COEFFICIENTS OF A p-ADIC MEASURE AND IWASAWA λ -INVARIANT OF ITS Γ -TRANSFORM

Rupam Barman¹ and Anupam Saikia²

¹Department of Mathematical Sciences, Tezpur University,

Napaam 784 028, Sonitpur, Assam, India

e-mail: rupamb@tezu.ernet.in

²Department of Mathematics, Indian Institute of Technology Guwahati,

Guwahati 781 039, Assam, India e-mail: a.saikia@iitg.ernet.in

Abstract. In this paper we relate the coefficients of a p-adic valued measure α on \mathbb{Z}_p^2 to the λ -invariant of the Iwasawa series of the Γ -transform of α .

Key Words: p-adic measure, Γ -transform, Iwasawa invariants.

2000 Mathematics Classification Numbers: Primary 11F85, 11S80

1. Introduction

Fix an odd prime p. Let O be the ring of integers in a finite extension of \mathbb{Q}_p with a local parameter π . We write $\mathbb{Z}_p^{\times} = V \times U$ where V is the group of (p-1)st roots of unity in \mathbb{Z}_p and $U = 1 + p\mathbb{Z}_p$. Let u be a topological generator of U. The projections from \mathbb{Z}_p^{\times} onto V and U are denoted by ω and <> respectively. We have an isomorphism $\phi: \mathbb{Z}_p \to U$ given by $\phi(y) = u^y$.

Let $\Lambda_{(n)}$ denote the *O*-valued measures on \mathbb{Z}_p^n . It is well-known, (see e.g. [1], [2]), that $\Lambda_{(n)}$ is a ring under convolution, and is isomorphic to the formal power series ring $O[[T_1 - 1, \dots, T_n - 1]]$. This correspondence is given by

$$\widehat{\alpha}(T_1, \dots, T_n) = \int_{\mathbb{Z}_p^n} T_1^{x_1} \dots T_n^{x_n} d\alpha(x_1, \dots, x_n)$$

$$= \sum_{m_1=0}^{\infty} \dots \sum_{m_n=0}^{\infty} \left(\int_{\mathbb{Z}_p^n} {x_1 \choose m_1} \dots {x_n \choose m_n} d\alpha(x_1, \dots, x_n) \right)$$

$$\times (T_1 - 1)^{m_1} \dots (T_n - 1)^{m_n}. \tag{1.1}$$

To integrate any continuous function $f: \mathbb{Z}_p \to O$ with respect to a measure $\alpha \in \Lambda_{(1)}$, we use a theorem of Mahler, (see [5], [8]):

Theorem 1.1. If $f: \mathbb{Z}_p \to O$ is continuous, then

$$f(x) = \sum_{j=0}^{\infty} m_j(f) \binom{x}{j},$$

where $m_j(f) = \sum_{k=0}^{j} (-1)^{j-k} {j \choose k} f(k) \rightarrow 0$ in O.

Using Mahler's theorem, if $\widehat{\alpha}(T_1) = \sum_{j=0}^{\infty} a_j (T_1 - 1)^j$, then $\int_{\mathbb{Z}_p} f(x) d\alpha(x) = \sum_{j=0}^{\infty} a_j m_j(f)$. Furthermore, if $f: \mathbb{Z}_p^n \mapsto O$ is continuous, we may write (by repeated application of Mahler's theorem)

$$f(x_1, \dots, x_n) = \sum_{m_1=0}^{\infty} \dots \sum_{m_n=0}^{\infty} a_{m_1, \dots, m_n}(f) \begin{pmatrix} x_1 \\ m_1 \end{pmatrix} \dots \begin{pmatrix} x_n \\ m_n \end{pmatrix}, \tag{1.2}$$

where

$$a_{m_1,\dots,m_n}(f) = \sum_{j_1=0}^{m_1} \dots \sum_{j_n=0}^{m_n} (-1)^{m_1-j_1} \dots (-1)^{m_n-j_n} \binom{m_1}{j_1} \dots \binom{m_n}{j_n} f(j_1,\dots,j_n)$$

$$\to 0 \text{ in } O.$$
(1.3)

The constants $a_{m_1,\dots,m_n}(f)$ are called the Mahler coefficients of the function f. Similar to the case n=1, we have the following integration formulas:

$$\int_{\mathbb{Z}_n^n} x_1^{m_1} \cdots x_n^{m_n} d\alpha(x_1, \cdots, x_n) = \left(T_1 \frac{d}{dT_1} \right)^{m_1} \cdots \left(T_n \frac{d}{dT_n} \right)^{m_n} \widehat{\alpha}(T_1, \cdots, T_n)|_{T_1 = \cdots = T_n = 1}$$
 (1.4)

Let α be a measure on \mathbb{Z}_p^n . For $(a_1, \dots, a_n) \in (\mathbb{Z}_p^{\times})^n$, denote by $\alpha \circ (a_1, \dots, a_n)$ the measure on \mathbb{Z}_p^n given by

$$\alpha \circ (a_1, \cdots, a_n)(A_1 \times \cdots \times A_n) = \alpha(a_1A_1, \cdots, a_nA_n),$$

where A_i are compact open subsets of \mathbb{Z}_p . Also, if $A = (A_1, \dots, A_n) \subseteq \mathbb{Z}_p^n$, where all A_i are compact open subsets of \mathbb{Z}_p , we let $\alpha|_A$ denote the measure obtained by restricting α to A and extending by 0.

For $s_1, \dots, s_n \in \mathbb{Z}_p$, let each of k_1, \dots, k_n vary through a sequence of positive integers satisfying $k_j \to s_j$ *p*-adically and $k_j \equiv 0 \pmod{p-1}$. Then Γ -transform of a measure $\alpha \in \Lambda_{(n)}$ is defined as a function of the *p*-adic variables s_1, \dots, s_n given by

$$\Gamma_{\alpha}(s_1, \dots, s_n) = \lim_{k_1, \dots, k_n} \int_{\mathbb{Z}_p^n} x_1^{k_1} \dots x_n^{k_n} d\alpha(x_1, \dots, x_n)$$

$$= \int_{(\mathbb{Z}_p^n)^n} \langle x_1 \rangle^{s_1} \dots \langle x_n \rangle^{s_n} d\alpha(x_1, \dots, x_n).$$
(1.5)

If we put $d\alpha(a_1x_1, \dots, a_nx_n)$ for $d(\alpha \circ (a_1, \dots, a_n))(x_1, \dots, x_n)$, splitting up the integral, we can also write

$$\Gamma_{\alpha}(s_1, \dots, s_n) = \sum_{\eta_1 \in V} \dots \sum_{\eta_n \in V} \int_{U^n} \langle \eta_1 x_1 \rangle^{s_1} \dots \langle \eta_n x_n \rangle^{s_n} d\alpha(\eta_1 x_1, \dots, \eta_n x_n)$$

$$= \int_{U^n} x_1^{s_1} \dots x_n^{s_n} d\beta(x_1, \dots, x_n),$$

where

$$\beta = \sum_{\eta_1 \in V} \cdots \sum_{\eta_n \in V} (\alpha \circ (\eta_1, \cdots, \eta_n))|_{U^n},$$

a measure on U^n . We extend β to \mathbb{Z}_p^n by 0 and then we get a power series

$$\widehat{\beta}(T_1, \dots, T_n) = \sum_{m_1=0}^{\infty} \dots \sum_{m_n=0}^{\infty} b_{m_1, \dots, m_n} (T_1 - 1)^{m_1} \dots (T_n - 1)^{m_n}.$$
(1.6)

Again, the measure β may be viewed as a measure on \mathbb{Z}_p^n via the isomorphism ϕ :

$$\tilde{\beta}(A_1,\cdots,A_n)=\beta(\phi(A_1),\cdots,\phi(A_n)).$$

Let us write $d\beta(u^{y_1}, \dots, u^{y_n})$ for $d\tilde{\beta}(y_1, \dots, y_n)$. Let $G(T_1, \dots, T_n)$ be the power series associated to $\tilde{\beta}$, that is,

$$G(T_1,\cdots,T_n)=\int_{\mathbb{Z}_p^n}T_1^{y_1}\cdots T_n^{y_n}d\beta(u^{y_1},\cdots,u^{y_n}).$$

Then $\Gamma_{\alpha}(s_1, \dots, s_n) = G(u^{s_1}, \dots, u^{s_n}).$

The Iwasawa μ and λ - invariants of a power series

$$F(T_1, \dots, T_n) = \sum_{m_1=0}^{\infty} \dots \sum_{m_n=0}^{\infty} a_{m_1, \dots, m_n} (T_1 - 1)^{m_1} \dots (T_n - 1)^{m_n} \in \mathcal{O}[[T_1 - 1, \dots, T_n - 1]]$$

are defined as follows:

$$\mu(F(T_1, \dots, T_n)) = \min\{ord(a_{m_1, \dots, m_n}) : m_i \ge 0 \quad \forall i\}$$

$$\lambda(F(T_1, \dots, T_n)) = \min\{m_1 + \dots + m_n : ord(a_{m_1, \dots, m_n}) = \mu(F(T_1, \dots, T_n))\}.$$

For a measure $\alpha \in \Lambda_{(n)}$, we understand $\mu(\alpha)$ and $\lambda(\alpha)$ to mean $\mu(\widehat{\alpha}(T_1, \dots, T_n))$ and $\lambda(\widehat{\alpha}(T_1, \dots, T_n))$.

In case of n=1, Childress in her paper [3] showed how the coefficients of the power series associated to a p-adic valued measure α on \mathbb{Z}_p are related to the coefficients of the measure β . She proved congruences modulo p amongst these coefficients. Finally, using these congruences and the results of [2], [4] and [7], she related the coefficients of α to the λ -invariant of the Iwasawa series of the Γ -transform of α . One can easily generalize the congruences modulo p amongst the coefficients to any p-adic valued measure α on \mathbb{Z}_p^n . In case n>1, to relate the coefficients of α to the λ -invariant of the Iwasawa series of the Γ -transform of α , one needs the results of [1]. In this paper, we relate the coefficients of $\alpha \in \Lambda_{(2)}$ to the λ -invariant of the Iwasawa series of the Γ -transform of α using the results of [1]. However, one can produce similar results for any $\alpha \in \Lambda_{(n)}$, but the number of coefficients of $\widehat{\alpha}(T_1-1,\cdots,T_n-1)$ which are involved will increase with n.

2. The series associated to β

Let $\alpha \in \Lambda_{(2)}$ and $\eta, \nu \in V$. Let us fix a primitive p^{th} root of unity ζ . The characteristic function of $\eta U \times \nu U$ is $\left[\frac{1}{p} \sum_{j_1=1}^p \zeta^{j_1(x_1-\eta)}\right] \times \left[\frac{1}{p} \sum_{j_2=1}^p \zeta^{j_2(x_2-\nu)}\right]$. Using this and Theorem 5 proved by Childress in her paper [3], we have the following result.

Theorem 2.1. Let $\alpha \in \Lambda_{(2)}$ and let $\widehat{\alpha}(T_1, T_2) = \sum \sum a_{i_1, i_2} (T_1 - 1)^{i_1} (T_2 - 1)^{i_2}$ be the associated power series. Let η and ν be fixed $(p-1)^{th}$ root of unity in \mathbb{Z}_p . Given non-negative integers k_1, k_2 , let m_1, m_2 be the integers such that $m_1 p \leq k_1 < (m_1 + 1)p$ and $m_2 p \leq k_2 < (m_2 + 1)p$. Put $k_1 = m_1 p + k_1^0$ and $k_2 = m_2 p + k_2^0$. Let $\eta_0 < p$ and $\nu_0 < p$ be the positive integers

such that $\eta \equiv \eta_0 \pmod{p}$ and $v \equiv v_0 \pmod{p}$. Then the coefficient of $(T_1 - 1)^{k_1}(T_2 - 1)^{k_2}$ in $\alpha \widehat{\eta_{U \times vU}}(T_1, T_2)$ is $e_{k_1, k_2}^{\eta, v}$, where, modulo p, we have

$$e_{k_1,k_2}^{\eta,\nu} \equiv \begin{pmatrix} \eta_0 \\ k_1^0 \end{pmatrix} \begin{pmatrix} \nu_0 \\ k_2^0 \end{pmatrix} \sum_{j_1=0}^{p-\eta_0-1} \sum_{j_2=0}^{p-\nu_0-1} \begin{pmatrix} j_1 + \eta_0 \\ j_1 \end{pmatrix} \begin{pmatrix} j_2 + \nu_0 \\ j_2 \end{pmatrix} (-1)^{j_1+j_2} a_{pm_1+\eta_0+j_1,pm_2+\nu_0+j_2}. \tag{2.1}$$

Now, we note that $\widehat{\alpha \circ (\eta, \nu)}(T_1, T_2) = \widehat{\alpha}(T_1^{\overline{\eta}}, T_2^{\overline{\nu}})$, where $\overline{\eta} = \eta^{-1}$ and $\overline{\nu} = \nu^{-1}$. Also $(\alpha \circ (\eta, \nu))|_{U^2} = (\alpha|_{\eta U \times \nu U}) \circ (\eta, \nu)$. Therefore,

$$\widehat{\beta}(T_1, T_2) = \sum_{\eta \in V} \sum_{\gamma \in V} \widehat{\alpha|_{\eta U \times \gamma U}} (T_1^{\overline{\eta}}, T_2^{\overline{\nu}}). \tag{2.2}$$

In case $\alpha \in \Lambda_{(1)}$, Childress in her paper [3] proved certain congruences modulo p amongst the coefficients of $\widehat{\alpha}(T)$ and $\widehat{\beta}(T)$. Using her approach, we shall prove Theorem (2.3) below. Let us now state a useful Lemma from [3] and one can give a proof of the Lemma by induction on k.

Lemma 2.2. For any positive integer k,

$$\left[\sum_{j=1}^{\infty} {\eta \choose j} Y^j\right]^k = \sum_{j=k}^{\infty} \rho_{\eta}(j,k) Y^j,$$

where $\rho_{\eta}(j,k)$ is defined by: $\rho_{\eta}(j,1) = {\eta \choose i}, \rho_{\eta}(j,k) = \sum_{i=1}^{j-1} {\eta \choose i} \rho_{\eta}(j-i,k-1).$

For notational convenience, we set $\rho_{\eta}(j,0) = \rho_{\eta}(0,k) = 0$ when $jk \neq 0$ and $\rho_{\eta}(0,0) = 1$.

Theorem 2.3. For $j_1 \ge 0$, $j_2 \ge 0$,

$$b_{j_{1}p,j_{2}p} \equiv \sum_{\eta \in V} \sum_{\nu \in V} \sum_{i_{1}=\eta_{0}}^{p-1} \sum_{i_{2}=\nu_{0}}^{p-1} (-1)^{i_{1}+i_{2}-\eta_{0}-\nu_{0}} \binom{i_{1}}{\eta_{0}} \binom{i_{2}}{\nu_{0}} \sum_{r_{1}=0}^{j_{1}} \sum_{r_{2}=0}^{j_{2}} a_{pr_{1}+i_{1},pr_{2}+i_{2}} \times \sum_{t_{1}=0}^{r_{1}} \sum_{t_{2}=0}^{r_{2}} (-1)^{r_{1}+t_{1}+r_{2}+t_{2}} \binom{r_{1}}{t_{1}} \binom{r_{2}}{t_{2}} \binom{\overline{\eta}(t_{1} + \frac{\eta_{0}-\eta}{p})}{j_{1}} \binom{\overline{\nu}(t_{2} + \frac{\nu_{0}-\nu}{p})}{j_{2}} \pmod{p}.$$
 (2.3)

Proof: Note that

$$\widehat{\beta}(T_{1}, T_{2}) = \sum_{\eta \in V} \sum_{v \in V} \widehat{\alpha} |\widehat{\eta_{U \times vU}}(T_{1}^{\overline{\eta}}, T_{2}^{\overline{v}})$$

$$= \sum_{\eta \in V} \sum_{v \in V} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} e_{k_{1}, k_{2}}^{\eta, v} (T_{1}^{\overline{\eta}} - 1)^{k_{1}} (T_{2}^{\overline{v}} - 1)^{k_{2}}$$

$$= \sum_{\eta \in V} \sum_{v \in V} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} e_{k_{1}, k_{2}}^{\eta, v} \left[\sum_{j_{1}}^{\infty} \left(\overline{\eta} \right) (T_{1} - 1)^{j_{1}} \right]^{k_{1}} \left[\sum_{j_{2}}^{\infty} \left(\overline{v} \right) (T_{2} - 1)^{j_{2}} \right]^{k_{2}}$$

$$= \sum_{\eta \in V} \sum_{v \in V} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} e_{k_{1}, k_{2}}^{\eta, v} \sum_{j_{1}=k_{1}}^{\infty} \sum_{j_{2}=k_{2}}^{\infty} \rho_{\overline{\eta}}(j_{1}, k_{1}) \rho_{\overline{v}}(j_{2}, k_{2}) (T_{1} - 1)^{j_{1}} (T_{2} - 1)^{j_{2}}$$

$$= \sum_{\eta \in V} \sum_{v \in V} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} e_{k_{1}, k_{2}}^{\eta, v} \sum_{j_{2}=k_{2}}^{\infty} \sum_{j_{2}=k_{2}}^{\infty} \rho_{\overline{\eta}}(j_{1}, k_{1}) \rho_{\overline{v}}(j_{2}, k_{2}) (T_{1} - 1)^{j_{1}} (T_{2} - 1)^{j_{2}}$$

$$(2.4)$$

To obtain (2.4), we applied Lemma (2.2). From (2.4), we finally obtain

$$\widehat{\beta}(T_1, T_2) = \sum_{j_1=0}^{\infty} \sum_{j_2=0}^{\infty} (T_1 - 1)^{j_1} (T_2 - 1)^{j_2} \left[\sum_{k_1=0}^{j_1} \sum_{k_2=0}^{j_2} \sum_{\eta \in V} \sum_{\nu \in V} e_{k_1, k_2}^{\eta, \nu} \rho_{\overline{\eta}}(j_1, k_1) \rho_{\overline{\nu}}(j_2, k_2) \right]. \tag{2.5}$$

Modulo p, we have

$$b_{0,0} \equiv \sum_{\eta \in V} \sum_{\nu \in V} e_{0,0}^{\eta,\nu}$$

$$\equiv \sum_{\eta_0=1}^{p-1} \sum_{\nu_0=1}^{p-1} \sum_{j_1=0}^{p-1-\eta_0} \sum_{j_2=0}^{p-1-\nu_0} {j_1 + \eta_0 \choose j_1} {j_2 + \nu_0 \choose j_2} (-1)^{j_1+j_2} a_{\eta_0+j_1,\nu_0+j_2}$$

$$\equiv \sum_{j_1=0}^{p-2} \sum_{j_2=0}^{p-2} (-1)^{j_1+j_2} \sum_{\eta_0=1}^{p-1-j_1} \sum_{\nu_0=1}^{p-1-j_2} {j_1 + \eta_0 \choose j_1} {j_2 + \nu_0 \choose j_2} a_{\eta_0+j_1,\nu_0+j_2}$$

$$\equiv \sum_{k_1=1}^{p-1} \sum_{k_2=1}^{p-1} a_{k_1,k_2} \sum_{i_1=0}^{k_1-1} \sum_{i_2=0}^{k_2-1} {k_1 \choose i_1} {k_2 \choose i_2} (-1)^{i_1+i_2}$$

$$\equiv \sum_{k_1=1}^{p-1} \sum_{k_2=1}^{p-1} (-1)^{k_1+k_2} a_{k_1,k_2}.$$
(2.6)

Similarly, if j_1 or $j_2 \ge 1$, then following the approach of Childress [3], modulo p we have

$$b_{pj_{1},pj_{2}} \equiv \sum_{\eta \in V} \sum_{v \in V} \sum_{i_{1}=\eta_{0}}^{p-1} \sum_{i_{2}=v_{0}}^{p-1} \binom{i_{1}}{\eta_{0}} \binom{i_{2}}{v_{0}} (-1)^{i_{1}+i_{2}-\eta_{0}-v_{0}} \sum_{r_{1}=0}^{j_{1}} \sum_{r_{2}=0}^{j_{2}} a_{pr_{1}+i_{1},pr_{2}+i_{2}} \times \sum_{k_{1}=0}^{\eta_{0}} \sum_{k_{2}=0}^{v_{0}} \binom{\eta_{0}}{k_{1}} \binom{v_{0}}{k_{2}} \rho_{\overline{\eta}}(pj_{1},pr_{1}+k_{1}) \rho_{\overline{v}}(pj_{2},pr_{2}+k_{2}).$$

$$(2.7)$$

From the definition of ρ ,

 $\sum_{k_1=0}^{\eta_0} \binom{\eta_0}{k_1} \rho_{\overline{\eta}}(pj_1, pr_1 + k_1) \text{ is the coefficient of } Y_1^{j_1p} \text{ in } \sum_{k_1=0}^{\eta_0} \binom{\eta_0}{k_1} \left[\sum_{t_1}^{\infty} \binom{\overline{\eta}}{t_1} Y_1^{t_1}\right]^{r_1p+k_1} \text{ and hence it is the coefficient of } Y_1^{j_1p} \text{ in } (1+Y_1)^{\overline{\eta}\eta_0} \left((1+Y_1)^{\overline{\eta}}-1\right)^{r_1p}. \text{ Let } x_1 = \frac{\overline{\eta}(\eta_0-\eta)}{p} \text{ and clearly } x_1 \in \mathbb{Z}_p.$ Now, we have

$$\sum_{k_{1}=0}^{\eta_{0}} \binom{\eta_{0}}{k_{1}} \rho_{\overline{\eta}}(pj_{1}, pr_{1} + k_{1})$$

$$= \text{coefficient of } Y_{1}^{pj_{1}} \text{ in } (1 + Y_{1})^{p_{1}x_{1}+1} \left((1 + Y_{1})^{\overline{\eta}} - 1 \right)^{r_{1}p}$$

$$\equiv \text{coefficient of } Y_{1}^{pj_{1}} \text{ in } (1 + Y_{1})(1 + Y_{1}^{p})^{x_{1}} \left((1 + Y_{1})^{\overline{\eta}} - 1 \right)^{r_{1}}$$

$$\equiv \text{coefficient of } Y_{1}^{j_{1}} \text{ in } (1 + Y_{1})^{x_{1}} \left((1 + Y_{1})^{\overline{\eta}} - 1 \right)^{r_{1}}$$

$$\equiv \sum_{t=0}^{r_{1}} (-1)^{r_{1}+t_{1}} \binom{r_{1}}{t_{1}} \binom{x_{1}+\overline{\eta}t_{1}}{j_{1}} \pmod{p}. \tag{2.8}$$

 λ From (2.6)-(2.8), we complete the proof of the theorem.

3. An application to λ -invariants

In this section we give criteria for the value of the λ -invariant of the power series $\widehat{\beta}(T_1, T_2)$ in terms of the coefficients of $\widehat{\alpha}(T_1, T_2)$. If $\alpha \in \Lambda_{(1)}$, then the λ -invariant of $\widehat{\beta}(T)$ is p times the λ -invariant of the Iwasawa series of G as in [2], [4], [6], [7]. In [1], we proved the following theorem.

Theorem 3.1. Suppose $\lambda(G(T_1, \dots, T_n)) \leq 2p$, then $\lambda(\beta) = p\lambda(G(T_1, \dots, T_n))$.

Suppose that

$$G(T_1, \dots, T_n) = \sum_{m_1=0}^{\infty} \dots \sum_{m_n=0}^{\infty} g_{m_1, \dots, m_n} (T_1 - 1)^{m_1} \dots (T_n - 1)^{m_n}.$$
 (3.1)

If $\lambda(G(T_1, \dots, T_n)) = k$, then for a partition $k_1 + \dots + k_n$ of k, g_{k_1, \dots, k_n} is a unit in O. In the proof of the Theorem (3.1), we showed that b_{pk_1, \dots, pk_n} is also a unit in O. Using this and Theorem (2.3), we will give criteria for the λ -invariant of the power series $\widehat{\beta}(T_1, T_2)$ in terms of the coefficients of $\widehat{\alpha}(T_1, T_2)$.

Example 3.2. Let p = 3 and $\alpha \in \Lambda_{(2)}$ be such that $\mu(G(T_1, T_2)) = 0$. Then we have:

- (1) $\lambda(G) = 0$ if and only if $a_{1,1} + a_{2,2} \not\equiv a_{1,2} + a_{2,1} \pmod{\pi}$.
- (2) If $\lambda(G) > 0$, then $\lambda(G) = 1$ if and only if either $a_{2,1} + a_{4,1} \not\equiv a_{2,2} + a_{4,2} \pmod{\pi}$ or $a_{1,2} + a_{1,4} \not\equiv a_{2,2} + a_{2,4} \pmod{\pi}$.
- (3) If $\lambda(G) > 1$, then $\lambda(G) = 2$ if and only if any one of the following is true:
 - (a) $a_{2,2} + a_{4,4} \not\equiv a_{2,4} + a_{4,2} \pmod{\pi}$
 - (b) $a_{2,2} + a_{5,1} + a_{7,2} + a_{8,1} \not\equiv a_{2,1} + a_{5,2} + a_{7,1} + a_{8,2} \pmod{\pi}$
 - (c) $a_{2,2} + a_{1,5} + a_{2,7} + a_{1,8} \not\equiv a_{1,2} + a_{2,5} + a_{1,7} + a_{2,8} \pmod{\pi}$.
- (4) If $\lambda(G) > 2$, then $\lambda(G) = 3$ if and only if any one of the following is true:
 - (a) $a_{5,1} + a_{10,1} \not\equiv a_{5,2} + a_{10,2} \pmod{\pi}$
 - (b) $a_{1,5} + a_{1,10} \not\equiv a_{2,5} + a_{2,10} \pmod{\pi}$
 - (c) $a_{2,2} + a_{4,5} + a_{4,8} \not\equiv a_{4,2} + a_{2,7} + a_{4,7} + a_{2,8} \pmod{\pi}$
 - (d) $a_{2,2} + a_{5,4} + a_{8,4} \not\equiv a_{2,4} + a_{7,2} + a_{7,4} + a_{8,2} \pmod{\pi}$.

In this way, in case p = 3, we can find criteria for the λ invariant of $G(T_1, T_2)$ in terms of the coefficients of $\widehat{\alpha}(T_1, T_2)$ if $\lambda(G) \leq 6$.

We may produce similar results for any prime p. The number of coefficients of $\widehat{\alpha}(T_1, T_2)$ which are involved will increase with p.

Example 3.3. Let p = 3 and consider the measure $\alpha \in \Lambda_{(2)}$ given by the power series $\sum_{k=1}^{\infty} T_1^{4k} T_2$. Using (1.4) and (1.5), we find that $G(T_1, T_2) = T_1 + \sum_{k=1}^{\infty} T_2^{2k}$. Clearly $\lambda(G) = 1$ and this can also be verified using (1) and (2) of Example (3.2).

4. Acknowledgement

References

- [1] R. Barman and A. Saikia, *Iwasawa* λ -invariants and Γ -transforms of p-adic measures on \mathbb{Z}_p^n , submitted for publication.
- [2] N. Childress, λ -invariants and Γ -transforms, Manuscripta math. 64, 359-375 (1989).

- [3] N. Childress, *The coefficients of a p-adic measure and its* Γ -transform, Manuscripta math. 116, 249-263 (2005).
- [4] Y. Kida, The λ -invraints of p-adic measures on \mathbb{Z}_p and $1 + q\mathbb{Z}_p$, Sci. Rep. Kanazawa Univ. 30, 33-38 (1986).
- [5] S. Lang, Cyclotomic Fields I and II, Graduate Text in Mathematics, Vol. 121, Springer-Verlag, (1990).
- [6] A. Saikia and R. Barman, *Iwasawa λ-invariants and* Γ -*Transforms*, J. Ramanujan Math. Soc. 24, No. 2, 199-209 (2009).
- [7] J. Satoh, *Iwasawa λ-invariants of* Γ-*Transforms*, Journal of Number Theory, 41, 98-101 (1992).
- [8] L. C. Wasington, *Introduction to Cyclotomic Fields*, Graduate Text in Mathematics, Vol. 83, Springer-Verlag, (1997).