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The classical definition of Probability was introduced formally by James Bernoulli (1654-1705)
where he defines the probability of an event as the ratio of the number of outcomes favorable
to an event to the total number of all possible equally likely outcomes. There were obvious
difficulties with this definition.
Richard von Mises proposed a definition of probability which was based on empirical observa-
tions. We should have observations obtained either by repeating an experiment a large number
of times, or from some mass-phenomena.
If A is an event and if the experiment is performed n times of which Nn(A) is the number of

times A occurred, then he claimed that the relative frequency of occurrence of A given by Nn(A)
n

tends to some constant value as n grows larger and larger, which is the probability of A.
That is, P (A) = limn→∞

Nn(A)
n

.

The axiomatic definition was given by A.N. Kolmogorov.

Axiomatic definition of probability: Initial attempt
Given a nonempty set Ω and the power set of Ω (denoted by say PΩ), a function P : PΩ → R is
called a probability measure if it satisfies the following axioms.

1. P (A) ≥ 0 for all A ⊆ Ω.

2. P (Ω) = 1.

3. If Ai for i = 1, 2..... is a sequence of mutually exclusive (disjoint) subsets of Ω then
P (∪∞i=1Ai) =

∑∞
i=1P (Ai).

The following example illustrates that defining probability for all subsets of Ω may not always
be possible or desirable.
Example 1: Let Ω = {1, 2, ..., 60}.
Take A = {ω ∈ Ω : ω is a multiple of 3} and B = {ω ∈ Ω : ω is a multiple of 4}.
Define P (A) = N60(A)

60
, where N60(A) is the number of times A occurs in Ω.

Hence P (A) is the proportion of the number of elements which belong to A to the total number
of elements in Ω.
Similarly for any S ⊆ Ω, we can define P (S) = N60(S)

60
.

Now consider the changed problem where Ω = N, the set of natural numbers.
Let us see if we can use the above definition of P to get a probability measure (that is a P
satisfying all the three axioms) for each and every subset of Ω.

For any S ⊆ Ω, let P (S) = limn→∞
Nn(S)

n
,

where Nn(S) is the number of times S occurs in the first n natural numbers.
If A is defined as before then note that
Nn(A)

n
= m

3m
if n = 3m.

= m
3m+1

if n = 3m + 1.
= m

3m+2
if n = 3m + 2.

Hence for all n ∈ N, 1
3+ 6

n−2

≤ Nn(A)
n

≤ 1
3
.
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Hence P (A) = limn→∞
Nn(A)

n
= 1

3
.

Similarly P (B) = limn→∞
Nn(B)

n
= 1

4
.

Let C = {2}.
Then Nn(C)

n
= 0

n
for n = 1

= 1
n

for n ≥ 2.

Hence P (C) = limn→∞
Nn(C)

n
= 0.

Hence P (C) = 0 for any singleton set C.
But Ω = N = ∪i∈N{i}, hence if P satisfies the 3rd axiom then P (Ω) =

∑
i P ({i}) = 0 6= 1, which

contradicts the 2nd axiom.
Hence this P defined on the power set of Ω does not satisfy all the three axioms but this P gives
meaningful probabilities for sets like A and B. That is this P works well for certain subsets of
Ω but it cannot be defined for all subsets of Ω.
Hence as this example suggests, depending on our objective we may have to choose from the set
of all subsets of Ω, certain subsets (not all) of Ω on which to define a probability measure P .
Let us denote this collection of subsets of Ω by A.

Definition: A nonempty collection of subsets A of a (nonempty set) Ω is called a sigma
field of subsets of Ω if it satisfies the following properties:

1. If A ∈ A then Ac ∈ A.

2. If Ai ∈ A for all i = 1, 2.... then
⋃∞

i=1 Ai ∈ A.

Definition: A nonempty collection of subsets A of a (nonempty set) Ω is called a field of subsets
of Ω if it satisfies the following properties:

1. If A ∈ A then Ac ∈ A.

2. If Ai ∈ A for i = 1, 2....n, n ∈ N then
⋃n

i=1 Ai ∈ A.

Exercise: Note that condition (2) in the definition of a field is equivalent to the condition that
for any two sets A1, A2 ∈ A, A1 ∪ A2 ∈ A. Use induction to see this.

Example: Consider the example of tossing a coin twice successively.

1. A1 = {φ, Ω, {HT}, {TH, TT,HH}}

2. A2 = {φ, Ω, {HT}, {TH}, {TH, TT,HH}, {HT, TT, TH}, {HT, TH}, {TT,HH}}
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are all fields and sigma fields of subsets of Ω.
Remark: Note that a sigma field is always a field but the converse is not true.
Example: Let Ω = N and let A = {A ⊆ Ω : either A or Ac is finite }.
For all n ∈ N, let An = {2n}, then An ∈ A for all n.
If A is a sigma field,

⋃
n An = {ω ∈ Ω : ω = 2n for some n ∈ N} should also belong to A.

But since neither
⋃

n An nor (
⋃

n An)c = {ω ∈ Ω : ω = 2n− 1, for some n ∈ N} is finite⋃
n An does not belong to A. So A is not a sigma field.

However A is a field.
A 6= φ is obvious.
Let us assume A ∈ A then either A = (Ac)c or Ac is finite so Ac ∈ A.
Let A,B ∈ A.
If both A and B are finite then A ∪B is also finite hence A ∪B ∈ A.
If both A and B are not finite or at least one of them is infinite (countably infinite) then
since A,B ∈ A at least one of Ac or Bc is finite, hence Ac ∩ Bc = (A ∪ B)c is finite, hence
(A ∪B) ∈ A.
⇒ A is a field.

Hence the definition of probability.

Axiomatic definition of probability: Given a nonempty set Ω and a sigma field of
subsets of Ω denoted by A, a function P : A → R is called a probability measure if it satisfies
the following axioms.

1. P (A) ≥ 0 for all A ∈ A
2. P (Ω) = 1

3. If Ai for i = 1, 2, ..... is a sequence of mutually exclusive (disjoint) subsets of Ω then
P (∪∞i=1Ai) =

∑∞
i=1P (Ai).

Exercise: For the function P defined in Example 1 can you suggest a sigma field of subsets of
Ω = N on which to define P such that the P will be a probability measure and P (A), P (B) will
be defined.
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