MA 201 Complex Analysis
Lecture 2: Open and Closed set
Some Basic Definitions

- **Open disc**: Let $z_0 \in \mathbb{C}$ and $r > 0$ then, $B(z_0, r) = \{z \in \mathbb{C} : |z - z_0| < r\}$ is an open disc centered at z_0 with radius r.

- **Deleted Neighborhood of z_0**: Let $z_0 \in \mathbb{C}$ and $r > 0$ then, $B(z_0, r) - \{z_0\} = \{z \in \mathbb{C} : 0 < |z - z_0| < r\}$ is called the **deleted neighborhood** of z_0.

- **Interior point**: A point z_0 is called an **interior point** of a set $S \subset \mathbb{C}$ if we can find an $r > 0$ such that $B(z_0, r) \subset S$.

- **Boundary points**: If $B(z_0, r)$ contains points of S and points of S^c every $r > 0$, then z_0 is called a **boundary point** of a set S.

- **Exterior points**: If a point is not an interior point or boundary point of S, it is an exterior point of S.

Some Basic Definitions

- **Open Set:** A set $S \subset \mathbb{C}$ is **open** if every $z_0 \in S$ there exists $r > 0$ such that $B(z_0, r) \subset S$.

- **Exercise:** Show that a set S is an open set if and only if every point of S is an interior point.

- **Connected Set:** An open set $S \subset \mathbb{C}$ is said to be **connected** if each pair of points z_1 and z_2 in S can be joined by a polygonal line consisting of a finite number of line segments joined end to end that lies entirely in S.

- **Domain/Region:** An open, connected set is called a **domain**. A domain together with some, none or all of its boundary points is called a **region**.
Some Basic Definitions

- **Bounded Set:** A set $S \subset \mathbb{C}$ is **bounded** if there exists a $K > 0$ such that $|z| < K \ \forall \ z \in S$. We say S is **unbounded** if S is not bounded.

- **Limit point/Accumulation point:** Let ζ is called an limit point of a set $S \subset \mathbb{C}$ if every deleted neighborhood of ζ contains at least one point of S.

- **Closed Set:** A set $S \subset \mathbb{C}$ is **closed** if S contains all its limit points.

- **Exercise:** Show that a set S is closed if and only if S^c is open.

- **Closure of a Set:** The closure of a set $S \subset \mathbb{C}$, denoted by \bar{S}, defined by the set S together with all its limit points.

- **Exercise:** Show that a set S is closed if and only if $\bar{S} = S$.