusp form
S, with gy -integral coefficients in L such that T;(f') = ¢;f" and ¢; = 1 + €(l)!
modulo gy . O

5. Construction of cusp eigenform

We will first show that the semi-cusp form f’ obtained in the previous section is in fact
a cusp form. Then, we will finally show that the cusp form f’ must be an eigenvector
for all Hecke operators 7}, including those n which are not co-prime to p.
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5.1 Existence of a suitable cusp form

Proposition 5.1. There exists a non-zero cusp form ' of type €, which is an eigenform
for all Hecke operators T, with (n, p) = 1, and which has the property that for any
prime | # p, the eigenvalue A; of T acting on ' satisfies

h=1+F"=14€el) mod g1,

where g is a certain prime (independent of 1) lying over g in the field L =
Q(pp—1, An) generated by the eigenvalues over Q(pip—1).

Proof. We already established the existence of a semi-cusp form f’ which is an eigen-
form for all Hecke operators 7, (n, p) = 1 whose eigenvalues have the required con-
gruence properties. It suffices to assert that f” is in fact a cusp form. As M, (To(p), €)
is spanned by the cusp forms, the semi-cusp form $> . and the Eisenstein series G2 ¢,
we must have

Sé(rl(p), €) = $2(I'1(p), €) ® Csae,

where orthogonality of the Eisenstein space and the space of cusp forms under
Petersson inner product (, ) is the reason behind the above sum being a direct one
(see section 6.6 of Appendix). Suppose f' = h + asz¢ (a # 0). Then, f' —asy ¢ €
S2(T'1(p), €). But, f" —asae € E2(T'1(p), €) as well, where E2(I'1(p), €) denotes
the subspace consisting of Eisenstein series in M>(I'{(p), €). As the orthogonal
subspaces E2(I'1(p), €) and S»(I'1(p), €) have trivial intersection, f' — asy = 0,
ie., f/ = asyc. Applying T; to both sides, (I # p), we see that we must have
14+ €() =1+ €() mod g, which forces €(/) = 1. But € is a non-trivial character
and [ # p is arbitrary, hence f' must be a cusp form. O

5.2 Operators T, for (n, p) # 1

So far, we know that we have a cusp form f for I'1 (p) of weight 2 and type € which is
an eigenform for all Hecke operators 7; (I, p) = 1. In this section we will assert that
f is in fact a common eigenform for all Hecke operators, including 7,, (n, p) # 1.

Proposition 5.2. Any form f’ as above is an eigenform for all Hecke operators
(including those for which p|n). Hence, after replacing f' by a suitable multiple of
f!, we have

o
J”:Zinq”, where T,(f') =, f'.
n=1

Proof. f’ must be a newform. For, if it were an old form it will have to originate from
a non-zero modular form in M»(SL,(Z)), but that space is trivial. Now for a new form
f’, if it is an eigenform for 7, ((n, p) = 1) it has to be an eigenform for all 7, by
the theory of newforms (see Theorem 5.8.2 of [Di-S]). Now we can take a suitable
multiple of f” to get a normalized cusp eigenform as prescribed in the theorem. O
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Remark. The cusp eigenform obtained above can be associated to a Galois
representation which finally gives an unramified p-extension of Q(u ), where u,
denotes the p-power roots of unity for an odd prime p. This exposition can be found
in the article by C. S. Dalawat [D] in this volume.

6. Appendix

Here we provide a brief discussion of the various ingredients used in the previous
sections.

6.1 Dirichlet L-functions

A Dirichlet character is a homomorphism y : (%) “—>CX, where N is any posi-
tive integer, and A* denote the multiplicative group of units in a ring A. N is called
the conductor of y if y does not factor through (%) " forany M < N.We denote the
conductor of y by f,. We can easily extend the definition of y to Z by setting
x () = y(nmod N) if (n, N) = 1 and y (n) = 0 otherwise. The Dirichlet L-series
of y is defined as

o
L(s, ) = Z x(mn—",

n=1
where s is a complex number with Re(s) > 1. It is well-known that L(s, y) can
be analytically continued to the whole complex plane except a simple pole of residue
1 at s = 1 when y is the trivial character (in which case the function is just the
Riemann-zeta function). Further, L(s, y) satisfies a functional equation relating its
values at s = 1 to values 1 — s. It also has a Euler product, i.e.,

L(s, ) = [ [ = x@I™)7!, Re(s) > 1
1

where / runs over the rational primes. The Dirichlet L-functions are related to the
Dedekind zeta function of an abelian number field, as explained below.
Recall that for a number field K, the Dedekind zeta function is defined as

ck(s) =D _(Na)™*, Re(s) > I,

where a runs over the ideals of the ring Ok of integers in K. It is well-known that
(k (s) can be analytically continued to the whole complex plane except for a simple
pole at s = 1. Further, (x (s) satisfies a functional equation, relating the values at s to
values at 1 — .

We can view y as a Galois character

X+ GalQ(un)/Q) =~ (Z/NZ)* —C,

and this gives a correspondence y — fixed subfield of ker(y) in Q(u ), which is an
abelian extension of Q. This leads to a one-to-one correspondence between groups of
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Dirichlet characters and abelian extensions of Q. If K is an abelian extension of Q, it
is contained in some QQ(u ) and there will be a corresponding group X of Dirichlet
characters of conductor dividing N.

If K is an abelian number field and X is the corresponding group of Dirichlet char-
acters, then one can show that (see theorem 4.3 in [Wa))

cx(s) =[] L. 0).

xeX

6.2 The relative class number and Dirichlet L-values

The analytic class number formula is given by

27K (Zﬂ)tKhK RK

wg/|dk]|

lim (g (s) = ;
s—>1

where rx and tx denote respectively the number of real and complex pairs of embed-
ding of K, wg the number of roots of unity in K, Rk the regulator of K, dx the
discriminant of K and &g the class number of K.

Now consider K = Q(¢p), thenrg = 0, tx = pT_l Let KT be the maximal real
subfield of K, for which rg+ = pT_l and g+ = 0. It is easy to establish that g+
divides hg. The relative class number of K is defined as h = h};—i The purpose
of this section is to investigate the p-part i, and relate it to the values of Dirichlet
L-functions.

Proposition 6.1.
p—2
hy =ap H L0, w"),
i=0
where o is a certain power of 2.

Proof. Dividing the analytic class number formulas for K and K, and then shifting
the limit to s — 0 via the functional equations, one can cancel out the extraneous
factors and deduce that (see [Gr])

== WK {k (s)
K 2ewgt s—0 Cx+(s)’

where RR—K = 2¢ But
Kt

p—2 _ p—2 _
cr(s) = [ L. w), ¢xe(s) =[] LO,w).
i=0

ieven

Now observing that wg = 2p and wg+ = 2, we obtain the desired result. |
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6.3 Dirichlet L-values and Bernoulli numbers

Recall that Bernoulli numbers B, are given by

t >t
el — 1 ZZB”H‘
n=0

Eg. Bo=1, Bi=—%, By =% et.
The n-th Bernoulli polynomial B, (X) is defined by

teX! 0 M
n=

It is easy to see that
n

n n—i
Bn(X) = Z (i)B,-X .
1=0
Bg. Bi(X) =X — L, By(X) = X> — X + L, ete.
Now, for a Dirichlet character y of conductor f, we define the generalized
Bernoulli numbers B, , by

f x(a)te® B ad B t"
eft —1 Z mr
a=1 n=0

The following well-known proposition allows us to express generalized Bernoulli
numbers in terms of Bernoulli polynomials (cf [Wa]).

Proposition 6.2. If g is any multiple of f, then

8
Bn,x = gn—l ZX(a)Bn (g) .

a=1

Proof.

a=1
k-l relb+eht
=> 2 +cf) g where g =hf, a=b+cf
b=1 ¢c=0
B 4 7 (b)tel
=> it
P 1
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For example,

Bl,x—Zx()(———) Zx(a)(a——f)
fo(a)( ) el —Zx(a)(a —fa+f2)

The generalized Bernoulli numbers can be related to the values of Dirichlet L-values
as follows:

Proposition 6.3. L(1 —n, y) = —

For example, if y is a Dirichlet character modulo p, we have

1
L0, x) = —Bl,x——_ZX(n) (n—gp) 6)
n=1
1 4 2 P2
L(—L){)=—Bz,x=—5r§x(a) n?—pn+to). (7

6.4 Some congruences involving Bernoulli numbers

We require the following congruences involving Bernoulli numbers.
Proposition 6.4 (Kummer Congruence). lfn—’" = % ifm=n=#=0mod(p—1).

Kummer’s congruence can be proved in the following manner (cf [B-S]): let g be a
primitive root mod p. Consider

gt t > "
FO)=—— - =2(" = DBu—. ©)
m=1
Letting ¢! — 1 = u, we can write
gt t
Ft)=———— — — =1tG(u), h
(1) O1uwf—1 u (u), where
g 1 <
Gy =—"—————= k, e Z.
W=a50r=1 Z‘c"” ck
Now,
() 00 m
Gu) =Gl — 1) =D ale — D = An—s. ©)
k=0 m=1 ‘

But A, are p-integral as they are integral linear combinations of c;’s. Further, they
have period (p — 1) modulo p, as the coefficients " of ;—, in ¢ (r > 0) have that
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periodicity by Fermat’s little theorem "*7~! = 7" modulo p. Comparing coefficients
in (8) and (9), we obtain

g"—1 Am—1

By,
B, = = — m—l=A_.
m (m—l)' m(g ) m—1

m!

If p— 1 m, then g" — 1 % 0 mod p as g is a primitive root mod p. Clearly,
" — 1 has period p — 1 mod p. Therefore, B”’ also has period p — 1 mod p and is

p-integral.

Proposition 6.5. p B, is p-integral, and By, is p-integral if (p — 1) fm.

p lla modulo p* if p > 5.

Proposition 6.6. For an even integer m, p B, =
We can easily prove the above two propositions using the following lemma.

Lemma 6.7. (m + 1)S,(n) = 37 o ("4 Bin™ 17K, where Sp(n) = 1" + 2"+
<o+ m".

Proof.

nlnt_l M1 ¢t 00
ZS(n)— Zet_lz P ez_1=znl—, Bkﬁ

a=0 =1 k=0

m+1
Sm(n) _ Z By ek
m! = (m+1-—k)k!

Ry m+1 1
o+ 1) m(:i) _ Z (ml—: )Bknm—l—l—k
m! = -

In order to prove proposition 6.5, it is enough to show that pB,, = S,,(p) modulo p.
It is clear that S,,,(p) = 0mod p if (p—1) fm and S,,,(p) = p—1 mod p if (p—1)|m.
By our lemma, we have

2 3 k+1
m 14 m p m p
S, = pB, + B, 1— + By ,—+---+ B . 10
m(P) = pBm (1) m l2 (2) m—2 3 ( ) ()k 1 (10)

Clearly, %71 =0mod p for k > 2, and TFT 18 p-integral even for k = 1. Applying
induction let pBj be p-integral for j < m Then, pB,, is p-integral as well, and we
also obtain S,,(n) = pB,;, mod p from (10). Note that though we need the result only
for odd prime p, the above proof works for p = 2 as well, as B, vanishes for odd
n > 3.
k+1

To prove proposition 6.6, it suffices to establish that ord, () Bn—t4=r) = 2 in
view of (10). Since pB, _ is p-integral, we need only k — ord,(k + 1) > 2. For
p > 5and k > 2, it is obvious. For k = 1, note that B,,_1 = 0 unless m = 2, which
again follows trivially.
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6.5 A refined congruence for the Teichmuller character

Let w : (Z/pZ)*— pp—1 be the character given by w(n) = n modulo g where @
is any prime ideal above p in Q(z ,—1). The character w is known as the Teichmuller
character. We have used the following congruence for the Teichmuller character.

Proposition 6.8. For (n, p) = 1, we have w(n) = n? modulo > where @ is a fixed
prime above p in K = Q(up—1).

Proof. Let us recall Hensel’s lemma:

Let R be a ring which is complete with respect to an ideal I and let f(x) € R[x].
If f(a) = 0 mod (f'(a)>I) then there exists b € R with b = a modulo (f’(a)I) such
that f(b) = 0. Further, b is unique if f’(«) is a non-zero divisor in R.

Now let K, be the completion of K at g. Let R = O, be the completion of the
ring of integers O of K with respect to . Let I = 2, then we can also think of R
as the completion of © with respect to /. Consider f(x) = x?~! — 1 and leta = n?,
where (n, p) = 1. Then,

O X
fl@)= (")~ — 1= 0mod @2, as#(@_?)

O X
=#(a) =Ngp* —Np = p(p—1).

Moreover f’(a) = (p — 1)aP~? is not a zero-divisor in R. Therefore by Hensel’s

lemma there exists a unique b, in R such that bh -t 1 = 0and b, = n?
modulo pz. Now, if we define w(n) = b,, we obtain the Teichmuller character
w : (p%) — p—1 with the more refined congruence w(n) = n” modulo @>. O

6.6 Petersson inner product

There is a measure on the upper half complex plane h given by d u(t) = d);f Y where

T = x +iy € b. Itis easy to show that d u(7) is invariant under GL,(R)™ C Aut(b),
i.e.,, du(at) = du(r). In particular, the measure is S Ly (Z)-invariant. As Q U {oo} is
a countable set of measure 0, d u suffices for integration over the extended upper half
plane h* = h U Q U {oo}. Let D* be the fundamental domain for SL,(Z), i.e.,

D* =b*/SLa2(Z) = {T € hlRe(r) < % Iz = 1} U {oo}.

For a congruence subgroup I' of SL,(Z), we have (X1)I" SLy(Z) = Uj(:i:I)Faj
where j runs over a finite set. Then, the fundamental domain for I is given by

X(@)=b*/T =|Ja;(D".

This allows us to integrate function of h* invariant under I" by setting

f, ¢@ane= [ o PO =3 | ¢ @nduco.

i
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By letting Vi = |, X(T) du(t), we can define an inner product
(r ST x Mp(I)—C.
given by
o=y [ F@E@Ume) du)
r Jx()

Note that the integrand is invariant under I". For the integral to converge, we need one
of f or g to be a cusp form (see section 5.4 in [Di-S]). Clearly this inner product is
Hermitian and positive definite. When we take a modular form f € My (I") — Si(I),
we can show that f is orthogonal under (, )r to all of Si(I"). Thus, we can think of
the quotient space Ex(I') = My (I')/Sk(I') as the complementary subspace linearly
disjoint from Sy (I"). This allows us to write

Mi(T') = Si(I) & Ex(I).

6.7 Hecke operators

For any a € GL»(Q), one can write the double coset 'al' = | J; I'a; where a; runs
over a finite set. We can define an action of the double coset on M (I") by setting
fITal = Y fllai]. It is easy to verify that these operators preserve My (I"), Si(T")
and & (T).

We need to consider only the case I' = I'1 (p). For any integer d such that (d, p) =
1, we can define an operator (d) as follows: we have ad — bp = 1 for some a, b € 7Z.

Taking o = [; z] e I'o(p), we obtain

(d) : Mp(T'1(p))—> M (T'1(p)),
(d)f = fIl1(p)aT1(p) = fllalk,

noting that I'y1(p)al'1(p) = I'1(p)a as T'1(p) is a normal subgroup of I'g(p). The

operators (d) are called diamond operators.

By taking a; = [(1) (I)] for any prime /, we get an operator 7; = f|I'aq;I" for any

prime /. We extend the definition of Hecke operators to all natural numbers inductively
by setting

Tpor = Ty — 1Y) T/~ for r > 1.
Toun =TT, when gcd(m,n) =1

All these Hecke operators defined above are self adjoint with respect to the
Petersson inner product. For more details, see chapter 5 of [Di-S]. A modular form is
called an eigenform if it is a simultaneous eigenform for all Hecke operators 7, and

(d),(d,p) =1

6.8 Ingredients from commutative algebra

The results proved below are required for the lifting lemma of Deligne and Serre in
section 4.1.
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6.8.1 Minimal primes Let A be a commutative ring with 1. A prime ideal g of A is
called a minimal prime if it the smallest prime ideal (containing 0) in A. Such a prime
exists by Zorn’s lemma on the (non-empty as 1 € A) set S of primes ideals of A with
the partial order / < J when J C I, noting that any descending chain in S has its
intersection as an upper bound in S.

Proposition 6.9. A minimal prime @ of A is contained in the set Z of zero-divisors
of A.

Proof. Note that x,y € D = A — Z = xy € D. Thus D is a multiplicative set.
On the other hand, S = A — g is a maximal multiplicative closed set (as g is a
minimal prime). If D ¢ S, then SD would be a multiplicative set strictly larger than
S. Therefore, D C S and o C Z. d

6.8.2 Associated primes and support primes Let A be a commutative ring and M be
an A-module. The annihilator of a submodule N of M is defined as

Anng(N) = {a € Alan =0Vn € N}.

Clearly, Anns (N) is an ideal of A. For an element m € M, we can define its annihila-
tor as Annyg(m) = {a € Alam = 0}.

Definition 6.10. A prime ideal ¢ of A is called an associated prime if g is the anni-
hilator of some element of M. The set of associated primes of M in A is denoted by
Assoca(M).

Proposition 6.11. If M is non-zero and A is Noetherian, then Assoc (M) is non-
emptry.

Proof. Consider the set S of ideals (%2 A) of A which are annihilators of some element
of M. As A is Noetherian, S has a maximal element, say g, which is necessarily the
annihilator of some element m in M. Let x, y € A such that xy € o but y & . Then
ym # 0,but p C (¢, x) C Annyg(ym) € S. It follows that Anny (ym) = (, x) = o
by maximality of g. Therefore x € g, and hence g is an associated prime. O

Definition 6.12. A prime ideal ¢ of A is called a support prime of M if M, # 0.
The set of support primes of M in A is denoted by Supp 4 (M).

Proposition 6.13. Let A be Noetherian and M be a finitely generated A-module. Then
@ € Suppa(M) & Anna(M) C o

Proof. Let Anngs(M) ¢ . Then there exists s € A —  such that sM = 0, hence
M, = 0. Contra-positively, ¢ € Supp (M) implies Anna(M) C p.

For the converse, let my, ..., m, generate M as an A-module. If M, = 0, then we
can find s; € A — g such that s;m; = 0. Now s = s1...5, € A — g annihilates M,
hence Anng (M) ¢ . O

Proposition 6.14. Assoca(M) C Supp 4 (M).
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Proof. Let g be an associated prime of M, say ¢ = Anng(m) for some m € M.
If M, = O then there exists s € A — ¢ such that sm = 0. But it would mean
s € Annp(m) = g, which is a contradiction. Thus, M, # 0 and g must be a support
prime of M. O

Proposition 6.15. Let A be a Noetherian ring and @ be a support prime. Then
contains an associated prime ¢ of M.

Proof. If g is a support prime, M, # 0. Then there must exist some x € M such
that (Ax),, # 0. Thus, there exists an associated prime q of the A-module (Ax),.
Hence there is an element 0 # % of (Ax), with y € Ax and s & ¢ such that q is the
annihilator of *. Now, if there exists b € q — g, then b2 = 0 would imply = 0,
which is a contradiction.

Now we still have to show that q is an associated prime of M as well. Let by, ... b,
be a set of generators of q. Then, there exists #; € A — g such that b;#;y = 0. Let
t=1..... t,. Then, ¢ is the annihilator of ry € M. O

Corollary 6.16. If @ is a minimal prime in the support of M, then ¢ is also an asso-
ciated prime when A is Noetherian.

Proof. As g must contain an associated prime, we get our result by minimality
of p. O
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