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Abstract—This paper addresses day-ahead thermal generation
scheduling as a realistic multi-objective optimization problem
in an uncertain environment considering system operation cost,
emission cost and reliability as the multiple objectives. The un-
certainties occurring due to unit outage and load forecast error
are incorporated using loss of load probability (LOLP) and ex-
pected unserved energy (EUE) reliability indices. For solving the
above-mentioned scheduling problem, a multi-objective genera-
tion scheduling algorithm (MOGSA) is proposed in this paper.
Three case studies are performed on large scale test systems
considering two different bi-objective optimization models and
a three-objective optimization model that may be chosen by the
system operator according to his/her own preference. The simu-
lation results demonstrate the advantages of solving the thermal
generation scheduling problem as a realistic multi-objective
optimization problem in an uncertain environment. Finally the
authors suggest a systematic procedure for the system operators
to choose a single solution for the thermal generation scheduling
problem.

Index Terms—Evolutionary multi-objective optimization,
thermal generation scheduling, unit commitment, uncertainty.

NOMENCLATURE
Trnax Number of hours in dispatch period.
T Hourly time index.
N Number of generating units.
1 Generating unit index.
P! Power generated by unit ¢ at hour ¢.
Praz,i Rated upper limit generation of unit .
Prin.i Rated lower limit generation of unit ¢.
11 Fuel cost of ¢th unit at hour ¢ in $/h.
SUt/SD? Start-up/shut-down cost of unit ¢ at hour 7.
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Lt Load demand at hour .
MUT /M DT Minimum up/down time of unit .
a;,b;, ¢ Fuel cost coefficients of the ith generator.

Emission cost coefficients of the ith
generator.

a1, b14, C14

I. INTRODUCTION

HE day-ahead thermal generation scheduling (TGS)

problem plays a major role in the daily operational
planning of power systems. It involves two scheduling tasks:
1) unit commitment (UC) which determines the on/off sched-
ules of the generators and 2) electrical power dispatch (or
load dispatch) which optimally distributes the forecasted load
among the committed generators. The TGS requires effectively
performing the above two tasks to meet the forecasted load
demand over a particular time horizon, satisfying a large set of
operating constraints and achieving certain objectives [1]. Most
of the approaches in the literature solve TGS considering cost
as the single (economic) objective and the problem is known
as the classical UC problem. However, due to increasing envi-
ronmental concerns that arise from the emissions produced by
fossil-fuel based thermal power plants, the economic objective
can no longer be considered alone. Moreover, TGS involves
uncertainty in generator availability and load forecast data.
However, the UC problem is usually solved in deterministic
environment. System operator (SO) would nevertheless prefer
to obtain more reliable generation schedule by incorporating
various uncertainties.

Over the last two decades, considerable research has been
conducted using Al techniques to solve the UC problem. The
techniques include genetic algorithm (GA) [2], [3], memetic
algorithm (MA) [4], particle swarm optimization (PSO) [5]
and simulated annealing (SA) [6]. Evolutionary algorithms
like evolutionary programming (EP) [7] and PSO [8] have
found application in the solution of economic load dispatch
(ELD) problem too. In the last few years, the scheduling of
electrical power dispatch for emission and economic objectives
has drawn much attention. This is known as the multi-objective
environmental/economic dispatch (EED) problem. Non-domi-
nated sorting genetic algorithm (NSGA) [9], fuzzified MOPSO
[10] and MOPSO with fuzzy clustering [11] have been success-
fully implemented to solve the multi-objective EED problem.

The above mentioned studies and most of the other UC, ELD
and EED studies in the literature use deterministic models,
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which are not able to reflect some real situations like uncertain-
ties in load demand, fuel prices and unit availability. Reference
[12] presented an improved PSO method with stochastic model
to deal with the EED problem. The stochastic model consid-
ered the uncertainty related to fuel cost coefficients, emission
coefficients and load demand. In [13], the UC problem was
addressed considering generator outages through a mixed-in-
teger PSO algorithm. To account for the generator outages,
a reliability requirement was incorporated into the spinning
reserve constraint. The study [14] included the uncertainties
due to unit outage and load forecast error in the UC problem
by implementing reliability constraints on LOLP and EUE
reliability indices and the reliability constrained UC problem
was solved using an SA based algorithm.

The literature suggests that many studies exist for the UC,
ELD and EED problems. However, to the best of the authors’
knowledge there are no studies that have addressed the day-
ahead TGS problem in uncertain environment for important ob-
jectives like reliability and emission along with the economic
objective.

In this paper, the TGS problem is addressed as a realistic
multi-objective optimization (MOQ) problem in uncertain envi-
ronment. The uncertainties due to unit outage and load forecast
error are incorporated with the help of LOLP and EUE relia-
bility indices [14]. Three multi-objective case studies are per-
formed on the TGS problem in uncertain environment by con-
sidering different optimization models and extending our earlier
proposed algorithm [1].

The main contribution of this paper is in demonstrating
the advantages of solving the day-ahead TGS as a realistic
MOO problem in uncertain environment. Moreover, this paper
presents three different MOO models that may be chosen by
the SO according to his/her own preference. Additionally, in
the end, the authors’ suggest the best optimization model and a
systematic method for the SO to choose a single solution from
the trade-off Pareto-optimal solutions that are obtained for the
multi-objective TGS problem.

The multi-objective TGS problem is formulated in Section II.
Thereafter, the proposed algorithm is described in Section III.
The results and discussions are presented in Section I'V followed
by quantitative performance assessment of the proposed algo-
rithm in Section V and the paper is concluded in Section VI.

II. MULTI-OBJECTIVE THERMAL GENERATION
SCHEDULING: PROBLEM FORMULATION

In this section, the multiple objectives in the TGS problem
and the associated constraints are presented.

A. Objective Functions

1) System Operation Cost: The total system operating cost
includes the fuel cost of the committed generators and the tran-
sition cost over the entire scheduling horizon:

max 4

T, N
Fy=Y > (fl+SU;+SDj). (1)

t=1 =1
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The fuel cost ff of unit is expressed as the quadratic function
of its power output during hour #:

FL=a(PH + b (P) + .. )

The transition cost is the sum of start-up costs and shut-down
costs.

2) Reliability: In this paper, the expected unserved energy
(EUE) index which expresses the expected amount of energy not
supplied by the generation system during the scheduling horizon
is used as a measure of reliability of the system. The objective
function I is equal to the EUE index itself. The procedure for
calculating the EUE index is presented later in the paper.

3) Emission Cost: The objective function representing the
emission cost is similar to the function representing the fuel cost
of generators:

Trow N

Fy= Y

t=1 i=1

(au (Pit)z +b1; (Pf) + Cu‘) . (3)

B. Constraints

The solution must satisfy several constraints as follows:
1) System power balance: the total power generation at hour
t must be equal to the load demand for that hour:

N
ZP;ZLt, t:127,T’IYlCL.L (4)
=1

2) Unit minimum up/down time: if a unit is on/off, it must
remain on/off for at least MUT/MDT time duration.

3) Unit generation limits: for stable operation, the power
output of each generator is restricted within limits as follows:

Pm,in,i S P7t S Pm,a;r,,i~ (5)
4) The LOLP reliability constraint is incorporated as

LOLP; < Lyae, te€[1,7T] (6)
where LOLP; is the LOLP for hour ¢ and L,,,, is the user-
defined maximum allowed limit of the LOLP reliability index.
It is noted that the LOLP is the probability that the generation
system will not cover the forecasted demand.

5) The EUE reliability constraint is incorporated as

E(JEtot S Emaaf (7)

where EU F,; is the total expected unserved energy for the en-
tire scheduling period and E,,,,.. is the user-defined maximum
allowed limit of the EUE reliability index. It is noted that EUE is
incorporated as a reliability constraint only in case study 2 when
the objectives are system operation cost and emission cost. In
case study 1 and 3, EUE index is considered as an objective and
not as a constraint.

6) The constraint related to maximum system operation cost
is incorporated as

Fl S C()Stnm,rn (8)
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where C'0st,,q, 1s the user-defined upper limit for solution’s
system operation cost. It is noted that this constraint is incorpo-
rated only in case study 3.

7) The constraint related to maximum emission cost is incor-
porated as

(€))

where Emission,q, 18 the user-defined upper limit for solu-
tion’s emission cost. It is noted that this constraint [like con-
straint (8)] is incorporated only in case study 3.

Fys < Emissionmax

III. PROPOSED ALGORITHM FOR THERMAL GENERATION
SCHEDULING IN UNCERTAIN ENVIRONMENT

In this paper, our earlier proposed algorithm [1] has been ex-
tended to solve the multi-objective TGS problem in uncertain
environment. It is noted that the proposed algorithm is referred
as multi-objective generation scheduling algorithm (MOGSA)
in this paper. The uncertainties due to unit outage and load-fore-
cast error have been incorporated in the solution with the help
of reliability indices LOLP and EUE. The details of MOGSA
and the calculation of LOLP and EUE indices are presented in
the following sections.

A. Chromosome Formulation

For every chromosome, an N X T,,,, binary unit commit-
ment matrix (UCM) is used to represent the generator on/off
status and an N x T,,,,, real power matrix (RPM) is used to
represent the corresponding power dispatch. It is noted that a
chromosome’s actual generation schedule is represented by its
resultant power matrix (Res.PM) which is obtained by multi-
plying the corresponding elements of UCM and RPM.

B. Generation of Initial Population

All chromosomes in the initial population are generated ran-
domly. UCM of each chromosome is a randomly generated bi-
nary matrix. In RPM of each chromosome, the power dispatch
of each generator is generated randomly within the power limits
of that generator.

C. Calculation of Reliability Indices

In this subsection, the procedure for calculation of reliability
indices is explained for cases when only uncertainty due to unit
outage is considered and when uncertainty due to load forecast
error is also considered.

Incorporating Uncertainty Due to Unit Outage

Each generating unit is considered as a two-state model, ac-
cording to which a unit is either available or unavailable for
generation. According to this model, the unavailability of the
generating unit ¢ during a short time interval LT (known as the
system lead time) is given by

U(LT)=1-¢ MNET (10)
where \; is the failure rate of unit i [ 14]. The probability U, (LT)
given by (10) is known as the outage replacement rate (ORR) of
the unit, i.e., probability of losing capacity and not being able

to replace it.
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To calculate the LOLP and EUE indices for every chromo-
some, the conventional “loss of load” method is used, except
that ORR is used instead of forced outage rate (FOR).

This method is based on the creation of the capacity outage
probability table (COPT) according to the given load curve [15].
A COPT is formed for every hour using the ORR of the com-
mitted units. The creation of COPT is based on the unit addition
algorithm [15]. A COPT may be visualized as a table with n
rows (j = 1...n) and 3 columns. The first column represents 7
different generation levels that may be outaged. The second and
third column represents the probability P R; and total capacity
C' R; that remains in service corresponding to each outage level,
respectively. The reliability indices are calculated as follows:
The LOLP index for each hour £ is calculated as

mn

LOLPy =Y (PR;LOSS;), t€[l,T] (11)
i=1
where LOSS; is given by
_J1, fCR; < LOAD;
LOSS; = {0, otherwise. (12)

Similarly, the EUE index for each hour ¢ is calculated as

EUE, =Y PR;,LOSS;(LOAD, - CR;), te€[1.T].

3

7=1

(13)

The EUE index of the dispatch period is given by EUE,,;
which is calculated as

T
EUE,,; = ZEUEt.

t=1

(14)

Incorporating Uncertainty Due to Load Forecast Error

Load forecast may be associated with uncertainty and hence
plays a major role in the solution of the TGS problem. It is an ac-
cepted practice to assume that the load forecast uncertainty can
be reasonably described by a normal distribution [14], [15]. The
distribution can be divided into a discrete number of class inter-
vals with the distribution mean being the forecast load. The load
representing the class interval mid-point is assigned the desig-
nated probability for that class interval. It is recommended in
[15] that a seven-step approximation (0, 10, £20, +30) to the
normal distribution (seven-step model) is adequate to represent
the uncertainty in load forecast. The standard deviation (o or S)
is a percentage of the expected demand (distribution mean) and
is suggested to be 5% [16]. With the assumption of load fore-
cast uncertainty to be normally distributed and represented by
the seven-step model, the LOLP and EUE index calculation for
each hour ¢ is given by the following equations:

7
LOLP, =) (LOLP,(m)PL(m)). t€[1,T] (15)

m=1
7

EUE, =Y (EUE(m)PL(m)), t€[1,T]

m=1

(16)
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where PL(m) indicates the probability associated with the
discrete class interval m in the seven-step model. Simi-
larly, LOLP;(m) and EU E(m) represent the LOLP and EUE
for each discrete class interval m for hour ¢.

Computational Time

The computational time in creating COPT is reduced by omit-
ting the outage levels for which the cumulative probabilities are
less than a predefined limit, e.g., 10~7 [14]. Additionally, to
avoid the need for repeated creation of COPT, a memory archive
is created to store the commitment patterns for each time pe-
riod, and their corresponding LOLP and EUE index values. In
subsequent generations, whenever a commitment pattern is re-
peated, the corresponding LOLP and EUE values are copied and
assigned to the repeated pattern. This technique significantly re-
duces the computational time. It is noticed that calculation of the
reliability indices of a chromosome is a bottleneck in terms of
computation time. Hence, to further improve the computational
speed, parallel computing is implemented and the hourly LOLP
and EUE values of a chromosome are computed in parallel.

D. Repair Process

If a chromosome violates the load demand equality con-
straint, then a heuristic based repair operator is employed
which was found to be efficient in our earlier study [1]. In case
studies 2 and 3, in which emission cost is an objective, the
chromosomes are repaired using priority list (PL) [17] based on
either fuel cost coefficients or emission cost coefficients (with
equal probability). In case study 1, in which emission cost is
not considered as an objective, the chromosomes are repaired
using PL based on just fuel cost coefficients.

E. Constraint Violation Evaluation

In this paper all the constraints have been normalized because
different constraints make take different orders of magnitude.
An inequality constraint of the form ¢g(z) > b is normalized
using the following transformation:

o) 5, (a7
b

Equality constraints are also normalized similarly [19]. Since
all normalized constraint violations take more or less the same
order of magnitude, they are simply added to calculate the
overall constraint violation of a chromosome. A chromosome
is feasible if the overall constraint violation is less than 1075,

F. Objective Function Evaluation

The objective functions system operation cost ( £} ) and emis-
sion cost (F3) are calculated for each chromosome using its
Res.PM while objective function F5 is equal to the EUE index
(EUEo1).

G. Ranking and Selection

The chromosomes are ranked using the constrained-dom-
ination principle. Thereafter, constrained-binary tournament
method is employed for selection [18].
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H. Crossover

The TGS involves both discrete binary variables and con-
tinuous real variables. Hence, binary and real crossover oper-
ators are employed to explore both the search spaces. Standard
crossover operators do not work well on the binary variables in
the TGS problem [4]. Here, a slightly modified version of the
window crossover operator as mentioned in [4] is used as the
binary crossover. It works by randomly selecting two parents
from the mating pool and then randomly selecting a window
size. The entries within the window portion are exchanged be-
tween the UCM of two parents to generate the UCM of two
offsprings. SBX crossover operator [19] is chosen as the real
crossover operator and is applied on the RPM of two parents to
obtain the RPM of two offsprings.

1. Mutation

1) Swap-Window Operator: The binary and real versions of
this operator are applied separately on UCM and RPM of a chro-
mosome respectively. It randomly selects: 1) two units u; and
ug, 2) a time window of width w (hours) between 1 and 7},
and 3) a window position. The entries of the two units «; and
uy included in the window are then exchanged. This acts like a
sophisticated mutation operator [2].

2) Window Mutation Operator: This operator works on the
UCM of a chromosome by randomly selecting 1) a unit, 2) a
time window of width w (hours) between 1 and 7,,,. and 3)
a window position. Then it mutates all the bits included in the
window, turning all of them to either 1’s or all of them to 0’s
with an equal probability [2].

The steps of MOGSA are described as follows:

1) Parameter-setting input: Population size, genera-
tion number, L,,q0z, Faz, Costmas, EMission,q.,
crossover probability, distribution index for SBX
crossover, swap-window operator probability, window
mutation operator probability.

2) Initialization: In the initial population, UCM and RPM of
all chromosomes are randomly generated.

3) Calculation of reliability indices: The conventional “loss
of load” method is used to calculate the LOLP and EUE
indices of all chromosomes.

4) Repair process: Heuristic based repair operator is used
to repair the chromosomes for load demand equality con-
straint violation.

5) Constraint violation evaluation: Normalized constraint
violation (min up-down time, load demand, LOLP, EUE,
Cost and Emission) is calculated and summed up for each
chromosome.

6) Objective function evaluation: UCM and RPM of each
chromosome are multiplied to form the resultant power
matrix (Res.PM). The objective functions F; and Fj5 are
then calculated using the Res.PM and objective function
F; is equal to the EUE index.

7) Ranking and selection: The population is ranked using the
constrained-domination principle. Thereafter, constrained-
binary tournament selection is used to form the mating
pool.



TABLE 1
PARAMETER SETTINGS
Population size 300
Generation number 10000

Crossover probability 0.6

Variable crossover probability in SBX 1

Distribution index in SBX 2
Swap window operator probability 0.25
Window mutation operator probability 0.25

Reliability (EUE) (%

0.25
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0.20 4

0.15+

0.104

0.05+

0.00+

Knee” ~

¢ No LOLP Constraint
o L.=15%
Lo=10%

8) Crossover: Crossover works by randomly selecting two
parent chromosomes from the mating pool. Window
crossover operator is applied on the UCM and SBX
crossover operator on the RPM of the two parent chromo-
somes to form the UCM and RPM of the two offspring
chromosomes.

9) Mutation: Swap-window operator and window-mutation
operator are then applied on the offspring chromosomes.

10) Calculation of reliability indices, repair process, con-
straint violation and objective function evaluation:
Steps 3—6 are performed for the offspring population.

11) Ranking of combined population: The parent population
and offspring population are then combined and ranked
according to the constrained-domination principle.

12) Replacement: The next generation is formed using the
best chromosomes (with respect to fitness and spread) in
the combined population.

13) Termination: If termination condition is satisfied then
trade-off non-dominated solutions are obtained else steps
7) to 12) are repeated.

IV. CASE STUDIES AND DISCUSSIONS

In this paper, three case studies are performed using MOGSA
on the TGS problem in uncertain environment considering dif-
ferent optimization models. The dispatch period considered in
all the case studies is 24 hours. It is noted that L., is given in
percent (%) whereas EUE and F,,,, are expressed as a per-
centage of the expected energy demand of the total dispatch
period. The lead time of the system is fixed as 4 hours for all
case studies [14]. All simulations are performed using C plat-
form on a PC with Intel Xeon 2.53-GHz processor and 12 GB
of memory.

A. Case Study 1: Bi-Objective Optimization—System
Operation Cost and Reliability (EUE) as Two Conflicting
Objectives With LOLP as Constraint

In this case study, the TGS problem is solved in uncertain
environment considering a bi-objective optimization model of
minimizing system operation cost along with maximizing relia-
bility (minimizing EUE). This optimization model can be useful
for system operators who look for a reliable generation schedule
while considering the economic objective. A test system of 26
thermal units is chosen for this case study [14].

The parameter settings of the algorithm obtained from exper-
iments for this case study are as shown in Table I. The computa-
tional time requirement of MOGSA in this case study is around
40 min.

In the following sections, the effect of LOLP constraint and
load forecast uncertainty is analyzed.

T T T T T T
700000 710000 720000 730000 740000 750000 760000
System Operation Cost ($)

Fig. 1. P-O fronts for system operation cost v/s reliability (EUE) for 26 unit
system considering unit unavailability for different L, .. values.

1) Effect of LOLP Constraint: Simulations are performed
at first considering the uncertainty due to unit outage alone.
“Pareto-optimal” (P-O) fronts are obtained for no-LOLP con-
straint, L, = 1.5% and 1.0% case as shown in Fig. 1. Fig. 1
shows that as the LOLP constraint gets stricter (i.e., Ly,qx
decreases), the solutions obtained are of lesser EUE objective
value and higher cost.

It is interesting to note from the figure that a knee region
exists for the given problem. This region is important in MOO
problems as it consists of solutions with the maximum marginal
rates of return, i.e., solutions for which a small improvement
in one objective would lead to a large deterioration in the other
objective [20]. Such characteristic of the knee solutions make
them unique to decision makers for practical applications. A
knee region can be visually identified as a convex bulge in the
P-O front [20]. According to Das [21], knee on the P-O front
corresponds to farthest solution from the line formed by joining
the extreme solutions on the P-O front as shown in Fig. 1. The
neighboring solutions to the knee on the P-O front are called the
knee solutions.

It can be seen from Fig. 1 that a good representation of so-
lutions is obtained on the cost-reliability (EUE) P-O front for
no-LOLP constraint case. This P-O front offers the system op-
erators to choose any optimum solution from the wider range
of cost-reliability trade-off solutions. The corresponding LOLP
values for the chosen solution can be determined for every hour.
However, when the problem is constrained with L,,,4,, = 1.5%
and 1.0%, the region of non-dominated solutions is limited as
can be seen in Fig. 1. Fig. 1 depicts that the knee region lying
above the knee is lost if an arbitrary value is assigned for L4,
as observed with L,,,,, = 1.0%.

However, as L,,.. = 1.5% constraint is found to cover
the knee region, rest of the simulations in this paper consider
Lor = 1.5%. It is noted that L,,,,,. is a user-defined limit and
can be set to any value as desired by the user.

2) Effect of Load Forecast Uncertainty: Simulations are fur-
ther performed by incorporating uncertainty due to both unit
outage and load forecast error in this study. Fig. 2 shows the
P-O fronts corresponding to L,,,, = 1.5% constraint and
standard deviation (S) of 1%, 3% and 5% in load forecast uncer-
tainty. It can be observed that the P-O front obtained for lower S
value dominates the P-O front obtained for higher S value. The



1350

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 28, NO. 2, MAY 2013

TABLE II
COMPARISON OF BEST COST AND SPINNING RESERVE FOR DIFFERENT EUE VALUES AND LOAD FORECAST UNCERTAINTIES
S=1% S=3% S=5%
C7 Cl11
ci 2 3 C4 cs _cilen| <8 c9 0| _cs-ca
EUE Best Spinning | Spinning Best Spinning | Spinning | Increase in Best Spinning | Spinning | Increase in
(%) Cost Reserve | Reserve Cost Reserve Reserve Cost Cost Reserve Reserve Cost
® MW) (%) ® (MW) (%) ® ® (MW) (%) &)
0.03 | 714082 8172 14.88 714978 8494 15.47 896 717279 9255 16.85 2301
0.02 | 715734 8742 15.92 716920 9110 16.59 1186 720553 10156 18.50 3633
0.01 | 718001 9418 17.15 720826 10219 18.61 2825 727909 11790 21.47 7083
0.07
0081 $2267 with further decrease in EUE from 0.02 to 0.01. This
005 5o kind of comparison demonstrates to the SO that how much ex-
;? S=3% . . . .
% - e act.1y he;/she should compromise in cost to attain higher level of
2 reliability.
2 "% In literature, generally most of the studies adopt deterministic
% 0.02- criteria for evaluating the SSR requirements. For example, the
© ol most common criteria adopted in practice are that the reserve
e ——— should be at least equal to the capacity of the largest unit or a
i specific percentage of the hourly system load. Such determin-

T T T T T T T
710000 720000 730000 740000 750000 760000 770000
System Operation Cost ($)

Fig. 2. P-O fronts for system operation cost v/s reliability (EUE) for 26 unit
system considering unit unavailability and different values of load forecast un-
certainty and L, 0. = 1.5%.

reason behind the shift in P-O fronts as the load forecast un-
certainty increases can be analyzed from Table II. For example,
consider the horizontal line L1 in Fig. 2 that is drawn corre-
sponding to EUE = 0.03. The solutions just below the line
L1 on the three P-O fronts are compared for cost and system
spinning reserve (SSR). It can be observed from Table II that
for a particular EUE objective value (in this example 0.03), as
the load forecast uncertainty increases; more SSR gets sched-
uled automatically to maintain the reliability level (close to EUE
= 0.03 here) and thus results in higher cost. The solution’s cost
corresponding to EUE = 0.03 increases by $896 with increase
in load forecast uncertainty from S = 1% to S = 3% (as shown
in column C7 of Table II) and increases by further $2301 with
increase in load forecast uncertainty from S = 3% to S = 5%
(as shown in column C11 of Table II). Similar observations from
rows corresponding to EUE = 0.02 and 0.01 show that the in-
crease in solution’s cost with increase in load forecast uncer-
tainty is considerably higher if the desired reliability level is
higher (i.e., EUE is lower). This illustrates the importance of
accurate load forecasting as the amount of savings that can be
made with better load forecasting is substantial.

To analyze solutions on a particular P-O front, the front cor-
responding to S = 1% is chosen here. Three horizontal lines
L1, L2 and L3 are drawn corresponding to EUE = 0.03, 0.02
and 0.01. The solutions on the P-O front just below these lines
are compared for their cost and SSR. Table II shows that for
a particular case of load forecast uncertainty (in this example
S = 1%), as the solution’s reliability level increases (i.e., EUE
value decreases); its scheduled SSR also increases which re-
sults in higher cost. The increase in solution’s cost when EUE
value decreases from 0.03 to 0.02 is $1652 and the increase is

istic approaches have the disadvantage of not being able to con-
sider the uncertainties in the problem. However, it is noted that
the SSR gets scheduled automatically in the presented approach
according to the desired level of reliability as discussed above.

3) Comparison and Discussion: In this section, the results
obtained above are compared with the results presented in the
study of Simopoulos ef al. [14] where the TGS problem was
solved considering system operation cost as the single objec-
tive with reliability (LOLP and EUE) as constraint. The au-
thors in study [14] used SA for finding the optimum schedule of
the generating units while the economic dispatch problem was
solved separately for each hour through a quadratic program-
ming routine.

The significance of setting reliability (EUE) as an objective
(rather than a constraint) and the motivation behind solving the
TGS as a MOO problem is explained in the following com-
parison and discussion. For comparison, the P-O front corre-
sponding to S = 5%, L4 = 1.5% is chosen here and shown
in Fig. 3. The same problem was solved in study [14] with
FEoar = 0.05% constraint. It can be seen that all the solu-
tions contained in the P-O front in Fig. 3 satisfy the constraint
of Fue = 0.05%. The region lying above the line L1 in the
P-O front is expanded and shown in Fig. 4.

InFig. 4, the vertical line L1 on the left coincides with the best
cost solution ($716 536) obtained from our proposed approach
while the vertical line L2 on the right coincides with the best cost
solution ($716 862) obtained in the study [14]. It is noted that
though both the best cost solution obtained in study [14] and in
our proposed approach meet the constraint of F,,,, = 0.05%,
our result is better by $326. Thus, if the SO decides to choose
our best cost solution then the annual savings in comparison to
the single-objective optimization methodology in [14] can be as
much as $(326 x 30 x 12) i.e., $117 360 which is quite signifi-
cant. The generation schedule and corresponding costs for our
best cost solution ($716 536) are shown in Table III. Further,
it is also observed from Fig. 4 that there are many solutions
in between the two vertical lines obtained from our proposed
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Fig. 4. Enlarged view of the region lying above line L1 in Fig. 3.

multi-objective approach which are better than the best cost so-
lution obtained in the study [14].

Another important advantage of setting reliability (EUE) as
an objective is that the complete trade-off P-O solutions be-
tween cost and reliability (EUE) are obtained in one single run
of MOGSA. The P-O front exactly shows the nature of the
trade-off between cost and reliability and by comparing solu-
tions on a particular P-O front (as we demonstrated earlier), the
SO can comprehend that exactly how much he/she should com-
promise in cost to achieve higher reliability.

Considering the uncertainty due to both unit outage and load
forecast error, the best solution (in terms of cost) obtained using
MOGSA is compared against the best solution obtained in study
[14] by performing ten simulations for different cases as shown
in Table IV. It can be observed from Table IV that MOGSA
performed better than the benchmark in terms of best cost and
average cost in all the cases. The worst cost for the ten runs was
also better than the benchmark except in one case. This shows
the robustness and the consistency of MOGSA in solving the
TGS problem in uncertain environment.

B. Case Study 2: Bi-Objective Optimization—System
Operation Cost and Emission Cost as Two Conflicting
Objectives With Reliability (LOLP and EUE) as Constraint

In this case study, the TGS problem is solved in uncertain
environment considering a bi-objective optimization model of
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minimizing system operation cost and emission cost. The un-
certainties relating to unit outage and load forecast error are in-
corporated by implementing reliability (LOLP and EUE) con-
straints. This optimization model can be useful for the system
operator where the environmental aspect is equally important as
the economic objective and the system operator is satisfied with
the solution that meets the reliability constraint. A test system of
60 thermal units is chosen for this case study and the results are
compared with our earlier study [1] in which the (same) bi-ob-
jective TGS problem was solved on the same test system in a
deterministic environment.

The parameter settings for this case study are same as shown
in Table I except that the generation number is 50 000. The com-
putational time requirement of MOGSA in this case study is
around 90 minutes. Fig. 5 shows the obtained P-O fronts for
system operation cost and emission cost as objectives and with
reliability constraint (Ep,q» = 0.05%, Lipar = 1.5%) for dif-
ferent load forecast uncertainties (S = 1%, 3% and 5%). Fig. 5
also shows the comparison of results with the results obtained
in our earlier work for the deterministic environment [1]. It is
noted that in study [1], the SSR constraint was imposed to be
minimum 10% of the load demand in each hour.

It can be observed from Fig. 5 that the P-O front obtained
for lesser S value dominates the P-O front obtained for higher S
value as was observed earlier in the case study 1 (in Fig. 2).
The reason is now known from the case study 1 that as the
load forecast uncertainty increases, more SSR gets scheduled.
Fig. 5 also shows that the P-O fronts obtained for the uncer-
tain environment dominate the P-O front obtained in our ear-
lier study for the deterministic environment [1]. This provides
an important indication that the deterministic criteria of imple-
menting SSR (minimum 10% of the load demand in each hour)
schedules more reserve than required even when considering the
unavailability of generating units and load forecast uncertainty
(S = 1%, 3%, 5%). In a broader context, it also suggests that
the deterministic criteria may be sometimes too conservative.

To quantitatively analyze the effect of load forecast uncer-
tainty on the considered bi-objective optimization problem, two
horizontal lines are drawn corresponding to emission cost of
$2 150000 and $2 100000 and the solutions on different P-O
fronts shown in Fig. 5 are compared for system operation cost.
The comparative results are presented in Table V. It can be ob-
served from Table V that for both the cases the increment in
system operation cost with increase in load forecast uncertainty
is considerably large. This again illustrates the importance of
accurate load forecasting as the amount of savings that can be
made with better load forecasting is substantial. Further, Table V
also shows quantitatively how much the results obtained using
our proposed multi-objective approach are better than the results
obtained in our earlier study [1] in deterministic environment.

C. Case Study 3: Three-Objective Optimization—System
Operation Cost, Emission Cost and Reliability (EUE) as Three
Conflicting Objectives With LOLP as Constraint

In this case study, the TGS problem is solved in uncertain en-
vironment considering system operation cost, emission cost and
reliability as objectives. This case study may be of significance
to those system operators for whom the economic objective,
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TABLE III
GENERATION SCHEDULE AND CORRESPONDING COSTS OF THE BEST COST SOLUTION FOR THE 26 UNIT SYSTEM
Units Hours (1-24)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21, 22 23 24
1 0.0 0.0 0.0 0.0 0.0 0.0 2.4 2.4 0.0 2.4 2.4 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 2.4 0.0 0.0 0.0 2.4 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 2.4 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 153 15.2 1532 15:2 15:2 152 60.2 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 15.2
13 15.2 15.2 15.2 15.2 15.2 15.2 39.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 15.2
12 153 15.2 1512 15:2 15:2 152 46.4 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 15.2
13 0.0 0.0 0.0 0.0 15.2 18.2 27.1 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 58.1 15.2
14 0.0 0.0 0.0 0.0 0.0 250 25.0 735 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 25.0 25.0
15 0.0 0.0 0.0 0.0 0.0 0.0 25.0 90.7 80.8 100.0 | 100.0 | 100.0 | 100.0 85.7 100.0 | 100.0 96.3 73.3 90.5 97.7 100.0 71.0 25.0 0.0
16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.5 78.4 100.0 | 100.0 | 100.0 | 100.0 83.4 100.0 | 100.0 72.9 75.8 28.7 7315 100.0 28.1 25.0 0.0
17 155.0 | 155.0 | 140.9 140.6 | 155.0 | 155.0 | 155.0 155.0 | 155.0 | 155.0 155.0 | 155.0 | 155.0 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0
18 123.9 | 144.7 | 135.7 | 128.1 | 154.9 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0
19 106.2 | 115.8 | 104.8 | 119.5 | 119.7 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0
20 119.3 | 118.9 113.0 | 116.2 | 109.6 | 149.2 | 155.0 155.0 | 155.0 | 155.0 155.0 | 155.0 | 155.0 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 | 155.0 155.0 | 155.0 | 155.0 | 139.2
21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 69.0 69.0 85.7 105.1 78.1 78.1 69.0 105.7 | 130.9 69.0 69.0 69.0 69.0 88.1 69.0 69.0 0.0
22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 69.0 69.0 69.0 109.9 69.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0 0.0 0.0
23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0 0.0 0.0
24 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0
25 400.0 | 400.0 | 400.0 [ 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 [ 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 [ 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0
26 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 | 400.0
Total
'(’;I‘Ax; 1700.0(1730.0|1690.0|1700.0|1750.0|1850.02000.0 | 2430.0 | 2540.0 | 2600.0 | 2670.0 | 2590.0 | 2590.0 | 2550.0 | 2620.0 | 2650.0 | 2550.0 | 2530.0 2500.0 [ 2550.0 [ 2600.0 | 2480.0 | 2200.0 | 1840.0] 54910.0
C:s‘t‘ezs) 18556 | 18914 | 18436 | 18553 | 19262 | 20836 | 23400 | 32151 | 34763 | 36027 | 37797 | 35763 | 35763 | 34955 | 36497 | 37265 | 34956 | 34573 | 34013 | 34956 | 35997 | 33631 | 27305 | 20714 | 715084.3|
(s:s':""p o o 0 o | 812 |1305]|1305 7834|3264 o 0 0 o 0 0 o 0 0 o 0 o o 0 o | 14521
TABLE IV
COMPARISON FOR VARIOUS RELIABILITY LEVELS AND LOAD FORECAST UNCERTAINTY VALUES
Evo | Luw | S | BestCost | BestCost 1 pigr | Ay cost | AveCost | pigp | worsg | WorstCost | gy,
(%) (%) (%) ) (benchmark) ®) ) (benchmark) ) Cost ($) (benchmark) )
($)[14] ($) [14] ($) [14]
0.05 1.5 0 710678 712067 -1389 710700 712704 -2004 | 710760 713473 -2713
0.05 1.5 1 710948 712216 -1268 711349 712384 -1035 | 712912 712638 +274
0.05 1.5 3 712582 713855 -1273 713628 714119 -491 714102 714390 -288
0.05 1.5 5 716536 716862 -326 716651 717098 -447 716775 717318 -543
2300000 TABLE V
COMPARISON OF SYSTEM OPERATION COST FOR DIFFERENT
2250000 EMISSION COST AND LOAD FORECAST UNCERTAINTIES
System operation cost and | System operation cost and
& 2200000 increment corresponding to | increment corresponding to
g emission cost of $2150000 emission cost of $2100000
& — Cost ($) Increment ($) Cost ($) Increment ($)
2 S=1% 3358951 - 3414408 -
E S=3% 3394293 29553 3457087 42679
2100000 S =5% 3460228 66257 3559383 102296
Study [1] 3467784 7506 3598844 39461
2050000 4

T T T T T T
3300000 3350000 3400000 3450000 3500000 3550000 3600000
System Operation Cost ($)

Fig. 5. P-O fronts for system operation cost v/s emission cost considering unit
outage and different values of load forecast uncertainty for £,,.. = 0.05%.
Lyas = 1.5% and comparison with our earlier study [1] on 60 unit system.

emission objective and reliability objective all are equally im-
portant and who would like to solve the TGS problem as a truly
MOO problem to avail of trade-off opportunities thus offered.

Simulation is performed considering the uncertainty due to
both unit outage and load forecast error on the same test system
of 60 units as used in case study 2. It is noted that since in this
case study the objective space is relatively quite large (because
of three objectives), the algorithm requires large population size
as well. However, the authors’ observed that the algorithm ex-
plores many solutions with very high reliability but with very
high system operation cost and high emission cost which may
not be that attractive to the system operator. Hence, the authors’
introduce two additional constraints in this case study related
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Fig. 6. P-O solutions for system operation cost v/s emission cost v/s relia-
bility (EUE) for L.ya. = 1.5%.5 = 5%, Cost,a. = $3600000 and
Emission .. = $2300000 on 60 unit system.

TABLE VI
RESULTS FOR HYPERVOLUME INDICATOR (1 7;)

Case Best Median Worst Mean Std.Dev.
Study
1 0.0020 0.0026 0.0032 0.0026 0.0003
2 0.0065 0.0351 0.0821 0.0352 0.0216
3 0.0485 0.0565 0.0680 0.0568 0.0051

to maximum system operation cost (8) and maximum emission
cost (9) so that the algorithm’s resources (i.e., population) and
time are not wasted in searching the undesirable solutions.

The parameter settings for this case study are same as
shown in Table I except that the population size is 500 and
generation number is 50 000. The values set for C'ost, ., and
Emission,,, are $3600000 and $2 300000, respectively.
The computational time requirement of MOGSA in this case
study is around 3.75 hours. Fig. 6 shows the P-O solutions
obtained for simultaneously optimizing the three objectives
with L0, = 1.5% constraint and S = 5% load forecast
uncertainty.

Now, the results obtained in this case study are compared
with the results obtained in case study 2. The difference in these
two case studies is that in this case study reliability (EUE) is
an objective along with system operation cost and emission
cost whereas it is a constraint (F,,,,, = 0.05%) in case study
2. Hence, in case study 2 the algorithm was directed towards
finding non-dominated solutions that exhibited trade-off with
respect to economic and emission objectives and satisfied the
reliability constraint while in case study 3 the algorithm was
directed towards finding non-dominated solutions that exhib-
ited trade-off with respect to all the three objectives. It can be
seen in Fig. 6 that all the P-O solutions satisfy the constraint
of I, = 0.05% as the P-O solutions in case study 2 did.
However, the P-O solutions obtained in case study 2 cannot
be distinguished on the basis of reliability as all solutions sat-
isfy the same reliability constraints of E,,,, = 0.05% and
Lior = 1.5% whereas the P-O solutions obtained in this case
study exhibit a trade-off with respect to reliability too and cover
a wide range of EUE (0.002-0.032) as can be seen in Fig. 6.
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Hence, we can say that the P-O solutions obtained using the
three-objective optimization model are more informative and
provide more trade-off opportunities than the solutions obtained
in case study 2.

SO may according to his/her preference choose to solve the
TGS problem by considering any of the optimization model
presented in this paper. However, based on the case studies
presented in this paper, a systematic procedure is presented to
choose a single solution for the TGS problem. It was observed
in case study 1 that solutions with better cost are obtained by
considering reliability as an objective rather than a constraint.
Further, it was observed from the comparison of results obtained
in case study 2 and 3 that solving the TGS as a reliability-con-
strained problem cannot present trade-off with respect to relia-
bility. Hence, the authors’ suggest that the TGS problem should
be first solved as a truly MOO problem as in case study 3. After
the non-dominated solutions are obtained as in Fig. 6, the SO
may then according to his/her experience or choice put a con-
straint on reliability and eliminate the solutions not meeting the
reliability constraint. This will leave the SO with a sub-set of
solutions. The SO may then next put a constraint on emission
cost and similarly eliminate the solutions not meeting the emis-
sion constraint. This will leave the SO with even smaller sub-set
of solutions. The SO can then next just choose the solution with
minimum system operation cost.

V. QUANTITATIVE PERFORMANCE ASSESSMENT

Multi-objective evolutionary algorithms are randomized
search algorithms and stochastic in nature. Thus, if an MOEA
is applied several times to the same problem, each time a
different Pareto set may be returned. Therefore, there is a need
to conduct performance assessment of the algorithm. In this
paper, quantitative performance assessment of the proposed
algorithm MOGSA has been done using hypervolume indicator
(I;) [22]. Hypervolume indicator (/z) is a performance
metric that measures the hypervolume of that portion of the
objective space which is weakly dominated by the Pareto set
found by the algorithm. This indicator evaluates the closeness
and diversity achieved by the algorithm in a combined sense
[19]. Hypervolume indicator ({,;) calculates the hypervolume
difference of the Pareto set with respect to the reference set and
smaller values of (1) (i.e., close to zero) correspond to higher
quality [22]. MOGSA is executed for 25 runs with different
initial population. The reference set is created by choosing the
non-dominated solutions from union of non-dominated solu-
tions over 25 runs. Hypervolume indicator (/) is evaluated
for each of the three case studies and the quantitative perfor-
mance assessment results are shown in Table VI. It is observed
from Table VI that the best, worst, mean, median and standard
deviation of (/) lies close to zero in each of the three case
studies. This shows consistent performance of MOGSA over
25 different runs in each of the three case studies and validates
the stability of the proposed algorithm.

VI. CONCLUSION

System operators generally solve the day-ahead TGS
problem as a constrained single-objective optimization problem
in deterministic environment. In this paper, we presented a
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realistic multi-objective approach for solving the day-ahead
TGS problem in uncertain environment. We proposed three
different MOO models that may be chosen by the SO according
to his/her own preference.

Overall, solving the TGS as a realistic MOO problem in un-
certain environment using the presented approach provides the
following advantages to the SO. In one single run of MOGSA,
the entire P-O front is obtained that not only provides solu-
tion with better cost (as compared to solving the problem as
a constrained single-objective optimization problem) but also
presents a trade-off with emission cost or/and reliability (de-
pending upon the optimization model). Moreover, the SSR gets
scheduled automatically according to the level of reliability.

This paper discussed various advantages in solving the TGS
problem as a realistic MOO problem in uncertain environment
that should convince the SO to adopt the proposed multi-objec-
tive approach. The paper also demonstrated efficacy and con-
sistent performance of MOGSA in solving the day-ahead TGS
problem in uncertain environment for diverse set of objectives.
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