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Abstract. The aim of this article to give a self-contained exposition on Ribet’s con-
struction of a cusp eigenform of weight 2 with certain congruence properties for its eigen-
values. These congruence properties are essential in showing that the associated Galois
representation gives an unramified p-extension of Q(µp), where µp denotes the p-power
roots of unity for an odd prime p.
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1. Preliminaries

We begin by recalling some of the rudiments of modular forms. Other basic ingredi-
ents are included in the Appendix.

1.1 Modular forms

Let p be an odd prime. Let h denote the upper half complex plane, i.e.,

h = {z ∈ C|I m(z) > 0}.
Let SL2(Z), �0(p) and �1(p) respectively denote the following groups:

SL2(Z) =
{[

a b
c d

]
|a, b, c, d ∈ Z, ad − bc = 1

}

�0(p) =
{[

a b
c d

]
∈ SL2(Z)|c ≡ 0 modulo p

}
,

�1(p) =
{[

a b
c d

]
∈ �0(p)|a ≡ 1 modulo p, d ≡ 1 modulo p

}
,

Let GL2(Q) (GL2(R)) denote the 2×2 invertible matrices with rational (real) coeffi-
cients. It is easy to note all these matrix groups act on h by sending z to az+b

cz+d . For a
function f : h−→C and any fixed integer k ≥ 0, we can define a function f |[γ ]k as

f |[γ ]k(z) = (cz + d)−k f (γ (z)) ∀ γ =
[

a b
c d

]
∈ GL2(Q).
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A function f : h−→C is called weakly modular of weight k with respect to � if
f |[γ ]k = f for all γ ∈ � where � can mean anyone of SL2(Z), �0(p) or �1(p). It is

clear that
[

1 1
0 1

]
∈ � and hence we must have f (z + 1) = f (z) for a weakly modular

function. If f is holomorphic on h, we can look at the Fourier expansion of f in terms
of q = e2π i z , i.e.,

∑+∞
n=−∞ anqn . We say f is holomorphic at ∞ if its q-expansion

does not involve negative powers of q, i.e., an = 0 for n < 0. If an = 0 for n ≤ 0, then
we say that f vanishes at ∞. Note that q = e2π i z → 0 as I m(z) → ∞, justifying the
terminology. We say that f is a modular form of weight k with respect to � if

(i) f is weakly modular of weight k with respect to �.
(ii) f is holomorphic on h.

(iii) f |[γ ]k is holomorphic at ∞ for all γ ∈ SL2(Z).
(iv) If, in addition, the q-expansion of f |[γ ]k has a(0) = 0 for all γ ∈ �, then f is

said to be a cusp form.

Note that it is enough to check the last two conditions for a finite number of coset
representatives {αi } of � in SL2(Z). The set {αi(∞)} is known as the cusps of �. Let
us denote the space of all modular forms (cusp forms) of weight k for � by Mk(�)

(Sk(�) respectively). These turn out to be finite dimensional vector spaces. The quo-
tient vector space of Mk(�) by Sk(�) is known as the Eisenstein space, denoted by
Ek(�). It can be identified as the orthogonal complement of Sk(�) under Petersson
inner product, and hence can be thought of as a subspace of Mk(�) (see section 6.6 of
Appendix).

1.2 Semi-cusp forms

Definition 1.1. A semi-cusp form f is a modular form whose leading Fourier coeffi-
cient is 0, though f |[γ ]k need not have its leading Fourier coefficient 0 for all γ ∈
SL2(Z). In other words, a semi-cusp form vanishes at ∞, but it need not vanish at the
other ‘cusps’. We shall denote the space of semi-cusp forms of � by S′

k(�).

Consider the map

β : �0(p)−→(Z/pZ)×, γ =
[

a b
c d

]
	→ d mod p.

(Note that (d, p) = 1 for γ ∈ �0(p) as ad − bc = 1 and p|c). Clearly, �1(p) is
the kernel of β, and the quotient is (Z/pZ)×. For a character ε of

(
Z

pZ

)×, we can
define a subspace Mk(�1(p), ε) of Mk(�1(p)), which consists of modular forms f

such that f |[γ ]k = ε(d) f for any γ =
[

a b
c d

]
∈ �0(p). We can define S′

k(�1(p), ε)

and Sk(�1(p), ε) analogously. Note that any character of
(

Z

pZ

)× is of the form wi ,
i = 0, 1, . . . , (p−2) where w is the Teichmuller character (see section 6.5 Appendix).

1.3 Examples of modular forms

For a non-trivial even character ε of
(

Z

pZ

)×, we have the following Eisenstein series
of weight 2 and type ε (cf chapter 4 of [Di-S]:
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G2,ε = L(−1, ε)

2
+

∑
n≥1

∑
d|n

ε(d)dqn, (1)

s2,ε =
∑
n≥1

∑
d|n

ε
(n

d

)
dqn. (2)

These two form a basis for the Eisenstein space E2(�1(p), ε) (cf theorem 4.6.2
[Di-S]). Note that s2,ε is a semi-cusp form. Moreover, both of these are eigenvectors
for all Hecke operators Tl with (l, p) = 1 (cf proposition 5.2.3 [Di-S]):

Tls2,ε = (l + ε(l))s2,ε , Tl G2,ε = (1 + ε(l)l)G2,ε .

(See section 6.7 of the Appendix for Hecke operators.)
If ε is an odd character of

(
Z

pZ

)×, we have an Eisenstein series of weight 1 and type
ε given by (cf section 4.8 in [Di-S])

G1,ε = L(0, ε)

2
+

∑
n≥1

∑
d|n

ε(d)qn .

The above three forms have coefficients defined over Q(µp−1), where µp−1 denotes
the (p − 1)th roots of 1. Let ℘ denote any of the unramified primes of Q(µp−1) lying
above p. Clearly, all the Eisenstein forms given above have ℘ integral coefficients
(except possibly for the constant terms, but see lemma 3.1 later).

For the trivial character ε = 1, we have the following Eisenstein series
(cf Theorem 4.6.2 in [Di-S]) in Mk(�0(p)) = Mk(�1(p), 1):

Gk = − Bk

2k
+

∑
n≥1

∑
d|n

dk−1qn for k ≥ 4, (3)

G2 = E2(z) − pE2(pz), where E2(z) = − B2

4
+

∑
n≥1

∑
d|n

dqn, (4)

2. Key steps in the construction of the unramified ppp-extension

For Ribet’s construction of an unramified extension of Q(µp), it is enough to have a
Galois representation on which the Frobenius elements act in a suitable way. We can
use the representation associated with a cusp eigenform (cf chapter 9 of [Di-S]). But
we need to show that there indeed exists a cusp eigenform whose eigenvalues have
certain congruence properties.

The Eisenstein series G2,ε is a simultaneous eigenform for the Hecke operators Tl

where l is a prime other than p, with corresponding eigenvalues 1 + ε(l)l ≡ 1 + lk−1

modulo ℘. Here, ℘ denotes a prime of Q(µp−1) lying above p. It turns out that we
need precisely these congruence properties for the Hecke eigenvalues of a cusp form.
Ribet’s idea is to subtract off the constant term of the Eisenstein series G2,ε in a
way that preserves the congruence properties of the coefficients and leaves us with a
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semi-cusp form f which is an eigenvector modulo ℘ for all Hecke operators Tl with
(l, p) = 1. Then one can invoke a result of Deligne and Serre and obtain a semi-cusp
form f ′ which is also an eigenvector for the Tl’s with eigenvalues congruent to those
of f modulo ℘. The congruence properties of f ′ then ensure that f ′ is actually a cusp
form. Any cusp form in S2(�1(p)) is bound to be a newform. Thus, one can invoke
the theory of newforms to conclude that f ′ is in fact a cusp eigenform, that is, an
eigenvector for all Hecke operators including Tn’s with p|n.

To remove the constant term of the Eisenstein series G2,ε without affecting the
congruence properties of its coefficients modulo ℘, it suffices to produce another
Eisenstein series whose constant term is a ℘-unit. This will be done in the next section.

3. Construction of an Eisenstein series with ℘℘℘-unit constant term

As before, we will denote by ℘ a prime of Q(µp−1) lying above p. Note that ℘ is
unramified. We continue to denote the Teichmuller character by w.

Lemma 3.1. Let k be even and 2 ≤ k ≤ p − 3. Then the q-expansions of the modular
forms G2,wk−2 and G1,wk−1 have ℘-integral coefficients in Q(µp−1) and are congru-
ent modulo ℘ to the q-expansion

− Bk

2k
+

∑
n≥1

∑
d|n

dk−1qn .

Proof. Since w(d) ≡ d mod ℘, wk−2(d)d ≡ dk−1 mod ℘ and wk−1(d) ≡ dk−1 mod
p. Hence it suffices to investigate the constant terms only. We know that (see (6) and
(7) of Appendix)

L(0, ε) = −1

p

p−1∑
n=1

ε(n)
(

n − p

2

)
,

L(−1, ε) = −1

2p

p−1∑
n=1

ε(n)

(
n2 − pn − p2

6

)
.

Since we know that w(n) ≡ n p mod (℘2) (cf section 6.5 of Appendix), we find that

pL(0, wk−1) ≡ −
p−1∑
n=1

n1+p(k−1) mod ℘2,

pL(−1, wk−2) ≡ −1

2

p−1∑
n=1

n2+p(k−2) mod ℘2.

Note that
∑p−1

n=1 ε(n)n ≡ 0 mod ℘ when ε is an even character. Moreover, we know
that (see proposition 6.6 of Appendix)

pBt ≡
p−1∑
n=1

nt modp2.
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Therefore, we have

L(0, wk−1) ≡ −1

2
B1+p(k−1) ≡ −1

2
(1 + p(k − 1))

Bk

k
≡ − Bk

k
mod ℘,

L(−1, wk−2) ≡ −1

2
B2+p(k−2) ≡ −1

2
(2 + p(k − 2))

Bk

k
≡ − Bk

k
mod ℘.

For the second equivalence of each statement above, we use Kummer congruence as
explained in proposition 6.4 in the Appendix. Note that

1 + p(k − 1) = k + (p − 1)(k − 1) ≡ k mod (p − 1),

2 + p(k − 2) = k + (p − 1)(k − 2) ≡ k mod (p − 1). �

The following corollary is now obvious.

Corollary 3.2. Let k be even and 2 ≤ k ≤ p − 3. Let n, m be even integers such that
n + m ≡ k mod (p − 1) and 2 ≤ n, m ≤ p − 3. The the product G1,wn−1 G1,wm−1

is a modular form of weight 2 and type wk−2 whose q-expansion coefficients are
℘-integral in Q(µp−1). Its constant term is a ℘-adic unit if neither Bn nor Bm is
divisible by p.

The next theorem guarantees the existence of the Eisenstein series we are looking for.

Theorem 3.3. Let k be an even integer 2 ≤ k ≤ p − 3. Then there exists a modular
form g of weight 2 and type wk−2 whose q-expansion coefficients are ℘-integers in
Q(µp−1) and whose constant term is a ℘-unit.

Proof.

Case (i). If p 
 |Bk , we can take G2,wk−2 by lemma 3.1.

Case (ii). If we have a pair of even integers m n such that n + m ≡ k mod (p − 1),
2 ≤ n, m ≤ p − 3 and p 
 |Bm Bn, then we can take G1,wn−1 G1,wm−1 by corollary 3.2.

Case (iii). Suppose neither of the above two cases are true. We will show that con-
sequently too many Bernoulli numbers will be p-divisible, which will lead to violation
of an upper bound for the p-part h∗

p of the relative class number of Q(µp). Let t be
the number of even integers n, 2 ≤ n ≤ p − 3 such that p divides Bn. It is easy to
see that t ≥ p−1

4 if the cases (i) and (ii) do not arise. But then, pt must divide h∗
p (see

section 6.2 of Appendix). However, that contradicts a result of Carlitz, which says that

h∗
p < p( p−1

4 ). Hence we must be in either in case (i) or case (ii). �

4. Existence of a semi-cusp form with suitable eigenvalues

In this section, we will first construct a semi-cusp form f which is a simultaneous
eigenvector modulo ℘ for all Hecke operators Tl with (p, l) = 1. Then we will lift f
to a semi-cusp form f ′ which is an eigenvector for all such Tl’s.

Fix an even integer k, 2 ≤ k ≤ p − 3 and assume that p|Bk. Consider ε = wk−2.
Since B2 = 1

6 , k is at least 4, and hence ε is a non-trivial even character. We will only
be interested in modular forms of weight 2 and type ε.
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Proposition 4.1. There exists a semi-cusp form f = ∑
n≥1 anqn such that an are

℘-integers in Q(µp−1) and such that f ≡ G2,ε ≡ Gk mod ℘.

Proof. Consider f = G2,ε − c.g, where c is the constant term of G2,ε . Then f is a
semi-cusp form. Now, c ∈ ℘ as p|Bk . Hence, f ≡ G2,ε ≡ Gk mod ℘. �

Observe further that f is a mod ℘-eigenform for all Hecke operators Tl with (l, p) =
1, as the Eisenstein series G2,ε is an eigenform form for all such Tl with eigenvalue
(1 + ε(l)l). Therefore,

Tl( f ) ≡ Tl(G2,ε) ≡ (1 + ε(l)l)G2,ε ≡ (1 + ε(l)l) f modulo ℘. (5)

4.1 Deligne–Serre lifting lemma

The following result of Deligne and Serre [D-S] ensures that there exists a semi-cusp
form f ′ which is an eigenvector for the Tl’s ((l, p) = 1) with eigenvalues congruent
modulo ℘ to those of the mod-℘ eigenvector f obtained previously.

Lemma 4.2. Let M be a free module of finite rank over a discrete valuation ring R
with residue field k, fraction field K and maximal ideal m. Let S be a (possibly infinite)
set of commuting R-endomorphisms of M. Let 0 
= f ∈ M be an eigenvector modulo
mM for all operators in S, i.e., T f = aT f mod mM ∀T ∈ S (aT ∈ R). Then there
exists a DVR R′ containing R with maximal ideal m′ containing m, whose field of
fractions K ′ is a finite extension of K and a non-zero vector f ′ ∈ R′ ⊗R M such that
T f ′ = a′

T f ′ for all T ∈ S with eigenvalues a′
T satisfying a′

T ≡ aT mod m′.

Proof. Let T be the algebra generated by S over R. Clearly T ∈ EndR(M). As M is an
free R-module of finite rank, so is EndR(M). Therefore, T is also free module of finite
rank over R, generated by T1, . . . , Tr ∈ S. Let hi denote the minimal polynomial of
Ti acting on K ⊗R M . If we adjoin the roots of all such minimal polynomials to K , we
get a finite extension K ′ of K . The integral closure of R in K ′ gives us a DVR R′ with
maximal ideal m′ lying over m, and with residue field k ′ containing k. By replacing
M with R′ ⊗ M and T with R′ ⊗R T, we will continue to write R, m, k, K in stead of
R′, m etc.

Consider the ring homomorphism λ : T−→k given by T 	→ aT mod m for all T in
S. Clearly, ker(λ) is a maximal ideal of T. Choose a minimal prime ℘ in ker(λ). Then,
℘ is contained in the set of zero-divisors of T (see proposition 6.9 of Appendix).
As T is a free R-module, R contains no zero-divisors of T and hence, p ∩ R = {0}.
Thus, T/p is a finite integral extension of R. Let L denote the field of fractions of the
integral domain T/p. Let RL be the integral closure of R in L , then RL is a DVR with
maximal ideal mL containing m and residue field l containing k.

Consider the map λ′ : T−→T/p(↪→ RL) given by reduction modulo p. Let
λ′(T ) = a′

T for all T ∈ S. Clearly, λ′ maps the maximal ideal ker(λ) of T into the
maximal ideal mL of RL . But (T − aT ) ∈ ker(λ), hence λ′(T − aT ) ∈ mL i.e.,
a′

T ≡ aT modulo mL .
Now consider the ring K ⊗R T. It is an Artinian ring, hence it has finitely many

maximal ideals with residue fields all isomorphic to K . Let P be the prime ideal in
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K ⊗ T generated by p. It will suffice to show that P is an associated prime of K ⊗ M .
Note that ℘ ⊂ ker(λ) implies ℘ annihilates f in M/m. Now let x ∈ AnnT/m( f ), say
x = ḡ(T1, . . . , Tn). Then, x = ḡ(a′

T1
, . . . , a′

T1
) modulo (T1−a′

T1
, . . . , Tn−a′

Tn
). Thus,

x f = ḡ(a′
T1

, . . . , a′
T1

) f modulo mL M , noting that T − a′
T ∈ ℘, and ℘ annihilates

f modulo mL M . As a′
T ≡ aT mod mL , we must have ḡ(aT1, . . . , aT1) f = 0 mod

mL M . As f 
= 0, we must have ḡ(aT1, . . . , aT1) = 0 in l. Thus, x ∈ ℘, and ℘ =
AnnT/m( f ) is an associated prime of M/m. For proof of the following two statements,
see section 6.8.2 of Appendix.

(i) p is in AssocT/m(M/m), hence in SuppT/m(M/m), and hence AnnT/m

(M/m) ⊂ ℘.
(ii) Now, it follows that AnnK⊗T(K ⊗ M) ⊂ P, hence P ∈ SuppK⊗T(K ⊗ M) and

therefore P is in AssocK⊗T(K ⊗ M).

Now, P is the annihilator of some 0 
= f ′′ ∈ K ⊗ M , hence P annihilates some
f ′ ∈ M . As T − a′

T ∈ p, we have T − a′
T ∈ P and (T − a′

T )( f ′) = 0. Thus,
T f ′ = a′

T f ′ where a′
T ≡ aT modulo mL , which concludes our proof. �

4.2 Lifting the semi-cusp form to an eigenvector for Tn for (n, p) = 1

The following theorem ensures that we have a semi-cusp form which is an eigenvector
for all Hecke operators Tn with p 
 |n.

Theorem 4.3. There is a semi-cusp form f ′ = ∑∞
n=1 cnqn of weight 2 and type

ε such that all its coefficients are defined over a finite extension of L of Q(µp−1)

and are ℘L-integral where ℘L is a prime above p. Further, Tl f ′ ≡ (1 + ε(l)l) f ′
modulo ℘L.

Proof. There is a basis B of S′
2(�1(p), ε) consisting of semi-cusp forms all of

whose coefficients are defined over a finite extension K of Q(µp−1). Let R be the
localization of the ring of integers of K at a prime ℘K above ℘. Let M be the free
R-module of semi-cusp forms generated by B. Let S = {Tn|(p, n) = 1}. We know by
proposition 4.1 and (5) that there exists f ∈ M such that

Tl( f ) ≡ (1 + ε(l)l) f modulo ℘.

By applying the lifting lemma 4.2, we can conclude that there is a finite exten-
sion L of K with a prime ℘L over ℘K such that there exists a semi-cusp form
f ′, with ℘L -integral coefficients in L such that Tl( f ′) = cl f ′ and cl ≡ 1 + ε(l)l
modulo ℘L . �

5. Construction of cusp eigenform

We will first show that the semi-cusp form f ′ obtained in the previous section is in fact
a cusp form. Then, we will finally show that the cusp form f ′ must be an eigenvector
for all Hecke operators Tn including those n which are not co-prime to p.
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5.1 Existence of a suitable cusp form

Proposition 5.1. There exists a non-zero cusp form f ′ of type ε, which is an eigenform
for all Hecke operators Tn with (n, p) = 1, and which has the property that for any
prime l 
= p, the eigenvalue λl of Tl acting on f ′ satisfies

λl ≡ 1 + lk−1 ≡ 1 + ε(l)l mod ℘L ,

where ℘L is a certain prime (independent of l) lying over ℘ in the field L =
Q(µp−1, λn) generated by the eigenvalues over Q(µp−1).

Proof. We already established the existence of a semi-cusp form f ′ which is an eigen-
form for all Hecke operators Tn (n, p) = 1 whose eigenvalues have the required con-
gruence properties. It suffices to assert that f ′ is in fact a cusp form. As M2(�0(p), ε)

is spanned by the cusp forms, the semi-cusp form S2,ε and the Eisenstein series G2,ε ,
we must have

S′
2(�1(p), ε) = S2(�1(p), ε) ⊕ Cs2,ε ,

where orthogonality of the Eisenstein space and the space of cusp forms under
Petersson inner product 〈 , 〉 is the reason behind the above sum being a direct one
(see section 6.6 of Appendix). Suppose f ′ = h + as2,ε (a 
= 0). Then, f ′ − as2,ε ∈
S2(�1(p), ε). But, f ′ − as2,ε ∈ E2(�1(p), ε) as well, where E2(�1(p), ε) denotes
the subspace consisting of Eisenstein series in M2(�1(p), ε). As the orthogonal
subspaces E2(�1(p), ε) and S2(�1(p), ε) have trivial intersection, f ′ − as2,ε = 0,
i.e., f ′ = as2,ε . Applying Tl to both sides, (l 
= p), we see that we must have
1 + ε(l)l ≡ l + ε(l) mod ℘L , which forces ε(l) = 1. But ε is a non-trivial character
and l 
= p is arbitrary, hence f ′ must be a cusp form. �

5.2 Operators Tn for (n, p) 
= 1

So far, we know that we have a cusp form f for �1(p) of weight 2 and type ε which is
an eigenform for all Hecke operators Tl (l, p) = 1. In this section we will assert that
f is in fact a common eigenform for all Hecke operators, including Tn (n, p) 
= 1.

Proposition 5.2. Any form f ′ as above is an eigenform for all Hecke operators
(including those for which p|n). Hence, after replacing f ′ by a suitable multiple of
f ′, we have

f ′ =
∞∑

n=1

λnqn, where Tn( f ′) = λn f ′.

Proof. f ′ must be a newform. For, if it were an old form it will have to originate from
a non-zero modular form in M2(SL2(Z)), but that space is trivial. Now for a new form
f ′, if it is an eigenform for Tn ((n, p) = 1) it has to be an eigenform for all Tn by
the theory of newforms (see Theorem 5.8.2 of [Di-S]). Now we can take a suitable
multiple of f ′ to get a normalized cusp eigenform as prescribed in the theorem. �
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Remark. The cusp eigenform obtained above can be associated to a Galois
representation which finally gives an unramified p-extension of Q(µp), where µp

denotes the p-power roots of unity for an odd prime p. This exposition can be found
in the article by C. S. Dalawat [D] in this volume.

6. Appendix

Here we provide a brief discussion of the various ingredients used in the previous
sections.

6.1 Dirichlet L-functions

A Dirichlet character is a homomorphism χ :
(

Z

NZ

)×−→C×, where N is any posi-
tive integer, and A× denote the multiplicative group of units in a ring A. N is called
the conductor of χ if χ does not factor through

(
Z

MZ

)× for any M < N . We denote the
conductor of χ by fχ . We can easily extend the definition of χ to Z by setting
χ(n) = χ(n mod N) if (n, N) = 1 and χ(n) = 0 otherwise. The Dirichlet L-series
of χ is defined as

L(s, χ) =
∞∑

n=1

χ(n)n−s,

where s is a complex number with Re(s) > 1. It is well-known that L(s, χ) can
be analytically continued to the whole complex plane except a simple pole of residue
1 at s = 1 when χ is the trivial character (in which case the function is just the
Riemann-zeta function). Further, L(s, χ) satisfies a functional equation relating its
values at s = 1 to values 1 − s. It also has a Euler product, i.e.,

L(s, χ) =
∏

l

(1 − χ(l)l−s)−1, Re(s) > 1

where l runs over the rational primes. The Dirichlet L-functions are related to the
Dedekind zeta function of an abelian number field, as explained below.

Recall that for a number field K , the Dedekind zeta function is defined as

ζK (s) =
∑

a

(Na)−s , Re(s) > 1,

where a runs over the ideals of the ring OK of integers in K . It is well-known that
ζK (s) can be analytically continued to the whole complex plane except for a simple
pole at s = 1. Further, ζK (s) satisfies a functional equation, relating the values at s to
values at 1 − s.

We can view χ as a Galois character

χ : Gal(Q(µN )/Q) � (Z/NZ)×−→C×,

and this gives a correspondence χ → fixed subfield of ker(χ) in Q(µN ), which is an
abelian extension of Q. This leads to a one-to-one correspondence between groups of
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Dirichlet characters and abelian extensions of Q. If K is an abelian extension of Q, it
is contained in some Q(µN ) and there will be a corresponding group X of Dirichlet
characters of conductor dividing N .

If K is an abelian number field and X is the corresponding group of Dirichlet char-
acters, then one can show that (see theorem 4.3 in [Wa])

ζK (s) =
∏
χ∈X

L(s, χ).

6.2 The relative class number and Dirichlet L-values

The analytic class number formula is given by

lim
s→1

ζK (s) = 2rK (2π)tK hK RK

wK
√|dK | ,

where rK and tK denote respectively the number of real and complex pairs of embed-
ding of K , wK the number of roots of unity in K , RK the regulator of K , dK the
discriminant of K and hK the class number of K .

Now consider K = Q(ζp), then rK = 0, tK = p−1
2 . Let K + be the maximal real

subfield of K , for which rK + = p−1
2 and tK + = 0. It is easy to establish that hK +

divides hK . The relative class number of K is defined as h−
K = hK

hK+ . The purpose

of this section is to investigate the p-part h−
K , and relate it to the values of Dirichlet

L-functions.

Proposition 6.1.

h−
K = αp

p−2∏
i=0

L(0, wi),

where α is a certain power of 2.

Proof. Dividing the analytic class number formulas for K and K +, and then shifting
the limit to s → 0 via the functional equations, one can cancel out the extraneous
factors and deduce that (see [Gr])

h−
K = wK

2ewK +
lim
s→0

ζK (s)

ζK +(s)
,

where RK
RK+ = 2e. But

ζK (s) =
p−2∏
i=0

L(0, wi), ζK +(s) =
p−2∏

i even

L(0, wi).

Now observing that wK = 2p and wK + = 2, we obtain the desired result. �
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6.3 Dirichlet L-values and Bernoulli numbers

Recall that Bernoulli numbers Bn are given by

t

et − 1
=

∞∑
n=0

Bn
tn

n!
.

Eg, B0 = 1, B1 = − 1
2 , B2 = 1

6 etc.
The n-th Bernoulli polynomial Bn(X) is defined by

teXt

et X − 1
=

∞∑
n=0

Bn(X)
tn

n!
.

It is easy to see that

Bn(X) =
n∑

i=o

(
n

i

)
Bi Xn−i .

Eg, B1(X) = X − 1
2 , B2(X) = X2 − X + 1

6 , etc.
Now, for a Dirichlet character χ of conductor f , we define the generalized

Bernoulli numbers Bn,χ by

f∑
a=1

χ(a)teat

e f t − 1
=

∞∑
n=0

Bn,χ
tn

n!
.

The following well-known proposition allows us to express generalized Bernoulli
numbers in terms of Bernoulli polynomials (cf [Wa]).

Proposition 6.2. If g is any multiple of f , then

Bn,χ = gn−1
g∑

a=1

χ(a)Bn

(
a

g

)
.

Proof.
∞∑

n=0

gn−1
g∑

a=1

χ(a)Bn

(
a

g

)
tn

n!

=
g∑

a=1

χ(a)
1

g

(gt)e( a
g )gt

egt − 1

=
f∑

b=1

h−1∑
c=0

χ(b + c f )
te(b+c f )t

e f ht − 1
where g = h f, a = b + c f

=
f∑

b=1

χ(b)tebt

e f t − 1

=
∞∑

n=0

Bn,χ
tn

n!
.

�
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For example,

B1,χ =
f∑

a=1

χ(a)

(
a

f
− 1

2

)
= 1

f

f∑
a=1

χ(a)

(
a − 1

2
f

)
.

B2,χ = f
f∑

a=1

χ(a)

(
a

f

)2

− 1

2

a

f
+ 1

6
= 1

f

f∑
a=1

χ(a)

(
a2 − f a + f 2

6

)
.

The generalized Bernoulli numbers can be related to the values of Dirichlet L-values
as follows:

Proposition 6.3. L(1 − n, χ) = − Bn,χ

n , n ≥ 1.

For example, if χ is a Dirichlet character modulo p, we have

L(0, χ) = −B1,χ = − 1

p

p∑
n=1

χ(n)

(
n − 1

2
p

)
. (6)

L(−1, χ) = −B2,χ = − 1

2p

p∑
n=1

χ(a)

(
n2 − pn + p2

6

)
. (7)

6.4 Some congruences involving Bernoulli numbers

We require the following congruences involving Bernoulli numbers.

Proposition 6.4 (Kummer Congruence). Bm
m ≡ Bn

n if m ≡ n 
≡ 0 mod (p − 1).

Kummer’s congruence can be proved in the following manner (cf [B-S]): let g be a
primitive root mod p. Consider

F(t) = gt

egt − 1
− t

et − 1
=

∞∑
m=1

(gm − 1)Bm
tm

m!
. (8)

Letting et − 1 = u, we can write

F(t) = gt

(1 + u)g − 1
− t

u
= tG(u), where

G(u) = g

(1 + u)g − 1
− 1

u
=

∞∑
k=1

ckuk, ck ∈ Z.

Now,

G(u) = G(et − 1) =
∞∑

k=0

ck(e
t − 1)k =

∞∑
m=1

Am
tm

m!
. (9)

But Am are p-integral as they are integral linear combinations of ck’s. Further, they
have period (p − 1) modulo p, as the coefficients rn of tn

n! in ert (r ≥ 0) have that
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periodicity by Fermat’s little theorem rn+p−1 ≡ rn modulo p. Comparing coefficients
in (8) and (9), we obtain

gm − 1

m!
Bm = Am−1

(m − 1)!
⇒ Bm

m
(gm − 1) = Am−1.

If p − 1
 |m, then gm − 1 
≡ 0 mod p as g is a primitive root mod p. Clearly,
gm − 1 has period p − 1 mod p. Therefore, Bm

m also has period p − 1 mod p and is
p-integral.

Proposition 6.5. pBm is p-integral, and Bm is p-integral if (p − 1) 
 |m.

Proposition 6.6. For an even integer m, pBm ≡ ∑p−1
a=1 am modulo p2 if p ≥ 5.

We can easily prove the above two propositions using the following lemma.

Lemma 6.7. (m + 1)Sm(n) = ∑m
k=0

(m+1
k

)
Bknm+1−k , where Sm(n) = 1n + 2n+

· · · + mn.

Proof.

∞∑
m=0

Sm(n)
tm

m!
=

n−1∑
a=0

ent − 1

et − 1
= ent − 1

t

t

et − 1
=

∞∑
l=1

nl tl−1

l!

∞∑
k=0

Bk
tk

k!

⇒ Sm(n)

m!
=

m+1∑
k=0

Bk

(m + 1 − k)!k!
nm+1−k

⇒ (m + 1)!
Sm(n)

m!
=

m+1∑
k=0

(
m + 1

k

)
Bknm+1−k

�

In order to prove proposition 6.5, it is enough to show that pBm ≡ Sm(p) modulo p.
It is clear that Sm(p) ≡ 0 mod p if (p−1) 
 |m and Sm(p) ≡ p−1 mod p if (p−1)|m.
By our lemma, we have

Sm(p) = pBm +
(

m

1

)
Bm−1

p2

2
+

(
m

2

)
Bm−2

p3

3
+ · · · +

(
m

m

)
B0

pk+1

k + 1
. (10)

Clearly, pk+1

k+1 ≡ 0 mod p for k ≥ 2, and pk+1

k+1 is p-integral even for k = 1. Applying
induction, let pB j be p-integral for j < m. Then, pBm is p-integral as well, and we
also obtain Sm(n) ≡ pBm mod p from (10). Note that though we need the result only
for odd prime p, the above proof works for p = 2 as well, as Bn vanishes for odd
n ≥ 3.

To prove proposition 6.6, it suffices to establish that ord p
((m

k

)
Bm−k

pk+1

k+1

) ≥ 2 in
view of (10). Since pBm−k is p-integral, we need only k − ord p(k + 1) ≥ 2. For
p ≥ 5 and k ≥ 2, it is obvious. For k = 1, note that Bm−1 = 0 unless m = 2, which
again follows trivially.
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6.5 A refined congruence for the Teichmuller character

Let w : (Z/pZ)×−→µp−1 be the character given by w(n) ≡ n modulo ℘ where ℘

is any prime ideal above p in Q(µp−1). The character w is known as the Teichmuller
character. We have used the following congruence for the Teichmuller character.

Proposition 6.8. For (n, p) = 1, we have w(n) ≡ n p modulo ℘2 where ℘ is a fixed
prime above p in K = Q(µp−1).

Proof. Let us recall Hensel’s lemma:
Let R be a ring which is complete with respect to an ideal I and let f (x) ∈ R[x].

If f (a) ≡ 0 mod ( f ′(a)2 I ) then there exists b ∈ R with b ≡ a modulo ( f ′(a)I ) such
that f (b) = 0. Further, b is unique if f ′(a) is a non-zero divisor in R.

Now let K℘ be the completion of K at ℘. Let R = O℘ be the completion of the
ring of integers O of K with respect to ℘. Let I = ℘2, then we can also think of R
as the completion of O with respect to I . Consider f (x) = x p−1 − 1 and let a = n p,
where (n, p) = 1. Then,

f (a) = (n p)p−1 − 1 ≡ 0 mod ℘2, as #

(
O℘

℘2

)×

= #

(
O

℘2

)×
= N℘2 − N℘ = p(p − 1).

Moreover f ′(a) = (p − 1)a p−2 is not a zero-divisor in R. Therefore by Hensel’s
lemma there exists a unique bn in R such that b p−1

n − 1 = 0 and bn ≡ n p

modulo ℘2. Now, if we define w(n) = bn , we obtain the Teichmuller character
w :

(
Z

pZ

)×−→µp−1 with the more refined congruence w(n) ≡ n p modulo ℘2. �

6.6 Petersson inner product

There is a measure on the upper half complex plane h given by dµ(τ) = dx dy
y2 where

τ = x + i y ∈ h. It is easy to show that dµ(τ) is invariant under GL2(R)+ ⊂ Aut(h),
i.e., dµ(ατ) = dµ(τ). In particular, the measure is SL2(Z)-invariant. As Q ∪ {∞} is
a countable set of measure 0, dµ suffices for integration over the extended upper half
plane h∗ = h ∪ Q ∪ {∞}. Let D∗ be the fundamental domain for SL2(Z), i.e.,

D∗ = h∗/SL2(Z) =
{
τ ∈ h|Re(τ ) ≤ 1

2
, |τ | ≥ 1

}
∪ {∞}.

For a congruence subgroup � of SL2(Z), we have (±I )� SL2(Z) = ⋃
j (±1)�α j

where j runs over a finite set. Then, the fundamental domain for � is given by

X (�) = h∗/� =
⋃

α j (D∗).

This allows us to integrate function of h∗ invariant under � by setting∫
X (�)

φ(τ )dµ(τ) =
∫

⋃
j α j (D∗)

φ(τ )dµ(τ) =
∑

j

∫
D∗

φ(α j (τ ))dµ(τ).
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By letting V� = ∫
X (�) dµ(τ), we can define an inner product

〈 , 〉� : Sk(�) × Mk(�)−→C.

given by

〈 f, g〉� = 1

V�

∫
X (�)

f (τ )g(τ )(I m(τ ))kdµ(τ).

Note that the integrand is invariant under �. For the integral to converge, we need one
of f or g to be a cusp form (see section 5.4 in [Di-S]). Clearly this inner product is
Hermitian and positive definite. When we take a modular form f ∈ Mk(�) − Sk(�),
we can show that f is orthogonal under 〈 , 〉� to all of Sk(�). Thus, we can think of
the quotient space Ek(�) = Mk(�)/Sk(�) as the complementary subspace linearly
disjoint from Sk(�). This allows us to write

Mk(�) = Sk(�) ⊕ Ek(�).

6.7 Hecke operators

For any α ∈ GL2(Q), one can write the double coset �α� = ⋃
i �αi where αi runs

over a finite set. We can define an action of the double coset on Mk(�) by setting
f |�α� = ∑

f |[αi ]. It is easy to verify that these operators preserve Mk(�), Sk(�)

and Ek(�).
We need to consider only the case � = �1(p). For any integer d such that (d, p) =

1, we can define an operator 〈d〉 as follows: we have ad − bp = 1 for some a, b ∈ Z.

Taking α =
[

a b
p d

]
∈ �0(p), we obtain

〈d〉 : Mk(�1(p))−→Mk(�1(p)),

〈d〉 f := f |�1(p)α�1(p) = f |[α]k,

noting that �1(p)α�1(p) = �1(p)α as �1(p) is a normal subgroup of �0(p). The
operators 〈d〉 are called diamond operators.

By taking αl =
[

1 0
0 l

]
for any prime l, we get an operator Tl = f |�αl� for any

prime l. We extend the definition of Hecke operators to all natural numbers inductively
by setting

Tlr+1 = TlTlr − lk−1〈l〉T r−1
l for r ≥ 1.

Tmn = Tm Tn when gcd(m, n) = 1

All these Hecke operators defined above are self adjoint with respect to the
Petersson inner product. For more details, see chapter 5 of [Di-S]. A modular form is
called an eigenform if it is a simultaneous eigenform for all Hecke operators Tn and
〈d〉, (d, p) = 1.

6.8 Ingredients from commutative algebra

The results proved below are required for the lifting lemma of Deligne and Serre in
section 4.1.
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6.8.1 Minimal primes Let A be a commutative ring with 1. A prime ideal ℘ of A is
called a minimal prime if it the smallest prime ideal (containing 0) in A. Such a prime
exists by Zorn’s lemma on the (non-empty as 1 ∈ A) set S of primes ideals of A with
the partial order I ≤ J when J ⊂ I , noting that any descending chain in S has its
intersection as an upper bound in S.

Proposition 6.9. A minimal prime ℘ of A is contained in the set Z of zero-divisors
of A.

Proof. Note that x, y ∈ D = A − Z ⇒ xy ∈ D. Thus D is a multiplicative set.
On the other hand, S = A − ℘ is a maximal multiplicative closed set (as ℘ is a
minimal prime). If D 
⊂ S, then S D would be a multiplicative set strictly larger than
S. Therefore, D ⊂ S and ℘ ⊂ Z . �

6.8.2 Associated primes and support primes Let A be a commutative ring and M be
an A-module. The annihilator of a submodule N of M is defined as

AnnA(N) = {a ∈ A|an = 0 ∀n ∈ N}.
Clearly, AnnA(N) is an ideal of A. For an element m ∈ M , we can define its annihila-
tor as AnnA(m) = {a ∈ A|am = 0}.
Definition 6.10. A prime ideal ℘ of A is called an associated prime if ℘ is the anni-
hilator of some element of M. The set of associated primes of M in A is denoted by
AssocA(M).

Proposition 6.11. If M is non-zero and A is Noetherian, then AssocA(M) is non-
empty.

Proof. Consider the set S of ideals (
= A) of A which are annihilators of some element
of M . As A is Noetherian, S has a maximal element, say ℘, which is necessarily the
annihilator of some element m in M . Let x, y ∈ A such that xy ∈ ℘ but y 
∈ ℘. Then
ym 
= 0, but ℘ ⊂ (℘, x) ⊂ AnnA(ym) ∈ S. It follows that AnnA(ym) = (℘, x) = ℘
by maximality of ℘. Therefore x ∈ ℘, and hence ℘ is an associated prime. �

Definition 6.12. A prime ideal ℘ of A is called a support prime of M if M℘ 
= 0.

The set of support primes of M in A is denoted by SuppA(M).

Proposition 6.13. Let A be Noetherian and M be a finitely generated A-module. Then
℘ ∈ SuppA(M) ⇔ AnnA(M) ⊂ ℘

Proof. Let AnnA(M) 
⊂ ℘. Then there exists s ∈ A − ℘ such that sM = 0, hence
M℘ = 0. Contra-positively, ℘ ∈ SuppA(M) implies AnnA(M) ⊂ ℘.

For the converse, let m1, . . . , mr generate M as an A-module. If M℘ = 0, then we
can find si ∈ A − ℘ such that si mi = 0. Now s = s1 . . . sr ∈ A − ℘ annihilates M ,
hence AnnA(M) 
⊂ ℘. �

Proposition 6.14. AssocA(M) ⊂ SuppA(M).
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Proof. Let ℘ be an associated prime of M , say ℘ = AnnA(m) for some m ∈ M .
If M℘ = 0 then there exists s ∈ A − ℘ such that sm = 0. But it would mean
s ∈ AnnA(m) = ℘, which is a contradiction. Thus, M℘ 
= 0 and ℘ must be a support
prime of M . �

Proposition 6.15. Let A be a Noetherian ring and ℘ be a support prime. Then ℘

contains an associated prime q of M.

Proof. If ℘ is a support prime, M℘ 
= 0. Then there must exist some x ∈ M such
that (Ax)℘ 
= 0. Thus, there exists an associated prime q of the A-module (Ax)℘ .
Hence there is an element 0 
= y

s of (Ax)℘ with y ∈ Ax and s 
∈ ℘ such that q is the
annihilator of y

s . Now, if there exists b ∈ q − ℘, then b y
s = 0 would imply y

s = 0,
which is a contradiction.

Now we still have to show that q is an associated prime of M as well. Let b1, . . . bn

be a set of generators of q. Then, there exists ti ∈ A − ℘ such that bi ti y = 0. Let
t = t1. . . . .tn . Then, q is the annihilator of t y ∈ M . �

Corollary 6.16. If ℘ is a minimal prime in the support of M, then ℘ is also an asso-
ciated prime when A is Noetherian.

Proof. As ℘ must contain an associated prime, we get our result by minimality
of ℘. �
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