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Abstract. Suppose K is an imaginary quadratic field and E is an elliptic curve over a number

field F with complex multiplication by the ring of integers in K. Let p be a rational prime

that splits as p1p2 in K. Let Epn denote the pn-division points on E. Assume that F (Epn)

is abelian over K for all n ≥ 0. This paper proves that the Pontrjagin dual of the p∞1 -Selmer

group of E over F (Ep∞) is a finitely generated free Λ-module, where Λ is the Iwasawa algebra

of Gal
(
F (Ep∞)/F (Ep∞1 p2)

)
. It also gives a simple formula for the rank of the Pontrjagin dual as

a Λ-module.
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1. Introduction

Let K be an imaginary quadratic field. Suppose E is an elliptic curve over a number

field F with complex multiplication by the ring of integers O in K. Let p 6= 2, 3 denote

a rational prime such that pO = p1p2 and assume that E has good reduction over both

p1 and p2. Pick any element π of O such that πO = ph1 for some h ≥ 1. Clearly, there is

also an element π̄ in O such that π̄O = ph2 . Let L be an algebraic extension of F . For

n ≥ 0, the πn-Selmer group of E over L is defined as

Selπn(E/L) = Ker
(
H1(L,Eπn) −→

∏
v

H1(Lv, E)πn
)
,

where v runs over all the places of L. The p∞1 -Selmer group of E/L is defined as

Selp∞1 (E/L) = lim−→
n

Selπn(E/L),
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where the limit is with respect to the homomorphisms induced by the natural inclusion

of Eπn into Eπn+1 . The p∞1 -Selmer group fits into an exact sequence

0 −→ E(L)⊗Kp1/Op1 −→ Selp∞1 (E/L) −→ III(E/L)p∞1
−→ 0, (1)

where E(L) is the Mordell-Weil group of rational points on E defined over L and

III(E/L) is the Tate-Shafarevich group of E/L defined by

III(E/L) = Ker
(
H1(L,E) −→

∏
v

H1(Lv, E)
)
.

One of the basic questions in number theory is to understand the Mordell-Weil group

and the Tate-Shafarevich group of E over various field extensions of Q. Thus, the im-

portance of the study of Selmer groups arise from the exact sequence (1) above.

There are some natural choices for the field extension L of F , over which we want to

examine the structure of Selp∞1 (E/L). We usually take L to be a field generated over F

by the torsion points on E. In particular, we will consider

F∞ = F (Ep∞),

and study Selp∞1 (E/F∞), or rather its Pontrjagin dual X(F∞). By definition,

X(F∞) = Hom
(
Selp∞1 (E/F∞),Qp/Zp

)
.

It is compact and has the natural structure of Gal(F∞/F )-module. This will be the

primary object of our study in this paper.

2. Notation

We define the following field extensions of the number field F generated by torsion

points on E:

L0 = F (Ep), F0 = L0(Ep∞1
), L∞ = L0(Ep∞2

), F∞ = F (Ep∞).

Let Γ′ be the Galois group of F∞ over L0, and Σ be the Galois group F0 over L0. Let

Γ be the Galois group F∞ over F0, which can also be identified with the Galois group

L∞ over L0. Clearly, Γ′ is isomorphic to Z2
p, whereas Γ and Σ are isomorphic to Zp. We

denote the unique subgroup of index pn in Γ by Γn. Let Ln and Fn be the fixed fields
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of L∞ and F∞ respectively under the action of Γn. Then, we have the following Galois

groups:

Gal(L∞/Ln) ' Gal(F∞/Fn) = Γn, Gal(Ln/L0) ' Gal(Fn/F0) = Γ/Γn ' Zp/pnZp.

We have the following field diagram:

L0(Ep∞2
) = L∞

Ln

F (Ep) = L0

F∞ = F (Ep∞)

Fn = Ln(Ep∞1
)

F0 = L0(Ep∞1
)

���
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�

���
���

���
��

���
���

��

Γ/Γn ' Zp/pnZp

Γ, Λ = Zp[[Γ]]

' Zp[[T ]]

Γn

Σ, Ω = Zp[[Σ]] ' Zp[[S]]

The Iwasawa algebra of Γ is defined as

Zp[[Γ]] = lim←
n

Zp[Γ/Γn],

where the inverse limit is taken with respect to canonical surjective maps. We denote

the Iwasawa algebra of Γ by Λ, and that of Σ by Ω. Following Serre, we can identify Λ

with Zp[[T ]] and Ω with Zp[[S]]. We note that Zp[[Γ′]] is isomorphic to Zp[[T, S]]. We

will denote the Pontrjagin dual of Selp∞1 (E/Fn) by X(Fn).

3. Statement of results

Our goal is to study the structure of X(F∞) as a module over the Iwasawa algebra

Λ ' Zp[[T ]]. We shall work under the following hypothesis :

(Hyp) The fields F (Epn) are abelian over K for all n ≥ 0.

Note that when F = K, the hypothesis is true by theory of complex multiplication. It is

well known (e.g. see [P-R 1]) that X(F∞) is a finitely generated torsion module over the
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Iwasawa algebra Zp[[S, T ]], whereas X(Fn) is a finitely generated torsion Zp[[S]]-module

under the above hypothesis. Let λ0 be the rank of X(F0) as a Zp-module. In this paper,

we shall prove the following two theorems about the Λ-module structure of X(F∞):

Theorem 1 : X(F∞) is a finitely generated Λ-module.

Theorem 2 : X(F∞) is a free Λ-module of rank λ0 + r − 1.

Here r is the number of primes of F0 above p2. Since the primes over p2 do not split in

the tower F∞ over F0, r is also the number of primes above p2 of Fn for any n ≥ 0.

4. The structure of X(Fn)

The key idea in the proof of the theorems 1 and 2 is to examine the relation between

X(F∞) and X(Fn), and then exploit well-known facts about X(Fn). Theorem 18 and

proposition 20 in [P-R 1] show that X(Fn) is a finitely generated torsion Zp[[S]]-module

provided Leopoldt’s conjecture is true for the Zp-extension Fn over Ln. Brumer proved

that Leoplodt’s conjecture is true for the Zp-extensions of an abelian extension of an

imaginary quadratic field. Under our hypothesis (Hyp), Ln is an abelian extension of

the imaginary quadratic field K. Therefore, Leopoldt’s conjecture holds for Fn and as

a consequence, we know that X(Fn) is a finitely generated torsion Zp[[S]]-module. By

structure theory of finitely generated torsion Zp[[S]]-module, there is a homomorphism

φ : X(Fn) −→
⊕(

⊕si=1 Zp[[S]]/pni
)⊕(

⊕tj=1 Zp[[S]]/(fmjj )
)
, (2)

with finite kernel and cokernel. Here fj are distinguished polynomials in Zp[[S]] and

s, t, ni, mj are non-negative integers. The lambda-invariant λn and the mu-invariant

µn of the Zp[[S]]-module X(Fn) are defined as

λn =
t∑

j=1

mj .deg(fj), µn =
r∑
i=1

ni.

When Ln is an abelian extension of K, Gillard ([Gi 1], [Gi 2]) has shown that µn = 0.

While [Gi 2] has the proof of vanishing of the mu-invariant without any assumption on

the class number of K, the proof in [Gi 1] works under the assumption that the class

number of K is 1 (that would have amounted to assuming that E is defined over K in our

work). As Ln is abelian over K under our hypothesis (Hyp), Gillard’s result implies that
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the p-torsion part in the right hand side of (2) does not occur. Moreover, it follows (as

pointed out in theorem 25 of [P-R 1]) from the work of Greenberg ([Gr 1]) that X(Fn)

has no finite non-zero Zp[[S]]-submodule. Thus, the kernel of φ (a priori finite) is trivial.

Hence, φ maps X(Fn) injectively into a free Zp-module of rank λn with finite cokernel.

We have now obtained the following information regarding the Zp-module structure of

X(Fn):

Proposition 3 : X(Fn) is a free Zp-module of rank λn under our hypothesis (Hyp).

How the lambda-invariant λn of X(Fn) varies along the tower of fields Fn (n = 0, 1, 2, . . .)

will be very important to us. We will study this question in section 7 (c.f. lemma 11).

5. A crucial proposition

Let us fix an n ≥ 0. Let S be the set of primes of F above p. Let FS be the maximal

extension of F unramified outside S. It is clear that F∞ ⊂ FS and Ep∞1
⊂ E(FS). The

following result is a crucial ingredient in examining the relation between X(F∞) and

X(Fn) [see the commutative diagram (c.d.) in section 6] :

Proposition 4 : There is an exact sequence of Galois modules

0 −→ Selp∞1 (E/Fn) −→ H1(FS/Fn, Ep∞1
) −→

∏
v|p

H1(Fn,v, E)p∞1
−→ 0.

The key part in the above proposition is the surjectivity. Hachimori and Matsuno

[H-M] proved the above result for the cyclotomic Zp-extension of a number field. But

their argument carries over to our situation of elliptic curves with complex multiplica-

tion. We will briefly describe how the methods of [H-M] can be adopted in our case. We

will see that the sequence in proposition 4 comes from a five-term Cassels-Poitou-Tate

sequence (5). It will be sufficient to show that the fourth term in (5) vanishes (lemma

5). As a consequence of this method of proof, we deduce that the fifth term in (5) (a

H2 term) also vanishes and deduce corollary 6. This vanishing (of H2) will be needed

for the calculations of section 7, especially lemma 12.

Let us denote the Zp-extension Fn of Ln by T∞. We know that the Galois group

Σ ' Gal(T∞/Ln) has a unique subgroup Σm of index pm. Let Tm be the fixed field of

T∞ under the action of Σm. We have a field diagram
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Fn = Ln(Ep∞1
) = T∞

Tm

Ln

Σm

Σ, Ω ' Zp[[Σ]]

By Cassels-Poitou-Tate sequence for the number fields Tm, we have a long exact sequence

(where M̂ denotes the Pontrjagin dual of M)

0 −→ Selπk(E/Tm) −→ H1(FS/Tm, Eπk) −→
∏
v|p

H1(Tm,v, E)πk

−→ ̂Selπ̄k(E/Tm) −→ H2(FS/Tm, Eπk) −→
∏
v|p

H2(Tm,v, Eπ̄k)

−→ ̂H0(FS/Tm, Eπ̄k) −→ 0.

(3)

We note that in applying Poitou-Tate duality, one has to consider not only the primes

above p, but also the infinite primes and the primes of bad reduction. However, E has

good reduction everywhere over L0 by theory of complex multiplication, and we can

also ignore the infinite primes as p is odd. The inclusion Eπk ↪→ Eπk+1 induces a map

H i(FS/Tm, Eπk) to H i(FS/Tm, Eπk+1), and its dual is given by ‘multiplication by π’. By

taking direct limits in (3) as k goes to infinity, we get a five term exact sequence

0 −→ Selp∞1 (E/Tm) −→ H1(FS/Tm, Ep∞1
) −→

∏
v|p

H1(Tm,v, E)p∞1

−→
(

lim←−
k

Selπ̄k(E/Tm)
)∧
−→ H2(FS/Tm, Ep∞1

) −→ 0.
(4)

We remark that when we take direct limit with respect to k, the sixth term in (3)

vanishes by Tate local duality (see Ch.II prop. 16 in [Se]). There is a restriction map

from H i(FS/Tm, Ep∞1
) to H i(FS/Tm+1, Ep∞1

), and the dual map is given by corestriction

which acts like the norm map on H0. We now take direct limits in (4) as m goes to

infinity, and obtain a five term exact sequence

0 −→ Selp∞1 (E/T∞) −→ H1(FS/T∞, Ep∞1
) −→

∏
v|p

H1(T∞,v, E)p∞1

−→
(

lim←−
m

lim←−
k

Selπ̄k(E/Tm)
)∧
−→ H2(FS/T∞, Ep∞1

) −→ 0.
(5)
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Let us denote the fourth term in the above sequence as Ŵ , i.e.,

W = lim←−
m

lim←−
k

Selπ̄k(E/Tm).

Proposition 4 claims that the fourth term in the above sequence (5) vanishes.

Lemma 5 :

W = lim←−
m

lim←−
k

Selπ̄k(E/Tm) = 0.

Proof : We adopt an argument similar to the one in proposition 2.3 of [H-M]. We have

an exact sequence (see lemma 1.8 in [C-S])

0 −→ Eπ̄∞(Tm) −→ lim←−
k

Selπ̄k(E/Tm) −→ HomZp
( ̂Selπ̄∞(E/Tm),Zp

)
−→ 0.

We now take inverse limit with respect to corestriction maps as m goes to infinity. These

maps act like norm maps on the first term, and it vanishes in the limit since only finitely

many π̄-torsion points of E are defined over T∞. Thus, we obtain an injection

W = lim←−
m

lim←−
k

Selπ̄k(E/Tm) ↪→ lim←−
m

HomZp
( ̂Selp∞2 (E/Tm),Zp

)
.

The kernel of the restriction map Selp∞2 (E/Tm) −→ Selp∞2 (E/T∞)Σm is finite and its

order is bounded independent of m (this kernel is contained in H1(Σm, Ep∞2
(T∞)), and

this group is bounded independent of m, as shown in lemma 3.1 of [Gr 2]). Therefore,

we have an injection

lim←−
m

HomZp
( ̂Selp∞2 (E/Tm),Zp

)
↪→ lim←−

m

HomZp
(
( ̂Selp∞2 (E/T∞))Σm ,Zp

)
.

The latter module has the same underlying set as HomΩ

( ̂Selp∞2 (E/T∞),Ω
)

(e.g., §2,

lemma 4(ii) in [P-R 2]).

We again invoke proposition 20 in [P-R 1] which says that Selp∞2 (E/T∞) is Ω-

cotorsion provided Leopoldt’s conjecture is true for the Zp-extension T∞ of Ln. But

Leopoldt’s conjecture is true for the Zp-extension T∞ of the abelian [under our hypoth-

esis (Hyp)] extension Ln of the imaginary quadratic field K. Therefore, Selp∞2 (E/T∞)

is Ω-cotorsion and HomΩ

( ̂Selp∞2 (E/T∞),Ω
)

= 0.

Thus, the compact Ω-module W can be embedded into the null module. �

With this lemma, the proof of proposition 4 is now complete. The following corollary

to lemma 5 will be a vital step in our proof of theorem 2 (lemma 12 in section 7).
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Corollary 6 : For any n ≥ 0, H2
(
FS/Fn, Ep∞1

)
= 0.

Proof : From the Cassels-Poitou-Tate sequence (5) and lemma 5, it is clear that

H2
(
FS/T∞, Ep∞1

)
= 0. But T∞ stands for any of the Fn for n ≥ 0. �

6. Relation between X(F∞) and X(Fn)

In order to examine the relation between X(F∞) and X(Fn), the following commu-

tative diagram is of crucial importance:

0 −−−−→ Selp∞1
(E/F∞)Γn −−−−→ H1(FS/F∞,Ep∞1

)Γn −−−−→ ∏
v|p

( ∏
w|v

H1(F∞,w,E)p∞1

)Γn

αn

x βn

x xγn=
∏
v|p γn,v

0 −−−−→ Selp∞1
(E/Fn) −−−−→ H1(FS/Fn,Ep∞1

) −−−−→ ∏
v|p

H1(Fn,v,E)p∞1
−−−−→ 0

Commutative Diagram (c.d.)

The horizontal maps originate from Cassels-Poitou-Tate sequence, whereas the vertical

maps are induced by restriction. All of our work in section 5 has been to establish

the exactness of the bottom row in the above diagram. We are primarily interested in

the kernel and cokernel of the map αn above. By the snake lemma, we have an exact

sequence

0 −→ Ker(αn) −→ Ker(βn) −→ Ker(γn) −→ Coker(αn) −→ Coker(βn) . . . (6)

In order to understand the structure of Ker(αn) and Coker(αn), we will first study the

kernels and cokernels of the maps βn and γn.

Lemma 7 : Ker(βn) ' Qp/Zp, and Coker(βn) = 0.

Proof : Recall that all the points in Ep∞1
are defined over Fn (n = 0, 1, . . .). By the

inflation-restriction sequence of cohomology, Ker(βn) equalsH1(Γn, Ep∞1
), and Coker(βn)

is contained inH2(Γn, Ep∞1
). But Γn is isomorphic to Zp, and hence it has p-cohomological

dimension 1. Therefore, H2(Γn, Ep∞1
) vanishes and it follows that Coker(βn) is trivial.

Moreover, Γn acts trivially on Ep∞1
and hence H1(Γn, Ep∞1

) equals Hom(Γn,Qp/Zp). We

can now conclude that Ker(βn) ' Qp/Zp. �
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Lemma 8 : For v|p1, Ker(γn,v) = 0.

We shall give a short and direct proof of this lemma, though it follows from a more

general result of Perrin-Riou (lemma 9 in [P-R 1]).

Proof : By Shapiro’s lemma,(∏
w|v

H1(F∞,w, E)
)Γn

p∞1
= H1(F∞,w, E)Γn,v

p∞1
,

where Γn,v is the decomposition subgroup of Γn. By the inflation-restriction sequence,

Ker(γn,v) = H1
(
Γn,v, E(F∞,w)

)
p∞1
.

Clearly,

F∞,w =
⋃
M

L∞,v′M,

where M runs over the finite extensions of Ln,ṽ contained in Fn,v, and v′, ṽ are the

primes below w of L∞ and Ln respectively. Now,

Ker(γn,v) = lim→
M

H1
(
G(L∞,v′M/M), E(L∞,v′M)

)
p∞1
.

Note that E has good reduction over Ln,ṽ. Therefore, L∞,v′ is unramified over Ln,ṽ and

so is L∞,v′M over M . Hence, H1
(
G(L∞,v′M/M), E(L∞,v′M)

)
= 0 (see [Mi, p. 58]).

This concludes the proof of lemma 8. �

Lemma 9 : For v|p2, Ker(γn,v) ' Qp/Zp.

Proof : The extension F∞ is totally ramified over Fn at the prime v over p2. Therefore,

there is only one prime w of F∞ over v and the decomposition group Γn,v is the Galois

group Γn. By the inflation-restriction sequence,

Ker(γn,v) = H1
(
Γn,v, E(F∞,v)

)
p∞1
.

Let m∞,v be the maximal ideal of F∞,v and k∞,v be the residue field. Let Ê be the

formal group attached to E giving the kernel of reduction at v. We have the following

exact sequence of Γn,v-modules:

0 −→ Ê(m∞,v) −→ E(F∞,v) −→ Ẽv(k∞,v) −→ 0.
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Taking Galois cohomology, we get the following exact sequence:

. . . −→ H1
(
Γn,v, Ê(m∞,v)

)
p∞1
−→ H1

(
Γn,v, E(F∞,v)

)
p∞1

−→ H1
(
Γn,v, Ẽv(k∞,v)

)
p∞1
−→ H2

(
Γn,v, Ê(m∞,v)

)
p∞1
→ . . . .

Since v|p2, π is an automorphism of Ê. Therefore, H i
(
Γn,v, Ê(m∞,v)

)
p∞1

=0 ∀ i ≥ 0.

Hence we have

H1
(
Γn,v, E(F∞,v)

)
p∞1

∼−→ H1
(
Γn,v, Ẽv(k∞,v)

)
p∞1
.

As Ẽv(k∞,v) is a torsion module, we can take the p∞1 -torsion inside the cohomology

group. Since F∞,w is totally ramified over Fn,v, the group Γn,v acts trivially on Ẽv(k∞,v).

Therefore, the right hand side in the previous expression is

Hom(Γn,v, Ẽv,p∞1 ) ' Hom(Zp,Qp/Zp) = Qp/Zp. �

Note that there are r primes above p2 in Fn (n = 0, 1, . . .). It follows from lemma 8

and lemma 9 that

Ker(γn) =
⊕
v|p

Ker(γn,v) '
(
Qp/Zp

)r
.

We can now rewrite the exact sequence (6) as

0 −→ Ker(αn) −→ Qp/Zp −→
(
Qp/Zp

)r
−→ Coker(αn) −→ 0. (7)

The above exact sequence enables us to deduce the following result about the Λ-

module structure of X(F∞):

Lemma 10 : X(F∞)Γn is a free Zp-module.

Proof : Taking the Pontrjagin dual of the exact sequence (7), we obtain

0 −→ ̂Coker(αn) −→ Zrp −→ . . .

This tells us that ̂Coker(αn) is a finitely generated free Zp-module. Taking Pontrjagin

dual in the first column of the commutative diagram (c.d.), we have

0 −→ ̂Coker(αn) −→ X(F∞)Γn −→ X(Fn).

By proposition 3, we know that X(Fn) is a free Zp-module. As both Ĉoker(αn) and

X(Fn) have no Zp-torsion, it is clear that X(F∞)Γn is a free Zp-module. �
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Proof of theorem 1 : We shall show that the exact sequence (7) and lemma 10 imply

theorem 1. By considering the Zp-coranks of the terms in the exact sequence (7), we

find that

corankZp
(
Coker(αn)

)
− corankZp

(
Ker(αn)

)
= r − 1. (8)

The left vertical map in the commutative diagram (c.d.) implies that

corankZp
(
Selp∞1 (E/F∞)Γn

)
= corankZp

(
Coker(αn)

)
− corankZp

(
Ker(αn)

)
+ corankZp

(
Selp∞1 (E/Fn)

)
= r − 1 + corankZp

(
Selp∞1 (E/Fn)

)
, [by (8)]

i.e.,

rankZp
(
X(F∞)

)
Γn

= λn + r − 1. (9)

By lemma 10, we can conclude that(
X(F∞)

)
Γ0
' Zλ0+r−1

p .

In particular, we have

X(F∞)/(p, T ) '
(
Zp/p

)λ0+r−1 = a finite module.

Since (p, T ) is the maximal ideal of Zp[[T ]] ' Λ, theorem 1 follows from Nakayama’s

lemma (e.g., see pp. 126 of [La]) for compact Λ-modules. �

7. Λ-rank of X(F∞)

We have shown in the preceding section that X(F∞) is a finitely generated Λ-module.

We want to compute its Λ-rank and its Λ-torsion submodule. By structure theory of

Λ-modules [see (16) and ‘General Lemma’ near the end of this section], it will be enough

to show that (X(F∞))Γn is a free Zp-module of rank pn.c, where c is a constant inde-

pendent of n. Then, the ‘General Lemma’ would imply that X(F∞) is a free Λ-module

of rank c. Since the Zp-rank of (X(F∞))Γn is (λn + r− 1) by (9), we want to know how

the λn’s vary with n as we go along the tower of fields Fn over F0.

Lemma 11 : λn+1 = pλn + (p− 1)(r − 1).
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We prove lemma 11 using ideas from [H-M]. Let G be the Galois group Gal(Fn+1/Fn).

It is obvious that G is a cyclic group of order p. Formula (3.3) in [H-M] implies that

corankZp
(
Selp∞1 (Fn+1)

)
= p.corankZp

(
Selp∞1 (Fn)

)
+ (p− 1)ordp

(
hG(Selp∞1 (Fn+1))

)
,

where hG denotes the Herbrand quotient. In our notation, the above formula becomes

λn+1 = p.λn + (p− 1)ordp
(
hG(Selp∞1 (Fn+1))

)
. (10)

We will now calculate the Herbrand quotient of the Selmer group in the above expression,

since it will determine the explicit relation between λn+1 and λn. The second exact

sequence in the commutative diagram (c.d.) of section 6 implies that

hG(Selp∞1 (Fn+1)) =
hG
(
H1(G(FS/Fn+1), Ep∞1

)
)∏

v|p
hG
(
H1(Fn+1,v, E)p∞1

) . (11)

We shall evaluate the numerator and the denominator in the above expression with the

next three propositions. We shall adopt arguments of Hachimori and Matsuno who dealt

with the cyclotomic situation. The following lemma simplifies the calculation of the right

hand side of (11).

Lemma 12 : For i = 1, 2, we have

(a)H i
(
G,H1(G(FS/Fn+1), Ep∞1

)
)

= H i(G,Ep∞1
),

(b)H i
(
G,H1(Fn+1,v, E)p∞1

)
= H i

(
G,E(Fn+1,v)

)
p∞1
.

Proof : (a) The Galois group Gal(FS/Fn+1) has p-cohomological dimension at most

2 (see Prop. 8.3.17 in [N-S-W]). Combining this with corollary 6, we conclude that

H2(FS/Fn+1, Ep∞1
) vanishes for i ≥ 2. Then, we have a long exact Hochschild-Serre

spectral sequence

. . .H2(FS/Fn, Ep∞1
) −→ H1

(
G, H1(FS/Fn+1, Ep∞1

)
)
−→ H3(G, E(Fn+1)p∞1

)

−→H3
(
FS/Fn, Ep∞1

)
−→ H2

(
G, H1(FS/Fn+1, Ep∞1

)
)
−→ H4

(
G, E(Fn+1)p∞1

)
−→H4(FS/Fn, Ep∞1

) . . .

As G is a finite cyclic group, we have

H i(G, A) = H i+2(G, A) ∀i ≥ 0,

12



where A is any G-module. As H i(FS/Fn, Ep∞1
) = 0 for i ≥ 2, this part of the lemma

holds.

(b) The Galois group Gal(F̄n+1,v/Fn+1,v) has strict cohomological dimension at most 2

(see Prop. 1 and 4, Ch.II in [Se]). Moreover, H2(Fn+1,v, E) is trivial because

H2(Fn+1,v, E) = lim−→
Qp⊂M⊂Fn+1,v

[M : Qp]<∞

H2(M,E),

and by Tate local duality (see Ch.II prop. 16 in [Se]), H2(M,E) vanishes for any finite

extension M of Qp. As in the previous proposition, we have a long exact Hochschild-Serre

spectral sequence and we can conclude that

H i
(
G,H1(Fn+1,v, E)

)
p∞1

= H i+2
(
G,E(Fn+1,v)

)
p∞1

for i = 1, 2.

As H1(Fn+1,v, E) is a torsion group and G is cyclic, the above expression reduces to

H i
(
G,H1(Fn+1,v, E)p∞1

)
= H i

(
G,E(Fn+1,v)

)
p∞1

for i = 1, 2. �

Proposition 13 : hG
(
H1(G(FS/Fn+1), Ep∞1

)
)

= 1
p .

Proof : By the first part of lemma 12,

hG
(
H1(G(FS/Fn+1), Ep∞1

)
)

= hG(Ep∞1
).

Clearly, G acts trivially on Ep∞1
as these points are defined over Fn. Let s be a generator

of G and suppose N =
∑p−1

i=o s
i. Then

H2(G, Ep∞1
) = (Ep∞1

)G/N(Ep∞1
) = 0,

H1(G, Ep∞1
) = Ker(N)/(s− 1)Ep∞1

= Ep1 .

Therefore,

hG
(
H1(G(FS/Fn+1), Ep∞1

)
)

= hG(Ep∞1
) =

1
p
. �

We calculate the denominator in (11) by proving the following two propositions.

Proposition 14 : hG
(
H1(Fn+1,v, E)p∞1

)
= 1 ∀v | p1.

Proof : By the second part of lemma 12, we need to calculate the ratio of the order of

H i
(
G,E(Fn+1,v)

)
p∞1

for i = 2, 1. We consider the following exact sequence of G-modules

0→ Ê(mn+1,v)→ E(Fn+1,v)→ Ẽv(kn+1,v)→ 0, (12)

13



where mn+1,v is the maximal ideal of Fn+1,v, and kn+1,v is the residue field. Taking

G-cohomology, we have a long exact sequence

. . . −→ H1
(
G, Ê(mn+1,v)

)
p∞1
−→ H1

(
G,E(Fn+1,v)

)
p∞1
−→

H1
(
G, Ẽv(kn+1,v)

)
p∞1
−→ H2

(
G, Ê(mn+1,v)

)
p∞1
−→ . . . .

(13)

For v|p1, Fn+1,v is deeply ramified. By a result of Coates and Greenberg (Theorem 3.1

in [C-G]), H i
(
G, Ê(mn+1,v)

)
= 0 ∀i ≥ 1. Moreover, Ẽv(kn+1,v) is a torsion group and

we can take the p∞1 -torsion inside the cohomology in (13). We now have

H i
(
G,E(Fn+1,v)

)
p∞1

= H i
(
G, Ẽv(kn+1,v)p∞1

)
for i = 1, 2. (14)

For v|p1, kn+1,v is the residue field of a ramified Zp-extension of a finite extension of Qp,

and hence kn+1,v is a finite field. Let us now consider the p1-primary part in (12):

0→ Ê(mn+1,v)p∞1
→ E(Fn+1,v)p∞1

= Qp/Zp → Ẽv(kn+1,v)p∞1
= a finite module→ 0.

But Qp/Zp has no nontrivial finite quotient, and we deduce that Ẽv(kn+1,v)p∞1
= 0.

Therefore, H i
(
G, Ẽv(kn+1,v)p∞1

)
=0. By lemma 12 (b) and (14), we now conclude that

H i
(
G,H1(Fn+1,v, E)p∞1

)
= 0 ∀v | p1 for i = 1, 2.

In particular, the Herbrand quotient hG is 1. �

Proposition 15 : hG
(
H1(Fn+1,v, E)p∞1

)
= 1

p ∀v | p2.

Proof : We proceed as in the previous proposition. However, π is an automorphism of

Ê for v not dividing π. Therefore, H i
(
G, Ê(mn+1,v)

)
p∞1

= 0 ∀ i ≥ 0. By (13),

H i
(
G,E(Fn+1,v)

)
p∞1

= H i
(
G, Ẽv(kn+1,v)

)
p∞1
∀i ≥ 0. (15)

As before, we can take the p∞1 -torsion inside the cohomology on the right hand side of

(15). Since the extension Fn+1,v is totally ramified over Fn,v, the Galois group G acts

trivially on Ẽv(kn+1,v). Clearly,

| H1
(
G, Ẽv(kn+1,v)

)
p∞1
| = | Hom(G,Qp/Zp) | = p

| H2
(
G, Ẽv(kn+1,v)

)
p∞1
| = | H2(G,Qp/Zp) |= 1.

From lemma 12 (b) and (15), it is now obvious that hG
(
H1(Fn+1,v, E)p∞1

)
= 1

p . �
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We can now derive the relation between λn+1 and λn, as stated in lemma 11. We

substitute the values obtained by the three previous propositions in (11). We find that

hG
(
Selp∞1 (Fn+1)

)
=

1
p

(1
p)r

= pr−1,

recalling that r is the number of primes above p2 in Fn+1 for any n. Now, it follows from

(10) that

λn+1 = pλn + (p− 1)(r − 1).

This completes the proof of lemma 11.

Lemma 16 : X(F∞)Γn is a free Zp-module of rank pn(λ0 + r − 1).

Proof : We already saw that X(F∞)Γn is a free Zp-module [c.f. lemma 10] of rank

(λn + r − 1) [c.f. (9)]. By using lemma 11 recursively, we obtain that

λn = pnλ0 + (r − 1)(pn − 1).

Substituting in (9), we find that

rankZp
(
X(F∞)

)
Γn

= pn(λ0 + r − 1). �

We can now prove Theorem 2 with the following result about the structure of Λ-

modules (the proof is included for the sake of completeness):

General Lemma : Let Y be a Λ-module such that YΓn is a free Zp-module of rank

cpn. Then Y is a free Λ-module of rank c.

Proof : Recall that Λ ' Zp[[T ]]. By structure theory of finitely generated Zp[[T ]]-

modules, there is a homomorphism ψ of Zp[[T ]]-modules

0−→A−→Y ψ−→N=
⊕

Zp[[T ]]a
⊕(
⊕si=1Zp[[T ]]/pni

)⊕(
⊕tj=1Zp[[T ]]/(f

mj
j )
)
−→B−→0, (16)

where A and B are finite. For sufficiently large n, Γn acts trivially on the finite modules

A and B. Therefore, BΓn = B, AΓn = A for n sufficiently large. We can rewrite (16) as

0 −→ A −→ Y −→ Im(ψ) −→ 0,

0 −→ Im(ψ) −→ N −→ B −→ 0.
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Therefore, we have exact sequences

Im(ψ)Γn −→ AΓn −→ YΓn −→
(
Im(ψ)

)
Γn
−→ 0, (17)

NΓn −→ BΓn −→
(
Im(ψ)

)
Γn
−→ NΓn −→ BΓn −→ 0. (18)

By our assumption, it is now clear from (17) that
(
Im(ψ)

)
Γn

is a free Zp-modules of rank

pnc. From (18), we can now deduce that a = c and N has no Zp[[T ]]-torsion part (note

that the order of BΓn is bounded independent of n). Thus, N = Zp[[T ]]c. Therefore,

NΓn = 0 and BΓn ↪→
(
Im(ψ)

)
Γn

. Since
(
Im(ψ)

)
Γn

does not have any nontrivial finite

Zp-submodule, BΓn = 0 for all n. Thus, B = 0 and Im(ψ) = N = Zp[[T ]]c. Now,

Im(ψ)Γn = 0, and (17) implies that AΓn ↪→ YΓn . But YΓn does not have any nontrivial

finite Zp-submodule. Thus, AΓn = 0 for all n. Therefore, A = 0. We can now rewrite

(16) as

Y ∼= Zp[[T ]]c. �

Proof of Theorem 2 : Theorem 2 follows directly from lemma 16 and the ‘General

Lemma’ above. �

We can conclude that when F (Epn) is abelian over K for all n ≥ 0, the Pontrjagin

dual X
(
F (Ep∞)

)
of the p∞1 -Selmer group of E over F (Ep∞) is a free Zp[[T ]]-module of

rank λ0 +r−1. In particular, it is true when E is defined over K as the abelian property

is implied by theory of complex multiplication.
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