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p-ADIC MEASURES ON Z}
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Abstract. In this paper we determine a relation between the A-invariants of a p-adic measure on Zjy
and its I-transform. Along the way we also determine p-adic properties of certain Mahler coefficients.
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1. Introduction

Fix an odd prime p. Let O be the ring of integers in a finite extension of QQ, with a
local parameter 7. We write Z =V x U where V' is the group of (p — 1)st roots of
unity in Z, and U = 1 + pZ,. Let u be a topological generator of U. The projections
from Z onto V' and U are denoted by w and <> respectively. We have an isomorphism
¢ : Z, — U given by ¢(y) = uv.

Let A,y denote the O-valued measures on Zj. It is well-known, (see e.g. [1]), that
Ay is a ring under convolution, and is isomorphic to the formal power series ring
O[T — 1]]. Explicitly, for x € Z,,, let

m=3" (i) (T —1)" € O[T —1]).

n=0

The power series associated to a measure a € Ay is then defined by

&(T) = /Z Tda(z) =Y bu(e)(T —1)"

P

o= [ (o

A classical theorem of Mahler states that any continuous function f : Z, — Q, may
be written uniquely in the form

Fa) =S anlh) (n)

n=0

where
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where a,(f) € Qp, a,(f) — 0 as n +— oco. In fact

nlh) = 20 (M) 1) (1.1)

J=0 J

This theorem may be generalized to continuous functions f : Z, — K, where K is
any finite extension of QQ,. Using this generalization, we obtain the following

/Zp fz)da(z) = g;an(f) /z,, (2) do(z) = ;an(f)bn(a).

Note that if O is the ring of integers of K and f : Z, — O, then a,(f) € O.

The natural generalizations of the above results to larger values of n are true. O-
valued measures on Zj correspond to power series in O[[Ty — 1,---,T,, — 1]]. This
correspondence is given by

d(T17"' 7Tn) :/ Tfl-"Tyf"da(wh"' ,l“n)
Z

(:111) (ZZ)da(m"“ ,fEn))

Yy (/Z
< (Ty = 1)™ - (T, — 1) (1.2)

n
m1=0 mnp=0 P

Furthermore, if f : Z; — O is continuous, we may write (by repeated application of
the generalization of Mahler theorem)

Fan, - 1) = i f_: e (f) (:ll) (:;“;)7 (1.3)

where
mi Mn » o m mn ' )
e ()= 3+ (e (et (M) () ) (1)
j1=0 jn=0 J1 JIn
— 0 in O.
The constants @, ... m, (f) are called the Mahler coefficients of the function f.

Let a be a measure on Zy. For (ai,--- ,a,) € (Z);)", denote by a o (ai,--- ,a,) the
measure on Z; given by

ao(ap, - ,a,)(A X -+ X A,) = ala1 Ay, - -+ a,Ay),

where A; are compact open subsets of Z,,. Also, if A = (Ay,---, A,) C Z7, where all 4;
are compact open subsets of Z,, we let a|4 denote the measure obtained by restricting
a to A and extending by 0.

The I'-transform of a measure a € A, is defined as a function of the p-adic variables
81, , Sy given by

Coalst, -+, 8n) —/ <xy > < x> da(Ty, -, Ty).
(Z5 )"
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If we put da(ajxy,--- ,ayx,) for dla o (a,- - ,a,))(z1, - ,2,), splitting up the
integral, we can also write

Lo(s1, 0, 80) = Z Z /U <mxy > <y > da(may, e M)

:/ xilxznd/8<x1’ ’xn)’
n

where

6: Z Z(O‘O(Ula"' 77771))|U"7

a measure on U".
Now the measure 3 may be viewed as a measure on Z; via the isomorphism ¢:

Let us write dg(u¥, - - -, u¥) for dB(yl, <+ yn). Let G(T1,- -+ ,T,) be the power series
associated to (3, that is,

G(Ty, -, T,) = / TV . TV dB(ub, - - ubn).
Zy
Then Iy (81, ,8n) = G(u, -+ ju™).
For a more thorough treatment of p-adic measure theory, see [3] and [7].

2. Iwasawa A-invariants and ['- transforms

The Iwasawa p and A- invariants of a power series

F(T) = N an(T — 1)" € O[T — 1]]

are defined by 7
u(F(T)) = min{ord(a,) : n > 0}
AMF(T)) = min{n : ord(a,) = w(F(T))}.

Analogously, we define the Iwasawa p and A- invariants of a power series

F(Ty,---,T,) = Z Z Gy (T —=1)™ < (T, —=1)™ € O[Ty =1, -+, T, —1]]
mi1=0 my=0

as follows:
w(F(Ty,---,T,)) = min{ord(am, ... m,) :m; >0 Vi}
MNF(Ty, -+, T,)) =min{my + - +my, : ord(am, ... m,) = p(F(Th,---,Tn))}-

For a measure o € Ay, we understand j(o) and A(o) to mean p(a(74,---,7T,)) and
MNa(Ty, -+, Ty)).
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Let a € Agp). That is, a is a O-valued measure on Z;. Let u be a fixed topo-
logical generator of U = 1 + pZ,, and let G(1T1,---,T,) satisty G(u*,--- ,u*) =
Lo(s1,- -, Sn), so that

G(Th... 7Tn) :/ lel...Tn?{ndﬁ(uyl’... ,uy”),
Zyp

where B =Y -+ > (o (i, 7))l (2.1)

"71€V 77n€V

Note that (3 is a measure on U". We extend (3 to Z; by 0 and then we get a power
series

B(Ty,--- T, Z D b (Ty = )™ (T, = 1) (2.2)
m1=0 my,=0

Suppose that

G(Ty,--- T, Z Z Gy (T — D)™ oo (T — 1)™, (2.3)
m1=0 myp=0

In case of n = 1, Sinnott in his paper [6] proved that u(G(T')) = p(a* + a* o (—1)),
if &(T') is a rational function of 7. Here a* = al,x. It was Kida who first obtained a
relation between the A-invariant of a measure on Z, and its Gamma-Transform with
a fixed topological generator [2]. Later, in case of n = 1, Childress in her paper [1]
proved that u(G(T)) = u(B) and A(3) = pA(G(T)) if A(G(T")) < p. Satoh obtained the
same result without any condition on A(G(T)), but his approach was based on certain
properties of Stirling numbers [5]. In our paper [4], exploiting certain combinatorial
identities we proved that A\(G) = pA(G(T)) if A(G(T)) < 2p. In this paper we prove
the following main result which gives a relation between A\(G(171,--- ,T},)) and A(5) for
any m.

Theorem 2.1. Suppose A\(G(T4,--- ,T,)) < 2p, then \(3) = pA\(G(T1,--- ,T,)).

We will prove this theorem following the approach of Saikia & Barman [4] and
Childress [1]. We really do not know whether the method of Satoh based on certain
properties of Stirling numbers can be generalized to prove Theorem (2.1). We now
state two Lemmas which are easy generalization of Lemma 1 and Lemma 2 proved by
Childress in [1]. As before, suppose

B(Tla e >Tn) = Z tee Z bm1,---,mn(T1 — 1)m1 v (Tn — 1)m"
m1=0 mp=0

and

o0 [ee]
G T =3 3 Gupn (i = D)™ o (T = 1™
m1=0

mya=0

Let us define

an(x) = (ux) and fmlf--,mn(xl? T 7xn) = fm1(x1> T fmn<xn)
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Lemma 2.2. Let a be a measure on Z,. Then p(G(T1,---,T,)) = u(B).

Lemma 2.3. Modulo p"*++k we have

k1 kn
mal- My, o, = Ml omy! E e E Gjvr in @iy ove jn (Frmn e )

A=0  jn=0
where aj, ... ;. (fmy, - .mn) are the Mahler coefficients of fuy . m, (X1, -+, Zp).

Note that when ord,(my!---m,!) < ki +--- + k,, then

k1 kn
= Z N Z gjl’_,.’jnajl7...7jn(fml7...7mn) (mod pn) (24)

Jj1=0 Jn=0

Also, if an,(fy) are the Mahler coefficients of fi,(z) = (%) = Y0_; am(fi) (), then

a]l,“wjn(fml,“wmn) = aj, (fﬂn) T ajn(fmn)' (25)

In order to prove the Theorem (2.1), we need to investigate p-adic properties of the
Mabhler coefficients a;, ... j, (fm,, - m,). In the next section we shall study these coeffi-
cients.

3. p-adic properties of Mahler coefficients a;, ... j, (fm, . .m.)

Let us fix a topological generator u = 1+ t1p + top® + - -+ of 1+ pZ,. Hence t; is a
unit. We shall now prove two important binomial expansions in the following lemma.

Lemma 3.1. Forn > 1, we have
(1+T)"" = (1+T)1+T7)" (1+77)"F
(1+T)""" =1+ T)(1+TP)" (14 TP )+

2ty + higher order terms (mod p). (3.1)

n(n—1)
7o int g higher order terms (mod p).

(3.2)

Proof: For any k > 1, we have
(1+T) =1 +T") (mod p).
This implies that
1+T) =1+ T>1+t1p+tzp2+--~
= (1+T)(1+T?)"(1+T7)" + higher order terms (mod p).

Hence the statement (3.1) is true for n = 1. Suppose that it is true for a given n. Then

(1+17)"

n+1

(
=(1+ T) (I+t1p+top®+-)
)

= (1+T7)""(1+T°)"" (14 T7)=2*" + higher order terms (mod p).
n(n—1)

= (1+T)(1+TP)™ (14 TP) "z tHniz(] 4 TP) (1 4 TP )™ (1 4 TP

+ higher order terms (mod p).
= (14 T)(1 + TP)+Dh (1 4 7#°) g ()t
+ higher order terms (mod p). (3.3)
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Hence the result is true for n 4+ 1. Using the principle of mathematical induction, the
statement (3.1) is true for any n > 1. Again,

wP =14+ tp* 4. (3.4)
Using (3.1) and (3.4), we find that
1+T7)""" = (14 T)w"Orar’+)
= (14+7)"" (1+T")""" + higher order terms (mod p).

n(n—1)

=1+ 1)1+ TP)" (14 T7°) 7 ftnt2(] 4 790
+ higher order terms (mod p).
= (L4 T)(1+TP)" (1 4 TP )t thnee
+ higher order terms (mod p). (3.5)

This completes the proof of the lemma. O
Using the binomial expansions (3.1) and (3.2), we proved the following results about
the Mahler coefficients a,,(f,) for different m and n in our paper [4].

Result 3.2. Suppose that 1 <k < p and p* + (k — 1)p <m < p* + kp. Then
apik(fm) = 0 (mod p).
Result 3.3. Suppose that 1 < k < p. Then
iy ip) = 51 (m0d p) and appeis (fzay) = 0 (mod p).
Result 3.4. Suppose that 2p* — p < m < 2p*. Then asy(f,n) = 0 (mod p). Also,
azy(fop2) = £ (mod p), agpi1(fope) = 0 (mod p), and agyys(fye) = 0 (mod p).
Let us now state the following result which was proved in [1].
Result 3.5. Suppose that 1 < k < p, then ax(fpr) = t1* (mod p). Also,
ap(fp2) =t (mod p) and a,41(fp2) =0 (mod p).

Using the above results and (2.5), one can derive p-adic properties of the Mahler
coefficients aj, ... ;. (fmy,.mn). We now prove certain p-adic properties of the Mahler
coefficients in the following lemmas.

Lemma 3.6. Suppose that 1 < k < p and p*+(k—1)p < m < p*+kp. Let mi+---+m,,
be a partition of m such that ky + - -+ k, = p+ k, where k; = ord,(m;!),i =1,--- ,n.
Then we have

ks, o (frns o) = 0 (mod p).
Proof: Clearly, k; = ord,(m;!) # p for all i, because ord,((p> — p)!) = p — 1 and
ord,(p*!) = p+ 1. Hence we have the following two cases only.

Case 1: Suppose that k; > p for some i. Then k; = p+1;,0 < [; < k and hence
p?+ (I; — 1)p < m; < p? + I;p. By Result (3.2), we get

ag, (fm;) = 0 (mod p). (3.6)
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Case 2: Suppose that k; < p for some i. Then pk; < m; < p(k; + 1). We know that

o) =S () (1) 7)

=0
But, (;jj) is the coefficient of 7" in the expansion of (14 T)*. From (3.1), we find

that (fnj) is congruent to zero modulo p if m; # pk;, pk; + 1. This implies that
ag, (fm,) = 0 (mod p) if m; # pk;, pk; + 1. (3.8)

Thus, for any partition my + - - - + m,, of m, where k; = ord,(m;!) are as given in the
lemma, (3.6) and (3.8) imply that ak, ... g, (finy. m,) = 0 (mod p) unless m; = pk; or
m; = pk; + 1. With out loss of generality, suppose that m; = pk; for i =1,--- [ and
m; =pk;+1fori=14+1,---,n. Thenm =m;+---+m, =plp+k)+ (n—10),
which is a contradiction to the fact that m < p? + kp. This completes the proof of the
lemma. U

Lemma 3.7. Suppose that 2p> —p < m < 2p*. Let my + - -+ + m,, be a partition of m
such that ky + - - - + k,, = 2p, where k; = ord,(m;!),i = 1,--- ,n. Then we have

ak17"',kn(fm1,-~~7mn) = O (mOd p)

Proof: Suppose that k; = 2p for some i. Then 2p? — p < m; < 2p? and hence from
the Result (3.4), we get

ag, (fm,) = 0 (mod p) (3.9)

This implies that ag, ... g, (fimy..m,) = 0 (mod p). The other two cases are p < k; < 2p
and k; < p as k; # p. As shown in the proof of the Lemma (3.6), ak, ... g, (frnr, o mn) =
0 (mod p) unless m; = pk; or m; = pk; + 1. With out loss of generality, suppose
that m; = pk; for ¢ = 1,--- I and m; = pk; + 1 for i =1+ 1,--- ,n. Then m =
my + - +m, = 2p? + (n — 1), which is a contradiction to the fact that m < 2p®. This
completes the proof of the lemma. O

4. Proof of Main Result

We may assume that u(G(71,---,7,)) = 0, because u(G(11,---,T,)) = p(B) by
Lemma (2.2), and for any power series F(T4,---,T,) € O[T\ — 1,---,T,, — 1]], if
7|F(Ty, -, Ty) then A(x F(T, -, Tp)) = MF(Th, -, T)).

Case 1: Suppose that AN(G(T1,---,T,)) = k < p. Then there exists a partition
ki + -+ + k, of k such that g, .. x, is a unit in O and for every m; > 0 satisfying
my+--+my <k, Gmyom, = 0 (mod 7). If r < pk, then for any partition ry +---+r,
of r, we find that ord,(ry!---7,!) = ord,(ri!) +- - - +ord,(r,!) < k—1. If [; = ord,(r;!),
then from (2.4) we get

ll ln
brseira = D Y Giro i e (frae ) = 0 (mod ). (4.1)

Jj1=0 Jn=0
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Now consider the partition k; + - - -+ k,, of k. Then pk; + - - - + pk, is a partition of pk
such that ord,(pk;) = k;. From (2.4), (2.5) and Result (3.5), we get

k1 kn
bpku",’pkn = Z s Z gjlf"7jna’j17"'7jn(fpk17"'7pk'n)
=0 jn=0
= i, o Wy o o (Sl )
= Gy i, B (mod ), (4.2)

which is a unit in O. This proves that A\(3) = pk1+- - -+pk, = pk = pA(G(T1,--- ,T},)).

Case 2: Suppose that A(G(11,- -+ ,T,,)) = p. Then there exists a partition k1 +- - -+ky,
of p such that gy, ... x, is a unit in O and for every m; > 0 satisfying m; +---+m, < p,
Gmy,em, = 0 (mod 7). Let m < p?. Then for every partition m; + --- + m,, of m, we
get Iy + -+ 1, < p—1, where [; = ord,(m;!). As shown in the previous case, this
implies that by, ... m, = 0 (mod 7). Let us now consider the partition pky + - - - + pk,, of
p?. If k; = p for some i, then k; = 0 for all j # i. Hence, from (2.4) and Result (3.5),
we get

b07... 0,02,0,-,0 = 90, ,0,p,0,- ,Oap(.fpz) + 4o, ,0,p+1,0,- ,00p+1 (fpz)

= 4go,-,0,p,0, 70751 (mod 7'(')7 (43)
which is a unit in O. If all k; < p, then using (4.2), we obtain
Opkey o phen = Ghy o k1) (mod 7)), (4.4)

which is a unit in O. This proves that A\(3) = pky+- - -+pk, = p* = p\(G(Ty,--- , T;,)).

Case 3: Suppose that p < N(G(T1,---,T3)) < 2p. Let N(G(Th,---,T,)) =p+k,
where 1 < k < p. Then there exists a partition k; +- - -4k, of p+k such that gy, ... 1, is
a unit in O and for every m; > 0 satisfying my+- - -+m,, < p+k, ¢y, m, = 0 (mod 7).
Let m < p?*+(k—1)p. Then ord,(m!) < p+k and hence for any partition m;+- - -+m,, of
m, we have ly+- - -+, < p+k, where [; = ord,(m;!). Asshown in the case 1, this implies
that by, ... m, = 0 (mod 7). If p> + (k — 1)p < m < p* + kp, then ord,(m!) = p + k.
Therefore, for every partition m; + --- +m, of m, we get Iy +---+1, < p+k,
where [; = ord,(m;!). If [ +--- 4+ 1, < p+ k, then we have already proved that
by o m, =0 (mod 7). Again if [y +---+ 1, = p+ k, then

bing e = Gy 1 @y ooty (frng oo im,) (mod 7). (4.5)

Using Lemma (3.6), we find that by, ... s, = 0 (mod 7). Let us now consider the par-
tition ky + - -+ + k, of p+ k. Then pk; + --- + pk,, is a partition of p* + pk. If k; < p,
then ord,(pk;!) = k;. Also, k; = p implies ord,((pk;)!) =p+1=k; + 1. If k; > p, then
ki = p+1;, where 1 <[; < k and hence ord,(pk;) = ord,((p*+pli)!) = p+1li+1 = k;+1.
From Result (3.3) and Result (3.5), we have

apt+1(fp2) =0 (mod p) and apiy4+1(fp241p) = 0 (mod p).

Again, if k; < p, then from Result (3.5), we get ax, (fpr,) = t1" (mod p). Also, a,(f,2) =
t1 (mod p) and if 1 < I; < p, then apyy,(fr241,,) = 57" (mod p). This implies that, if
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h; = ord,(pk;!) for i = 1,--- ,n, then

h1 hn,
bpky - phn = Z e Z it i G gn (Spker o )

Jj1=0 Jn=0
= Gk o Ot oo o (s e ph ) (mOd 7)), (4.6)

which is a unit in O. This proves that \(3) = pky + -+ + pk, = p* + pk =
pA(G(Tlv U 7Tn))‘

Case 4: Suppose that A\(G(T3,--- ,T,)) = 2p. Then there exists a partition k; +- - -+
k,, of 2p such that g, ... x, is a unit in O and for every m; > 0 satistying m; +---+m,, <
2p, Gy, m, = 0 (mod 7). Let m < 2p* — p. Then for every partition m; + -+ + m,
of m we have [; + --- 4+ 1, < 2p, where [; = ord,(m;!). As shown in the case 1, this
implies that by,, ..., = 0(mod 7). If 2p*> — p < m < 2p? then for every partition
my+---+my, of m we have l; +---+1, < 2p. If [y +---+1, < 2p, then we have already
observed that by, ... m, = 0 (mod 7). Also, if [; +---+1, = 2p, then from Lemma (3.7)
we get by, ....m, = 0 (mod 7). Let us now consider the partition ky + --- + k, of 2p.
Then pky + - - - +pk, is a partition of 2p?. If k; = 2p for some i, then ord,(pk;) = 2p+2.
But from Result (3.4), we get

azp+1(f2p2) = 0 (mod p) and aspya(fop2) = 0 (mod p).

Using this and considering the other possible values of k; as shown in the previous case,
we obtain

h1 hn
bpky - phn = Z e Z it i O gn (Spker o phn)

leO ]nZO
= Gkr o on W, o (Sphr o ph) (O ), (4.7)
where h; = ord,(pk;!). Again, from Result (3.4) we get

a2p(f2p2) = t% (mOd p)‘
Considering the other possibilities as shown in the previous case, (4.7) implies that
Dpky - ph, @ unit in O. This proves that A(8) = pky+- - +pky, = 2p* = pN(G(T1, -+, Ty)).
This completes the proof of the main theorem. O
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