Ribet's Construction of a Suitable Cusp Eigenform

A. Saikia

Department of Mathematics, IIT Guwahati, Guwahati 781039, India e-mail: a.saikia@iitg.ernet.in

Abstract. The aim of this article to give a self-contained exposition on Ribet's construction of a cusp eigenform of weight 2 with certain congruence properties for its eigenvalues. These congruence properties are essential in showing that the associated Galois representation gives an unramified *p*-extension of $\mathbb{Q}(\mu_p)$, where μ_p denotes the *p*-power roots of unity for an odd prime *p*.

Keywords.

1. Preliminaries

We begin by recalling some of the rudiments of modular forms. Other basic ingredients are included in the Appendix.

1.1 Modular forms

Let p be an odd prime. Let h denote the upper half complex plane, i.e.,

$$\mathfrak{h} = \{ z \in \mathbb{C} | Im(z) > 0 \}.$$

Let $SL_2(\mathbb{Z})$, $\Gamma_0(p)$ and $\Gamma_1(p)$ respectively denote the following groups:

$$SL_{2}(\mathbb{Z}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} | a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$$

$$\Gamma_{0}(p) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_{2}(\mathbb{Z}) | c \equiv 0 \text{ modulo } p \right\},$$

$$\Gamma_{1}(p) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma_{0}(p) | a \equiv 1 \text{ modulo } p, d \equiv 1 \text{ modulo } p \right\},$$

Let $GL_2(\mathbb{Q})$ ($GL_2(\mathbb{R})$) denote the 2 × 2 invertible matrices with rational (real) coefficients. It is easy to note all these matrix groups act on \mathfrak{h} by sending z to $\frac{az+b}{cz+d}$. For a function $f : \mathfrak{h} \longrightarrow \mathbb{C}$ and any fixed integer $k \ge 0$, we can define a function $f |[\gamma]_k$ as

$$f|[\gamma]_k(z) = (cz+d)^{-k}f(\gamma(z)) \quad \forall \ \gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL_2(\mathbb{Q}).$$

A function $f : \mathfrak{h} \longrightarrow \mathbb{C}$ is called *weakly modular* of weight k with respect to Γ if $f|[\gamma]_k = f$ for all $\gamma \in \Gamma$ where Γ can mean anyone of $SL_2(\mathbb{Z})$, $\Gamma_0(p)$ or $\Gamma_1(p)$. It is clear that $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in \Gamma$ and hence we must have f(z + 1) = f(z) for a weakly modular function. If f is holomorphic on \mathfrak{h} , we can look at the Fourier expansion of f in terms of $q = e^{2\pi i z}$, i.e., $\sum_{n=-\infty}^{+\infty} a_n q^n$. We say f is holomorphic at ∞ if its q-expansion does not involve negative powers of q, i.e., $a_n = 0$ for n < 0. If $a_n = 0$ for $n \le 0$, then we say that f vanishes at ∞ . Note that $q = e^{2\pi i z} \to 0$ as $Im(z) \to \infty$, justifying the terminology. We say that f is a modular form of weight k with respect to Γ if

- (i) f is weakly modular of weight k with respect to Γ .
- (ii) f is holomorphic on \mathfrak{h} .
- (iii) $f|[\gamma]_k$ is holomorphic at ∞ for all $\gamma \in SL_2(\mathbb{Z})$.
- (iv) If, in addition, the q-expansion of $f|[\gamma]_k$ has a(0) = 0 for all $\gamma \in \Gamma$, then f is said to be a cusp form.

Note that it is enough to check the last two conditions for a finite number of coset representatives $\{\alpha_i\}$ of Γ in $SL_2(\mathbb{Z})$. The set $\{\alpha_i(\infty)\}$ is known as the *cusps* of Γ . Let us denote the space of all modular forms (cusp forms) of weight k for Γ by $M_k(\Gamma)$ ($S_k(\Gamma)$ respectively). These turn out to be finite dimensional vector spaces. The quotient vector space of $M_k(\Gamma)$ by $S_k(\Gamma)$ is known as the Eisenstein space, denoted by $\mathcal{E}_k(\Gamma)$. It can be identified as the orthogonal complement of $S_k(\Gamma)$ under Petersson inner product, and hence can be thought of as a subspace of $M_k(\Gamma)$ (see section 6.6 of Appendix).

1.2 Semi-cusp forms

Definition 1.1. A semi-cusp form f is a modular form whose leading Fourier coefficient is 0, though $f|[\gamma]_k$ need not have its leading Fourier coefficient 0 for all $\gamma \in SL_2(\mathbb{Z})$. In other words, a semi-cusp form vanishes at ∞ , but it need not vanish at the other 'cusps'. We shall denote the space of semi-cusp forms of Γ by $S'_k(\Gamma)$.

Consider the map

$$\beta: \Gamma_0(p) \longrightarrow (\mathbb{Z}/p\mathbb{Z})^{\times}, \quad \gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto d \mod p.$$

(Note that (d, p) = 1 for $\gamma \in \Gamma_0(p)$ as ad - bc = 1 and p|c). Clearly, $\Gamma_1(p)$ is the kernel of β , and the quotient is $(\mathbb{Z}/p\mathbb{Z})^{\times}$. For a character ϵ of $(\frac{\mathbb{Z}}{p\mathbb{Z}})^{\times}$, we can define a subspace $M_k(\Gamma_1(p), \epsilon)$ of $M_k(\Gamma_1(p))$, which consists of modular forms fsuch that $f|[\gamma]_k = \epsilon(d)f$ for any $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma_0(p)$. We can define $S'_k(\Gamma_1(p), \epsilon)$ and $S_k(\Gamma_1(p), \epsilon)$ analogously. Note that any character of $(\frac{\mathbb{Z}}{p\mathbb{Z}})^{\times}$ is of the form w^i , $i = 0, 1, \ldots, (p-2)$ where w is the Teichmuller character (see section 6.5 Appendix).

1.3 Examples of modular forms

For a non-trivial even character ϵ of $\left(\frac{\mathbb{Z}}{p\mathbb{Z}}\right)^{\times}$, we have the following Eisenstein series of weight 2 and type ϵ (cf chapter 4 of [Di-S]:

Ribet's Construction of a Suitable Cusp Eigenform

$$G_{2,\epsilon} = \frac{L(-1,\epsilon)}{2} + \sum_{n\geq 1} \sum_{d|n} \epsilon(d) dq^n,$$
(1)

$$s_{2,\epsilon} = \sum_{n \ge 1} \sum_{d|n} \epsilon\left(\frac{n}{d}\right) dq^n.$$
⁽²⁾

These two form a basis for the Eisenstein space $\mathcal{E}_2(\Gamma_1(p), \epsilon)$ (cf theorem 4.6.2 [Di-S]). Note that $s_{2,\epsilon}$ is a semi-cusp form. Moreover, both of these are eigenvectors for all Hecke operators T_l with (l, p) = 1 (cf proposition 5.2.3 [Di-S]):

$$T_l s_{2,\epsilon} = (l + \epsilon(l)) s_{2,\epsilon}, \qquad T_l G_{2,\epsilon} = (1 + \epsilon(l)l) G_{2,\epsilon}.$$

(See section 6.7 of the Appendix for Hecke operators.)

If ϵ is an odd character of $\left(\frac{\mathbb{Z}}{p\mathbb{Z}}\right)^{\times}$, we have an Eisenstein series of weight 1 and type ϵ given by (cf section 4.8 in [Di-S])

$$G_{1,\epsilon} = \frac{L(0,\epsilon)}{2} + \sum_{n\geq 1} \sum_{d\mid n} \epsilon(d)q^n.$$

The above three forms have coefficients defined over $\mathbb{Q}(\mu_{p-1})$, where μ_{p-1} denotes the $(p-1)^{th}$ roots of 1. Let \wp denote any of the unramified primes of $\mathbb{Q}(\mu_{p-1})$ lying above p. Clearly, all the Eisenstein forms given above have \wp integral coefficients (except possibly for the constant terms, but see lemma 3.1 later).

For the trivial character $\epsilon = 1$, we have the following Eisenstein series (cf Theorem 4.6.2 in [Di-S]) in $M_k(\Gamma_0(p)) = M_k(\Gamma_1(p), 1)$:

$$G_{k} = -\frac{B_{k}}{2k} + \sum_{n \ge 1} \sum_{d|n} d^{k-1}q^{n} \quad \text{for } k \ge 4,$$
(3)

$$G_2 = E_2(z) - pE_2(pz),$$
 where $E_2(z) = -\frac{B_2}{4} + \sum_{n \ge 1} \sum_{d|n} dq^n,$ (4)

2. Key steps in the construction of the unramified *p*-extension

For Ribet's construction of an unramified extension of $\mathbb{Q}(\mu_p)$, it is enough to have a Galois representation on which the Frobenius elements act in a suitable way. We can use the representation associated with a cusp eigenform (cf chapter 9 of [Di-S]). But we need to show that there indeed exists a cusp eigenform whose eigenvalues have certain congruence properties.

The Eisenstein series $G_{2,\epsilon}$ is a simultaneous eigenform for the Hecke operators T_l where *l* is a prime other than *p*, with corresponding eigenvalues $1 + \epsilon(l)l \equiv 1 + l^{k-1}$ modulo \wp . Here, \wp denotes a prime of $\mathbb{Q}(\mu_{p-1})$ lying above *p*. It turns out that we need precisely these congruence properties for the Hecke eigenvalues of a *cusp* form. Ribet's idea is to subtract off the constant term of the Eisenstein series $G_{2,\epsilon}$ in a way that preserves the congruence properties of the coefficients and leaves us with a

semi-cusp form f which is an eigenvector modulo \wp for all Hecke operators T_l with (l, p) = 1. Then one can invoke a result of Deligne and Serre and obtain a semi-cusp form f' which is also an eigenvector for the T_l 's with eigenvalues congruent to those of f modulo \wp . The congruence properties of f' then ensure that f' is actually a cusp form. Any cusp form in $S_2(\Gamma_1(p))$ is bound to be a newform. Thus, one can invoke the theory of newforms to conclude that f' is in fact a cusp eigenform, that is, an eigenvector for all Hecke operators including T_n 's with p|n.

To remove the constant term of the Eisenstein series $G_{2,\epsilon}$ without affecting the congruence properties of its coefficients modulo \wp , it suffices to produce another Eisenstein series whose constant term is a \wp -unit. This will be done in the next section.

3. Construction of an Eisenstein series with p-unit constant term

As before, we will denote by \wp a prime of $\mathbb{Q}(\mu_{p-1})$ lying above p. Note that \wp is unramified. We continue to denote the Teichmuller character by w.

Lemma 3.1. Let k be even and $2 \le k \le p-3$. Then the q-expansions of the modular forms $G_{2,w^{k-2}}$ and $G_{1,w^{k-1}}$ have \wp -integral coefficients in $\mathbb{Q}(\mu_{p-1})$ and are congruent modulo \wp to the q-expansion

$$-\frac{B_k}{2k} + \sum_{n\geq 1} \sum_{d\mid n} d^{k-1}q^n.$$

Proof. Since $w(d) \equiv d \mod \wp$, $w^{k-2}(d)d \equiv d^{k-1} \mod \wp$ and $w^{k-1}(d) \equiv d^{k-1} \mod \wp$. Hence it suffices to investigate the constant terms only. We know that (see (6) and (7) of Appendix)

$$L(0,\epsilon) = \frac{-1}{p} \sum_{n=1}^{p-1} \epsilon(n) \left(n - \frac{p}{2}\right),$$
$$L(-1,\epsilon) = \frac{-1}{2p} \sum_{n=1}^{p-1} \epsilon(n) \left(n^2 - pn - \frac{p^2}{6}\right)$$

Since we know that $w(n) \equiv n^p \mod (\wp^2)$ (cf section 6.5 of Appendix), we find that

$$pL(0, w^{k-1}) \equiv -\sum_{n=1}^{p-1} n^{1+p(k-1)} \mod \wp^2,$$
$$pL(-1, w^{k-2}) \equiv -\frac{1}{2} \sum_{n=1}^{p-1} n^{2+p(k-2)} \mod \wp^2.$$

Note that $\sum_{n=1}^{p-1} \epsilon(n)n \equiv 0 \mod \wp$ when ϵ is an even character. Moreover, we know that (see proposition 6.6 of Appendix)

$$pB_t \equiv \sum_{n=1}^{p-1} n^t \bmod p^2.$$

Therefore, we have

$$L(0, w^{k-1}) \equiv -\frac{1}{2}B_{1+p(k-1)} \equiv -\frac{1}{2}(1+p(k-1))\frac{B_k}{k} \equiv -\frac{B_k}{k} \mod \wp,$$
$$L(-1, w^{k-2}) \equiv -\frac{1}{2}B_{2+p(k-2)} \equiv -\frac{1}{2}(2+p(k-2))\frac{B_k}{k} \equiv -\frac{B_k}{k} \mod \wp.$$

For the second equivalence of each statement above, we use Kummer congruence as explained in proposition 6.4 in the Appendix. Note that

$$1 + p(k - 1) = k + (p - 1)(k - 1) \equiv k \mod (p - 1),$$

$$2 + p(k - 2) = k + (p - 1)(k - 2) \equiv k \mod (p - 1).$$

The following corollary is now obvious.

Corollary 3.2. Let k be even and $2 \le k \le p-3$. Let n, m be even integers such that $n + m \equiv k \mod (p-1)$ and $2 \le n, m \le p-3$. The the product $G_{1,w^{n-1}}G_{1,w^{m-1}}$ is a modular form of weight 2 and type w^{k-2} whose q-expansion coefficients are \wp -integral in $\mathbb{Q}(\mu_{p-1})$. Its constant term is a \wp -adic unit if neither B_n nor B_m is divisible by p.

The next theorem guarantees the existence of the Eisenstein series we are looking for.

Theorem 3.3. Let k be an even integer $2 \le k \le p-3$. Then there exists a modular form g of weight 2 and type w^{k-2} whose q-expansion coefficients are \wp -integers in $\mathbb{Q}(\mu_{p-1})$ and whose constant term is a \wp -unit.

Proof.

Case (i). If $p \not| B_k$, we can take $G_{2,w^{k-2}}$ by lemma 3.1.

Case (ii). If we have a pair of even integers m n such that $n + m \equiv k \mod (p - 1)$, $2 \leq n, m \leq p - 3$ and $p \not| B_m B_n$, then we can take $G_{1,w^{n-1}}G_{1,w^{m-1}}$ by corollary 3.2.

Case (iii). Suppose neither of the above two cases are true. We will show that consequently too many Bernoulli numbers will be *p*-divisible, which will lead to violation of an upper bound for the *p*-part h_p^* of the relative class number of $\mathbb{Q}(\mu_p)$. Let *t* be the number of even integers $n, 2 \le n \le p-3$ such that *p* divides B_n . It is easy to see that $t \ge \frac{p-1}{4}$ if the cases (i) and (ii) do not arise. But then, p^t must divide h_p^* (see section 6.2 of Appendix). However, that contradicts a result of Carlitz, which says that $h_p^* < p^{(\frac{p-1}{4})}$. Hence we must be in either in case (i) or case (ii).

4. Existence of a semi-cusp form with suitable eigenvalues

In this section, we will first construct a semi-cusp form f which is a simultaneous eigenvector modulo \wp for all Hecke operators T_l with (p, l) = 1. Then we will lift f to a semi-cusp form f' which is an eigenvector for all such T_l 's.

Fix an even integer $k, 2 \le k \le p - 3$ and assume that $p|B_k$. Consider $\epsilon = w^{k-2}$. Since $B_2 = \frac{1}{6}$, k is at least 4, and hence ϵ is a non-trivial even character. We will only be interested in modular forms of weight 2 and type ϵ . **Proposition 4.1.** There exists a semi-cusp form $f = \sum_{n\geq 1} a_n q^n$ such that a_n are \wp -integers in $\mathbb{Q}(\mu_{p-1})$ and such that $f \equiv G_{2,\epsilon} \equiv G_k \mod \wp$.

Proof. Consider $f = G_{2,\epsilon} - c.g$, where *c* is the constant term of $G_{2,\epsilon}$. Then *f* is a semi-cusp form. Now, $c \in \wp$ as $p|B_k$. Hence, $f \equiv G_{2,\epsilon} \equiv G_k \mod \wp$.

Observe further that f is a mod \wp -eigenform for all Hecke operators T_l with (l, p) = 1, as the Eisenstein series $G_{2,\epsilon}$ is an eigenform form for all such T_l with eigenvalue $(1 + \epsilon(l)l)$. Therefore,

$$T_l(f) \equiv T_l(G_{2,\epsilon}) \equiv (1 + \epsilon(l)l)G_{2,\epsilon} \equiv (1 + \epsilon(l)l)f \text{ modulo } \wp.$$
(5)

4.1 Deligne–Serre lifting lemma

The following result of Deligne and Serre [D-S] ensures that there exists a semi-cusp form f' which is an eigenvector for the T_l 's ((l, p) = 1) with eigenvalues congruent modulo \wp to those of the mod- \wp eigenvector f obtained previously.

Lemma 4.2. Let M be a free module of finite rank over a discrete valuation ring R with residue field k, fraction field K and maximal ideal \mathfrak{m} . Let S be a (possibly infinite) set of commuting R-endomorphisms of M. Let $0 \neq f \in M$ be an eigenvector modulo $\mathfrak{m}M$ for all operators in S, i.e., $Tf = a_T f \mod \mathfrak{m}M \ \forall T \in S (a_T \in R)$. Then there exists a DVR R' containing R with maximal ideal \mathfrak{m}' containing \mathfrak{m} , whose field of fractions K' is a finite extension of K and a non-zero vector $f' \in R' \otimes_R M$ such that $Tf' = a'_T f'$ for all $T \in S$ with eigenvalues a'_T satisfying $a'_T \equiv a_T \mod \mathfrak{m}'$.

Proof. Let \mathbb{T} be the algebra generated by *S* over *R*. Clearly $\mathbb{T} \in End_R(M)$. As *M* is an free *R*-module of finite rank, so is $End_R(M)$. Therefore, \mathbb{T} is also free module of finite rank over *R*, generated by $T_1, \ldots, T_r \in S$. Let h_i denote the minimal polynomial of T_i acting on $K \otimes_R M$. If we adjoin the roots of all such minimal polynomials to *K*, we get a finite extension K' of *K*. The integral closure of *R* in K' gives us a DVR R' with maximal ideal \mathfrak{m}' lying over *m*, and with residue field k' containing *k*. By replacing *M* with $R' \otimes M$ and \mathbb{T} with $R' \otimes_R \mathbb{T}$, we will continue to write *R*, \mathfrak{m} , *k*, *K* in stead of R', \mathfrak{m} etc.

Consider the ring homomorphism $\lambda : \mathbb{T} \longrightarrow k$ given by $T \mapsto a_T \mod \mathfrak{m}$ for all T in S. Clearly, $ker(\lambda)$ is a maximal ideal of \mathbb{T} . Choose a minimal prime \wp in $ker(\lambda)$. Then, \wp is contained in the set of zero-divisors of \mathbb{T} (see proposition 6.9 of Appendix). As \mathbb{T} is a free R-module, R contains no zero-divisors of \mathbb{T} and hence, $\mathfrak{p} \cap R = \{0\}$. Thus, \mathbb{T}/\mathfrak{p} is a finite integral extension of R. Let L denote the field of fractions of the integral domain \mathbb{T}/\mathfrak{p} . Let R_L be the integral closure of R in L, then R_L is a DVR with maximal ideal m_L containing \mathfrak{m} and residue field l containing k.

Consider the map $\lambda' : \mathbb{T} \longrightarrow \mathbb{T}/\mathfrak{p}(\hookrightarrow R_L)$ given by reduction modulo \mathfrak{p} . Let $\lambda'(T) = a'_T$ for all $T \in S$. Clearly, λ' maps the maximal ideal $ker(\lambda)$ of \mathbb{T} into the maximal ideal m_L of R_L . But $(T - a_T) \in ker(\lambda)$, hence $\lambda'(T - a_T) \in m_L$ i.e., $a'_T \equiv a_T$ modulo m_L .

Now consider the ring $K \otimes_R \mathbb{T}$. It is an Artinian ring, hence it has finitely many maximal ideals with residue fields all isomorphic to K. Let \mathcal{P} be the prime ideal in

 $K \otimes \mathbb{T}$ generated by \mathfrak{p} . It will suffice to show that \mathcal{P} is an associated prime of $K \otimes M$. Note that $\wp \subset ker(\lambda)$ implies \wp annihilates f in M/\mathfrak{m} . Now let $x \in Ann_{\mathbb{T}/\mathfrak{m}}(f)$, say $x = \overline{g}(T_1, \ldots, T_n)$. Then, $x = \overline{g}(a'_{T_1}, \ldots, a'_{T_1})$ modulo $(T_1 - a'_{T_1}, \ldots, T_n - a'_{T_n})$. Thus, $xf = \overline{g}(a'_{T_1}, \ldots, a'_{T_1})f$ modulo $m_L M$, noting that $T - a'_T \in \wp$, and \wp annihilates f modulo $m_L M$. As $a'_T \equiv a_T \mod m_L$, we must have $\overline{g}(a_{T_1}, \ldots, a_{T_1})f = 0 \mod m_L M$. As $f \neq 0$, we must have $\overline{g}(a_{T_1}, \ldots, a_{T_1}) = 0$ in l. Thus, $x \in \wp$, and $\wp = Ann_{\mathbb{T}/\mathfrak{m}}(f)$ is an associated prime of M/\mathfrak{m} . For proof of the following two statements, see section 6.8.2 of Appendix.

- (i) \mathfrak{p} is in $Assoc_{\mathbb{T}/m}(M/\mathfrak{m})$, hence in $Supp_{\mathbb{T}/m}(M/\mathfrak{m})$, and hence $Ann_{\mathbb{T}/m}(M/\mathfrak{m}) \subset \wp$.
- (ii) Now, it follows that $Ann_{K\otimes \mathbb{T}}(K\otimes M) \subset \mathcal{P}$, hence $\mathcal{P} \in Supp_{K\otimes \mathbb{T}}(K\otimes M)$ and therefore \mathcal{P} is in $Assoc_{K\otimes \mathbb{T}}(K\otimes M)$.

Now, \mathcal{P} is the annihilator of some $0 \neq f'' \in K \otimes M$, hence \mathcal{P} annihilates some $f' \in M$. As $T - a'_T \in \mathfrak{p}$, we have $T - a'_T \in \mathcal{P}$ and $(T - a'_T)(f') = 0$. Thus, $Tf' = a'_T f'$ where $a'_T \equiv a_T$ modulo m_L , which concludes our proof. \Box

4.2 Lifting the semi-cusp form to an eigenvector for T_n for (n, p) = 1

The following theorem ensures that we have a semi-cusp form which is an eigenvector for all Hecke operators T_n with $p \not| n$.

Theorem 4.3. There is a semi-cusp form $f' = \sum_{n=1}^{\infty} c_n q^n$ of weight 2 and type ϵ such that all its coefficients are defined over a finite extension of L of $\mathbb{Q}(\mu_{p-1})$ and are \wp_L -integral where \wp_L is a prime above p. Further, $T_l f' \equiv (1 + \epsilon(l)l) f'$ modulo \wp_L .

Proof. There is a basis *B* of $S'_2(\Gamma_1(p), \epsilon)$ consisting of semi-cusp forms all of whose coefficients are defined over a finite extension *K* of $\mathbb{Q}(\mu_{p-1})$. Let *R* be the localization of the ring of integers of *K* at a prime \wp_K above \wp . Let *M* be the free *R*-module of semi-cusp forms generated by *B*. Let $S = \{T_n | (p, n) = 1\}$. We know by proposition 4.1 and (5) that there exists $f \in M$ such that

$$T_l(f) \equiv (1 + \epsilon(l)l) f \text{ modulo } \wp.$$

By applying the lifting lemma 4.2, we can conclude that there is a finite extension L of K with a prime \wp_L over \wp_K such that there exists a semi-cusp form f', with \wp_L -integral coefficients in L such that $T_l(f') = c_l f'$ and $c_l \equiv 1 + \epsilon(l)l$ modulo \wp_L .

5. Construction of cusp eigenform

We will first show that the semi-cusp form f' obtained in the previous section is in fact a cusp form. Then, we will finally show that the cusp form f' must be an eigenvector for all Hecke operators T_n including those n which are not co-prime to p.

56 A. Saikia

5.1 Existence of a suitable cusp form

Proposition 5.1. There exists a non-zero cusp form f' of type ϵ , which is an eigenform for all Hecke operators T_n with (n, p) = 1, and which has the property that for any prime $l \neq p$, the eigenvalue λ_l of T_l acting on f' satisfies

$$\lambda_l \equiv 1 + l^{k-1} \equiv 1 + \epsilon(l) l \mod \wp_L,$$

where \wp_L is a certain prime (independent of l) lying over \wp in the field $L = \mathbb{Q}(\mu_{p-1}, \lambda_n)$ generated by the eigenvalues over $\mathbb{Q}(\mu_{p-1})$.

Proof. We already established the existence of a semi-cusp form f' which is an eigenform for all Hecke operators $T_n(n, p) = 1$ whose eigenvalues have the required congruence properties. It suffices to assert that f' is in fact a cusp form. As $M_2(\Gamma_0(p), \epsilon)$ is spanned by the cusp forms, the semi-cusp form $S_{2,\epsilon}$ and the Eisenstein series $G_{2,\epsilon}$, we must have

$$S'_2(\Gamma_1(p),\epsilon) = S_2(\Gamma_1(p),\epsilon) \oplus \mathbb{C}s_{2,\epsilon},$$

where orthogonality of the Eisenstein space and the space of cusp forms under Petersson inner product \langle , \rangle is the reason behind the above sum being a direct one (see section 6.6 of Appendix). Suppose $f' = h + as_{2,\epsilon}$ ($a \neq 0$). Then, $f' - as_{2,\epsilon} \in S_2(\Gamma_1(p), \epsilon)$. But, $f' - as_{2,\epsilon} \in \mathcal{E}_2(\Gamma_1(p), \epsilon)$ as well, where $\mathcal{E}_2(\Gamma_1(p), \epsilon)$ denotes the subspace consisting of Eisenstein series in $M_2(\Gamma_1(p), \epsilon)$. As the orthogonal subspaces $\mathcal{E}_2(\Gamma_1(p), \epsilon)$ and $S_2(\Gamma_1(p), \epsilon)$ have trivial intersection, $f' - as_{2,\epsilon} = 0$, i.e., $f' = as_{2,\epsilon}$. Applying T_l to both sides, $(l \neq p)$, we see that we must have $1 + \epsilon(l)l \equiv l + \epsilon(l) \mod \wp_L$, which forces $\epsilon(l) = 1$. But ϵ is a non-trivial character and $l \neq p$ is arbitrary, hence f' must be a cusp form. \Box

5.2 Operators T_n for $(n, p) \neq 1$

So far, we know that we have a cusp form f for $\Gamma_1(p)$ of weight 2 and type ϵ which is an eigenform for all Hecke operators $T_l(l, p) = 1$. In this section we will assert that f is in fact a common eigenform for all Hecke operators, including $T_n(n, p) \neq 1$.

Proposition 5.2. Any form f' as above is an eigenform for all Hecke operators (including those for which p|n). Hence, after replacing f' by a suitable multiple of f', we have

$$f' = \sum_{n=1}^{\infty} \lambda_n q^n$$
, where $T_n(f') = \lambda_n f'$.

Proof. f' must be a newform. For, if it were an old form it will have to originate from a non-zero modular form in $M_2(SL_2(\mathbb{Z}))$, but that space is trivial. Now for a new form f', if it is an eigenform for T_n ((n, p) = 1) it has to be an eigenform for all T_n by the theory of newforms (see Theorem 5.8.2 of [Di-S]). Now we can take a suitable multiple of f' to get a normalized cusp eigenform as prescribed in the theorem. \Box

Remark. The cusp eigenform obtained above can be associated to a Galois representation which finally gives an unramified *p*-extension of $\mathbb{Q}(\mu_p)$, where μ_p denotes the *p*-power roots of unity for an odd prime *p*. This exposition can be found in the article by C. S. Dalawat [D] in this volume.

6. Appendix

Here we provide a brief discussion of the various ingredients used in the previous sections.

6.1 Dirichlet L-functions

A Dirichlet character is a homomorphism $\chi : \left(\frac{\mathbb{Z}}{N\mathbb{Z}}\right)^{\times} \longrightarrow \mathbb{C}^{\times}$, where *N* is any positive integer, and A^{\times} denote the multiplicative group of units in a ring *A*. *N* is called the conductor of χ if χ does not factor through $\left(\frac{\mathbb{Z}}{M\mathbb{Z}}\right)^{\times}$ for any M < N. We denote the conductor of χ by f_{χ} . We can easily extend the definition of χ to \mathbb{Z} by setting $\chi(n) = \chi(n \mod N)$ if (n, N) = 1 and $\chi(n) = 0$ otherwise. The Dirichlet *L*-series of χ is defined as

$$L(s,\chi) = \sum_{n=1}^{\infty} \chi(n) n^{-s},$$

where s is a complex number with Re(s) > 1. It is well-known that $L(s, \chi)$ can be analytically continued to the whole complex plane except a simple pole of residue 1 at s = 1 when χ is the trivial character (in which case the function is just the Riemann-zeta function). Further, $L(s, \chi)$ satisfies a functional equation relating its values at s = 1 to values 1 - s. It also has a Euler product, i.e.,

$$L(s, \chi) = \prod_{l} (1 - \chi(l)l^{-s})^{-1}, \ Re(s) > 1$$

where l runs over the rational primes. The Dirichlet *L*-functions are related to the Dedekind zeta function of an abelian number field, as explained below.

Recall that for a number field K, the Dedekind zeta function is defined as

$$\zeta_K(s) = \sum_{\mathfrak{a}} (N\mathfrak{a})^{-s}, \quad Re(s) > 1,$$

where a runs over the ideals of the ring \mathcal{O}_K of integers in K. It is well-known that $\zeta_K(s)$ can be analytically continued to the whole complex plane except for a simple pole at s = 1. Further, $\zeta_K(s)$ satisfies a functional equation, relating the values at s to values at 1 - s.

We can view χ as a Galois character

$$\chi$$
 : $Gal(\mathbb{Q}(\mu_N)/\mathbb{Q}) \simeq (\mathbb{Z}/N\mathbb{Z})^{\times} \longrightarrow \mathbb{C}^{\times},$

and this gives a correspondence $\chi \to \text{fixed subfield of } ker(\chi)$ in $\mathbb{Q}(\mu_N)$, which is an abelian extension of \mathbb{Q} . This leads to a one-to-one correspondence between groups of

Dirichlet characters and abelian extensions of \mathbb{Q} . If *K* is an abelian extension of \mathbb{Q} , it is contained in some $\mathbb{Q}(\mu_N)$ and there will be a corresponding group *X* of Dirichlet characters of conductor dividing *N*.

If *K* is an abelian number field and *X* is the corresponding group of Dirichlet characters, then one can show that (see theorem 4.3 in [Wa])

$$\zeta_K(s) = \prod_{\chi \in X} L(s, \chi).$$

6.2 The relative class number and Dirichlet L-values

The analytic class number formula is given by

$$\lim_{s \to 1} \zeta_K(s) = \frac{2^{r_K} (2\pi)^{t_K} h_K R_K}{w_K \sqrt{|d_K|}},$$

where r_K and t_K denote respectively the number of real and complex pairs of embedding of K, w_K the number of roots of unity in K, R_K the regulator of K, d_K the discriminant of K and h_K the class number of K.

Now consider $K = \mathbb{Q}(\zeta_p)$, then $r_K = 0$, $t_K = \frac{p-1}{2}$. Let K^+ be the maximal real subfield of K, for which $r_{K^+} = \frac{p-1}{2}$ and $t_{K^+} = 0$. It is easy to establish that h_{K^+} divides h_K . The relative class number of K is defined as $h_K^- = \frac{h_K}{h_{K^+}}$. The purpose of this section is to investigate the p-part h_K^- , and relate it to the values of Dirichlet L-functions.

Proposition 6.1.

$$h_K^- = \alpha p \prod_{i=0}^{p-2} L(0, w^i),$$

where α is a certain power of 2.

Proof. Dividing the analytic class number formulas for K and K^+ , and then shifting the limit to $s \rightarrow 0$ via the functional equations, one can cancel out the extraneous factors and deduce that (see [Gr])

$$h_K^- = \frac{w_K}{2^e w_{K^+}} \lim_{s \to 0} \frac{\zeta_K(s)}{\zeta_{K^+}(s)},$$

where $\frac{R_K}{R_{K^+}} = 2^e$. But

$$\zeta_K(s) = \prod_{i=0}^{p-2} L(0, w^i), \quad \zeta_{K^+}(s) = \prod_{i \text{ even}}^{p-2} L(0, w^i).$$

Now observing that $w_K = 2p$ and $w_{K^+} = 2$, we obtain the desired result.

6.3 Dirichlet L-values and Bernoulli numbers

Recall that Bernoulli numbers B_n are given by

$$\frac{t}{e^t-1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}.$$

Eg, $B_0 = 1$, $B_1 = -\frac{1}{2}$, $B_2 = \frac{1}{6}$ etc. The *n*-th Bernoulli polynomial $B_n(X)$ is defined by

$$\frac{te^{Xt}}{e^{tX}-1} = \sum_{n=0}^{\infty} B_n(X) \frac{t^n}{n!}$$

It is easy to see that

$$B_n(X) = \sum_{i=0}^n \binom{n}{i} B_i X^{n-i}.$$

Eg, $B_1(X) = X - \frac{1}{2}$, $B_2(X) = X^2 - X + \frac{1}{6}$, etc. Now, for a Dirichlet character χ of conductor f, we define the generalized Bernoulli numbers $B_{n,\chi}$ by

$$\sum_{a=1}^{f} \frac{\chi(a)te^{at}}{e^{ft} - 1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{t^n}{n!}.$$

The following well-known proposition allows us to express generalized Bernoulli numbers in terms of Bernoulli polynomials (cf [Wa]).

Proposition 6.2. If g is any multiple of f, then

$$B_{n,\chi} = g^{n-1} \sum_{a=1}^{g} \chi(a) B_n\left(\frac{a}{g}\right).$$

Proof.

$$\sum_{n=0}^{\infty} g^{n-1} \sum_{a=1}^{g} \chi(a) B_n\left(\frac{a}{g}\right) \frac{t^n}{n!}$$

= $\sum_{a=1}^{g} \chi(a) \frac{1}{g} \frac{(gt)e^{(\frac{a}{g})gt}}{e^{gt} - 1}$
= $\sum_{b=1}^{f} \sum_{c=0}^{h-1} \chi(b + cf) \frac{te^{(b+cf)t}}{e^{fht} - 1}$ where $g = hf$, $a = b + cf$
= $\sum_{b=1}^{f} \frac{\chi(b)te^{bt}}{e^{ft} - 1}$
= $\sum_{n=0}^{\infty} B_{n,\chi} \frac{t^n}{n!}$.

60 A. Saikia

For example,

$$B_{1,\chi} = \sum_{a=1}^{f} \chi(a) \left(\frac{a}{f} - \frac{1}{2}\right) = \frac{1}{f} \sum_{a=1}^{f} \chi(a) \left(a - \frac{1}{2}f\right).$$
$$B_{2,\chi} = f \sum_{a=1}^{f} \chi(a) \left(\frac{a}{f}\right)^2 - \frac{1}{2}\frac{a}{f} + \frac{1}{6} = \frac{1}{f} \sum_{a=1}^{f} \chi(a) \left(a^2 - fa + \frac{f^2}{6}\right).$$

The generalized Bernoulli numbers can be related to the values of Dirichlet *L*-values as follows:

Proposition 6.3. $L(1 - n, \chi) = -\frac{B_{n,\chi}}{n}, n \ge 1.$

For example, if χ is a Dirichlet character modulo p, we have

$$L(0,\chi) = -B_{1,\chi} = -\frac{1}{p} \sum_{n=1}^{p} \chi(n) \left(n - \frac{1}{2}p\right).$$
(6)

$$L(-1,\chi) = -B_{2,\chi} = -\frac{1}{2p} \sum_{n=1}^{p} \chi(a) \left(n^2 - pn + \frac{p^2}{6} \right).$$
(7)

6.4 Some congruences involving Bernoulli numbers

We require the following congruences involving Bernoulli numbers.

Proposition 6.4 (Kummer Congruence). $\frac{B_m}{m} \equiv \frac{B_n}{n}$ if $m \equiv n \neq 0 \mod (p-1)$.

Kummer's congruence can be proved in the following manner (cf [B-S]): let *g* be a primitive root mod *p*. Consider

$$F(t) = \frac{gt}{e^{gt} - 1} - \frac{t}{e^t - 1} = \sum_{m=1}^{\infty} (g^m - 1) B_m \frac{t^m}{m!}.$$
(8)

Letting $e^t - 1 = u$, we can write

$$F(t) = \frac{gt}{(1+u)^g - 1} - \frac{t}{u} = tG(u), \text{ where}$$
$$G(u) = \frac{g}{(1+u)^g - 1} - \frac{1}{u} = \sum_{k=1}^{\infty} c_k u^k, \ c_k \in \mathbb{Z}.$$

Now,

$$G(u) = G(e^{t} - 1) = \sum_{k=0}^{\infty} c_{k}(e^{t} - 1)^{k} = \sum_{m=1}^{\infty} A_{m} \frac{t^{m}}{m!}.$$
(9)

But A_m are *p*-integral as they are integral linear combinations of c_k 's. Further, they have period (p-1) modulo *p*, as the coefficients r^n of $\frac{t^n}{n!}$ in e^{rt} $(r \ge 0)$ have that

periodicity by Fermat's little theorem $r^{n+p-1} \equiv r^n$ modulo p. Comparing coefficients in (8) and (9), we obtain

$$\frac{g^m - 1}{m!} B_m = \frac{A_{m-1}}{(m-1)!} \implies \frac{B_m}{m} (g^m - 1) = A_{m-1}.$$

If $p - 1 \not| m$, then $g^m - 1 \neq 0 \mod p$ as g is a primitive root mod p. Clearly, $g^m - 1$ has period $p - 1 \mod p$. Therefore, $\frac{B_m}{m}$ also has period $p - 1 \mod p$ and is p-integral.

Proposition 6.5. pB_m is *p*-integral, and B_m is *p*-integral if $(p-1) \not (m.$

Proposition 6.6. For an even integer m, $pB_m \equiv \sum_{a=1}^{p-1} a^m \mod p^2$ if $p \ge 5$.

We can easily prove the above two propositions using the following lemma.

Lemma 6.7. $(m + 1)S_m(n) = \sum_{k=0}^m {m+1 \choose k} B_k n^{m+1-k}$, where $S_m(n) = 1^n + 2^n + \cdots + m^n$.

Proof.

$$\sum_{m=0}^{\infty} S_m(n) \frac{t^m}{m!} = \sum_{a=0}^{n-1} \frac{e^{nt} - 1}{e^t - 1} = \frac{e^{nt} - 1}{t} \frac{t}{e^t - 1} = \sum_{l=1}^{\infty} n^l \frac{t^{l-1}}{l!} \sum_{k=0}^{\infty} B_k \frac{t^k}{k!}$$
$$\Rightarrow \frac{S_m(n)}{m!} = \sum_{k=0}^{m+1} \frac{B_k}{(m+1-k)!k!} n^{m+1-k}$$
$$\Rightarrow (m+1)! \frac{S_m(n)}{m!} = \sum_{k=0}^{m+1} \binom{m+1}{k} B_k n^{m+1-k}$$

In order to prove proposition 6.5, it is enough to show that $pB_m \equiv S_m(p)$ modulo p. It is clear that $S_m(p) \equiv 0 \mod p$ if $(p-1) \not m$ and $S_m(p) \equiv p-1 \mod p$ if $(p-1) \mid m$. By our lemma, we have

$$S_m(p) = p B_m + \binom{m}{1} B_{m-1} \frac{p^2}{2} + \binom{m}{2} B_{m-2} \frac{p^3}{3} + \dots + \binom{m}{m} B_0 \frac{p^{k+1}}{k+1}.$$
 (10)

Clearly, $\frac{p^{k+1}}{k+1} \equiv 0 \mod p$ for $k \ge 2$, and $\frac{p^{k+1}}{k+1}$ is *p*-integral even for k = 1. Applying induction, let pB_j be *p*-integral for j < m. Then, pB_m is *p*-integral as well, and we also obtain $S_m(n) \equiv pB_m \mod p$ from (10). Note that though we need the result only for odd prime *p*, the above proof works for p = 2 as well, as B_n vanishes for odd $n \ge 3$.

To prove proposition 6.6, it suffices to establish that $ord_p(\binom{m}{k}B_{m-k}\frac{p^{k+1}}{k+1}) \ge 2$ in view of (10). Since pB_{m-k} is *p*-integral, we need only $k - ord_p(k+1) \ge 2$. For $p \ge 5$ and $k \ge 2$, it is obvious. For k = 1, note that $B_{m-1} = 0$ unless m = 2, which again follows trivially.

6.5 A refined congruence for the Teichmuller character

Let $w : (\mathbb{Z}/p\mathbb{Z})^{\times} \longrightarrow \mu_{p-1}$ be the character given by $w(n) \equiv n$ modulo \wp where \wp is any prime ideal above p in $\mathbb{Q}(\mu_{p-1})$. The character w is known as the Teichmuller character. We have used the following congruence for the Teichmuller character.

Proposition 6.8. For (n, p) = 1, we have $w(n) \equiv n^p \mod \varphi^2$ where φ is a fixed prime above p in $K = \mathbb{Q}(\mu_{p-1})$.

Proof. Let us recall Hensel's lemma:

Let *R* be a ring which is complete with respect to an ideal *I* and let $f(x) \in R[x]$. If $f(a) \equiv 0 \mod (f'(a)^2 I)$ then there exists $b \in R$ with $b \equiv a \mod (f'(a)I)$ such that f(b) = 0. Further, *b* is unique if f'(a) is a non-zero divisor in *R*.

Now let K_{\wp} be the completion of K at \wp . Let $R = \mathcal{O}_{\wp}$ be the completion of the ring of integers \mathcal{O} of K with respect to \wp . Let $I = \wp^2$, then we can also think of R as the completion of \mathcal{O} with respect to I. Consider $f(x) = x^{p-1} - 1$ and let $a = n^p$, where (n, p) = 1. Then,

$$f(a) = (n^p)^{p-1} - 1 \equiv 0 \mod \wp^2, \text{ as } \# \left(\frac{\mathcal{O}_{\wp}}{\wp^2}\right)^{\times}$$
$$= \# \left(\frac{\mathcal{O}}{\wp^2}\right)^{\times} = N \wp^2 - N \wp = p(p-1).$$

Moreover $f'(a) = (p-1)a^{p-2}$ is not a zero-divisor in R. Therefore by Hensel's lemma there exists a unique b_n in R such that $b_n^{p-1} - 1 = 0$ and $b_n \equiv n^p$ modulo \wp^2 . Now, if we define $w(n) = b_n$, we obtain the Teichmuller character $w: \left(\frac{\mathbb{Z}}{p\mathbb{Z}}\right)^{\times} \longrightarrow \mu_{p-1}$ with the more refined congruence $w(n) \equiv n^p$ modulo \wp^2 . \Box

6.6 Petersson inner product

There is a measure on the upper half complex plane \mathfrak{h} given by $d\mu(\tau) = \frac{dx \, dy}{y^2}$ where $\tau = x + iy \in \mathfrak{h}$. It is easy to show that $d\mu(\tau)$ is invariant under $GL_2(\mathbb{R})^+ \subset Aut(\mathfrak{h})$, i.e., $d\mu(\alpha\tau) = d\mu(\tau)$. In particular, the measure is $SL_2(\mathbb{Z})$ -invariant. As $\mathbb{Q} \cup \{\infty\}$ is a countable set of measure 0, $d\mu$ suffices for integration over the extended upper half plane $\mathfrak{h}^* = \mathfrak{h} \cup \mathbb{Q} \cup \{\infty\}$. Let D^* be the fundamental domain for $SL_2(\mathbb{Z})$, i.e.,

$$D^* = \mathfrak{h}^* / SL_2(\mathbb{Z}) = \left\{ \tau \in \mathfrak{h} | Re(\tau) \le \frac{1}{2}, |\tau| \ge 1 \right\} \cup \{\infty\}.$$

For a congruence subgroup Γ of $SL_2(\mathbb{Z})$, we have $(\pm I)\Gamma SL_2(Z) = \bigcup_j (\pm 1)\Gamma \alpha_j$ where *j* runs over a finite set. Then, the fundamental domain for Γ is given by

$$X(\Gamma) = \mathfrak{h}^* / \Gamma = \bigcup \alpha_j(D^*)$$

This allows us to integrate function of \mathfrak{h}^* invariant under Γ by setting

$$\int_{X(\Gamma)} \phi(\tau) d\mu(\tau) = \int_{\bigcup_j \alpha_j(D^*)} \phi(\tau) d\mu(\tau) = \sum_j \int_{D^*} \phi(\alpha_j(\tau)) d\mu(\tau).$$

By letting $V_{\Gamma} = \int_{X(\Gamma)} d\mu(\tau)$, we can define an inner product

 $\langle , \rangle_{\Gamma} : S_k(\Gamma) \times M_k(\Gamma) \longrightarrow \mathbb{C}.$

given by

$$\langle f, g \rangle_{\Gamma} = \frac{1}{V_{\Gamma}} \int_{X(\Gamma)} f(\tau) \overline{g(\tau)} (Im(\tau))^k d\mu(\tau).$$

Note that the integrand is invariant under Γ . For the integral to converge, we need one of f or g to be a cusp form (see section 5.4 in [Di-S]). Clearly this inner product is Hermitian and positive definite. When we take a modular form $f \in M_k(\Gamma) - S_k(\Gamma)$, we can show that f is orthogonal under $\langle , \rangle_{\Gamma}$ to all of $S_k(\Gamma)$. Thus, we can think of the quotient space $\mathcal{E}_k(\Gamma) = M_k(\Gamma)/S_k(\Gamma)$ as the complementary subspace linearly disjoint from $S_k(\Gamma)$. This allows us to write

$$M_k(\Gamma) = S_k(\Gamma) \oplus \mathcal{E}_k(\Gamma).$$

6.7 Hecke operators

For any $\alpha \in GL_2(\mathbb{Q})$, one can write the double coset $\Gamma \alpha \Gamma = \bigcup_i \Gamma \alpha_i$ where α_i runs over a finite set. We can define an action of the double coset on $M_k(\Gamma)$ by setting $f |\Gamma \alpha \Gamma = \sum f |[\alpha_i]$. It is easy to verify that these operators preserve $M_k(\Gamma)$, $S_k(\Gamma)$ and $\mathcal{E}_k(\Gamma)$.

We need to consider only the case $\Gamma = \Gamma_1(p)$. For any integer *d* such that (d, p) = 1, we can define an operator $\langle d \rangle$ as follows: we have ad - bp = 1 for some $a, b \in \mathbb{Z}$. Taking $\alpha = \begin{bmatrix} a & b \\ p & d \end{bmatrix} \in \Gamma_0(p)$, we obtain

$$\langle d \rangle : M_k(\Gamma_1(p)) \longrightarrow M_k(\Gamma_1(p)),$$

 $\langle d \rangle f := f | \Gamma_1(p) \alpha \Gamma_1(p) = f | [\alpha]_k,$

noting that $\Gamma_1(p)\alpha\Gamma_1(p) = \Gamma_1(p)\alpha$ as $\Gamma_1(p)$ is a normal subgroup of $\Gamma_0(p)$. The operators $\langle d \rangle$ are called diamond operators.

By taking $\alpha_l = \begin{bmatrix} 1 & 0 \\ 0 & l \end{bmatrix}$ for any prime *l*, we get an operator $T_l = f | \Gamma \alpha_l \Gamma$ for any prime *l*. We extend the definition of Hecke operators to all natural numbers inductively by setting

$$T_{l^{r+1}} = T_l T_{l^r} - l^{k-1} \langle l \rangle T_l^{r-1} \quad \text{for} \quad r \ge 1.$$

$$T_{mn} = T_m T_n \quad \text{when} \quad gcd(m, n) = 1$$

All these Hecke operators defined above are self adjoint with respect to the Petersson inner product. For more details, see chapter 5 of [Di-S]. A modular form is called an *eigenform* if it is a simultaneous eigenform for all Hecke operators T_n and $\langle d \rangle$, (d, p) = 1.

6.8 Ingredients from commutative algebra

The results proved below are required for the lifting lemma of Deligne and Serre in section 4.1.

64 A. Saikia

6.8.1 *Minimal primes* Let A be a commutative ring with 1. A prime ideal \wp of A is called a *minimal prime* if it the smallest prime ideal (containing 0) in A. Such a prime exists by Zorn's lemma on the (non-empty as $1 \in A$) set S of primes ideals of A with the partial order $I \leq J$ when $J \subset I$, noting that any descending chain in S has its intersection as an upper bound in S.

Proposition 6.9. A minimal prime \wp of A is contained in the set Z of zero-divisors of A.

Proof. Note that $x, y \in D = A - Z \Rightarrow xy \in D$. Thus *D* is a multiplicative set. On the other hand, $S = A - \wp$ is a maximal multiplicative closed set (as \wp is a minimal prime). If $D \not\subset S$, then *SD* would be a multiplicative set strictly larger than *S*. Therefore, $D \subset S$ and $\wp \subset Z$.

6.8.2 Associated primes and support primes Let A be a commutative ring and M be an A-module. The annihilator of a submodule N of M is defined as

$$Ann_A(N) = \{a \in A | an = 0 \ \forall n \in N\}.$$

Clearly, $Ann_A(N)$ is an ideal of A. For an element $m \in M$, we can define its annihilator as $Ann_A(m) = \{a \in A | am = 0\}$.

Definition 6.10. A prime ideal \wp of A is called an **associated prime** if \wp is the annihilator of some element of M. The set of associated primes of M in A is denoted by $Assoc_A(M)$.

Proposition 6.11. If M is non-zero and A is Noetherian, then $Assoc_A(M)$ is nonempty.

Proof. Consider the set *S* of ideals $(\neq A)$ of *A* which are annihilators of some element of *M*. As *A* is Noetherian, *S* has a maximal element, say \wp , which is necessarily the annihilator of some element *m* in *M*. Let *x*, *y* \in *A* such that $xy \in \wp$ but $y \notin \wp$. Then $ym \neq 0$, but $\wp \subset (\wp, x) \subset Ann_A(ym) \in S$. It follows that $Ann_A(ym) = (\wp, x) = \wp$ by maximality of \wp . Therefore $x \in \wp$, and hence \wp is an associated prime. \Box

Definition 6.12. A prime ideal \wp of A is called a support prime of M if $M_{\wp} \neq 0$.

The set of support primes of *M* in *A* is denoted by $Supp_A(M)$.

Proposition 6.13. Let A be Noetherian and M be a finitely generated A-module. Then $\wp \in Supp_A(M) \Leftrightarrow Ann_A(M) \subset \wp$

Proof. Let $Ann_A(M) \not\subset \wp$. Then there exists $s \in A - \wp$ such that sM = 0, hence $M_{\wp} = 0$. Contra-positively, $\wp \in Supp_A(M)$ implies $Ann_A(M) \subset \wp$.

For the converse, let m_1, \ldots, m_r generate M as an A-module. If $M_{\wp} = 0$, then we can find $s_i \in A - \wp$ such that $s_i m_i = 0$. Now $s = s_1 \ldots s_r \in A - \wp$ annihilates M, hence $Ann_A(M) \not\subset \wp$.

Proposition 6.14. $Assoc_A(M) \subset Supp_A(M)$.

Proof. Let \wp be an associated prime of M, say $\wp = Ann_A(m)$ for some $m \in M$. If $M_{\wp} = 0$ then there exists $s \in A - \wp$ such that sm = 0. But it would mean $s \in Ann_A(m) = \wp$, which is a contradiction. Thus, $M_{\wp} \neq 0$ and \wp must be a support prime of M.

Proposition 6.15. Let A be a Noetherian ring and \wp be a support prime. Then \wp contains an associated prime q of M.

Proof. If \wp is a support prime, $M_{\wp} \neq 0$. Then there must exist some $x \in M$ such that $(Ax)_{\wp} \neq 0$. Thus, there exists an associated prime q of the A-module $(Ax)_{\wp}$. Hence there is an element $0 \neq \frac{y}{s}$ of $(Ax)_{\wp}$ with $y \in Ax$ and $s \notin \wp$ such that q is the annihilator of $\frac{y}{s}$. Now, if there exists $b \in q - \wp$, then $b\frac{y}{s} = 0$ would imply $\frac{y}{s} = 0$, which is a contradiction.

Now we still have to show that q is an associated prime of M as well. Let b_1, \ldots, b_n be a set of generators of q. Then, there exists $t_i \in A - \wp$ such that $b_i t_i y = 0$. Let $t = t_1, \ldots, t_n$. Then, q is the annihilator of $t_i \in M$.

Corollary 6.16. If \wp is a minimal prime in the support of M, then \wp is also an associated prime when A is Noetherian.

Proof. As \wp must contain an associated prime, we get our result by minimality of \wp .

Acknowledgement

I am very grateful to Kevin Buzzard for pointing out an error in an earlier version.

References

- [BS] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press (1966).
- [C] L. Carlitz, A generalization of Maillet's determinant and a bound for the first factor of the class number, *Proc. A.M.S.*, **12** (1961) 256–261.
- [C-O] L. Carlitz and F. R. Olson, Maillet's determinant, Proc. A.M.S., 6 (1955) 265–269.
- [D] C. S. Dalawat, Ribet's modular construction of unramified *p*-extensions of $\mathbb{Q}(\mu_p)$ (to appear).
- [D-S] P. Deligne and J-P. Serre, Formes modulaires de poids 1, Ann. Scient. Ec. Norm. Sup., 4^e serie, 7 (1974) 507–530.
- [Di-S] F. Diamond and S. Shurman, A First Course on Modular Forms, Springer (2005).
- [Gr] R. Greenberg, A generalization of Kummer's criterion, *Inventiones Math.*, **21** (1973) 247–254.
- [La] S. Lang, Algebra, Springer-Verlag (2002).
- [R] K. Ribet, A modular construction of unramified *p*-extensions of $\mathbb{Q}(\mu_p)$, *Inventiones Math.*, **34** (1976) 151–162.
- [Wa] L. Washington, Introduction to Cyclotomic Fields, Springer-Verlag (1997).