

A Framework for Rapid Deployment of Devices and Robots on a
Network

Raju P. Badapanda, Shivashankar B. Nair,

Department of Computer Science &
Engineering,

Indian Institute of Technology Guwahati,
Guwahati India

Dong Hwa Kim
Department of Instrumentation & Control
Engineering, Hanbat National University,

Daejon South Korea

Abstract: With the advent of an almost omnipresent Internet, the concept of embedding
and controlling devices on a network is fast becoming feasible. This idea has found many
implementations especially in the field of robotics but most of them are limited to the
control of specific robots. A large amount of effort is required in actually realizing the
practical implementation. The need of the day is to devise a tool that can aid device and
robot owners to endeavour and make them available to others over a network. One can
then envisage such devices and robots on a network to co-operate and share both their
resources and knowledge. This paper describes an attempt at building such a tool that can
facilitate the rapid deployment of a variety of robots and devices. The tool, which is made
available as a Wizard in Microsoft .NET platform, enables deployers to expose the
functionality of the devices and robots using web services. The paper also describes the
evolution of the tool and the way its generic nature was tested by deploying dissimilar
robots and a device on the network.

1. INTRODUCTION
Programming robots for real-world applications introduces considerable
difficulties due to the complexity of the task at hand [1]. The advent of laptops, palmtops,
wearable computers and the like, gadgets that help realize ubiquitous computing
[2],[3], coupled with improved and reliable network connectivity, call for not just
the use of computers running software at far off ends but for intelligent robots and also
devices serving physical mobility at remote places. The goal of realizing a community of
remote autonomous robots working in co-operation can be achieved only if the
robot/device owners are encouraged to embed their robots on the Internet. For such
amateur roboticists to graduate to professional robot deployers, numerous diverse
issues have to be looked into and studied before actually embedding them on the
Internet. While on one side the use of the Internet as a medium for transporting and
realizing physical movement at distant and isolated locations is the need of the day, a
common platform that provides robot-independence (analogous to device independence)
is far more desirable. What has therefore to be evolved is a standard to embed, command
and control robots and devices over the Internet. Several attempts have been made in this
direction; the two more prominent ones being the Open Robot Interface (ORiN) [4] and
the R-Cubed Transfer Protocol [5]. ORiN is a system that can be used for standardization
of communication between a personal computer and the robot interface. It allows local
information such as position, torque, number of parts assembled, etc. to be made
available on a network.

There is still more to real world robotics – some robots may be capable of performing one
set of jobs while others may be able to perform yet another. Though this may not be
mutually exclusive, a strategy that will endorse co-operative behaviour in solving
complex problems has to be evolved. A medium and protocol for communication in such
multi-robot scenarios becomes a sine qua non. Connectivity to the Internet should also
ensure availability of web-based information repositories and assisting agents [6,7] to
transform them to useful knowledge.

As on date a number of robots and devices are already on-line [8-10] and ready to use via
the Internet but each has its own custom interface catering to specific commands. A
facility for programming and controlling such robots/devices to meet a user’s needs does
not exist.
In this paper we discuss the formalization of a methodology by which programmers can
deploy robots on the Internet with ease and also allow their functionality to be used and
programmed by remote users.

Based on the studies conducted on some typical robots and devices we have evolved a
framework that can facilitate rapid deployment of robots and devices on the Internet. The
framework has been formulated based on discernible functional decomposition and is
suited against a stack of expertise levels. It is envisaged that the framework will
enable users to command a variety of devices including robots and home
appliances through normal desktops and smart devices. Users may connect to a robot
through a web interface and use the functionality supported by it. They may,
optionally, query a Centralized co-ordinating Server in case they are not aware of the
Universal Resource Locator (URL) of the desired robot/device.

2. FEATURES OF THE FRAMEWORK
The framework enables users to embed robots/devices on Internet. Some noteworthy
points of the framework that render near device independence are cited below.

1. It creates a vertical stack of expertise levels, each of which focuses on certain
part of the complex issues possible to make devices remotely accessible to
users and other peer devices already available in the Internet.
2. It assists developers in writing code for embedding robots in the Internet
and invisibly leads them to conform to certain standards that aid them talk to their
peers.
3. It veils the intellectual properties of the developers involved. Most
manufacturers prefer not to divulge detailed information about the manner in which
their robots and devices are interfaced.
4. It allows even amateur programmers to deploy robots on the Internet and
allows remote users to use and customize the functions exposed facilitating meta-
programming.

We have developed a Wizard that assists the process by automatically generating a

VC++ .NET project with all necessary source-code template-files and conforms to the
framework The underlying architecture follows an emerging paradigm for distributed
computing known as Service Oriented Computing (SOC) [11]. This architecture
effectively encapsulates all device-specific details at the local implementation level and
enables devices to communicate with their clients in terms of higher level primitives

called as services, or more precisely, as web-methods that are accessible just like
function calls across the web. As is evident from its name, the primary element of this
paradigm rests upon a Service [12], an autonomous platform-independent
computational element that can be described, published, discovered and
programmed using standard protocols to build responsive networks of collaborating
distributed applications.

3. ARCHITECTURE
Christened as RobIN-II, short for Robots on the Internet, the framework is

primarily a peer-to-peer distributed architecture, with additional specifications of
how to find one’s peer. Figure 1 illustrates a broad overview of the overall
architecture.

INTERNET

The Client

Central Server

Robot Servers

Yes, one at
www.iitg.ernet.in/robin/le

go.asmx
is available for use

Is a Lego
available on

the web?

UDDI
server

Figure 1 – RobIN-II Architecture

The figure reveals how the initial query is sent to the UDDI server that hosts all

services available on the network. Once the URL is obtained, access is directly made

http://www.iitg.ernet.in/robin/lego.asmx
http://www.iitg.ernet.in/robin/lego.asmx

to the server hosting the robot/device. The figure shows three such robot servers
hosting a LEGO robot, a Robix Rascal robot and an ink-jet printer respectively.
RobIN-II follows a step by step improvement approach similar to the one used by
Reid G. Simmons et al. [10] for Xavier, to make robots/devices appear on the
Internet.

Middle Level Program

End-User Program

 Base Level Program

Registers

WebRobot

LocalRobot

The
Internet

Figure 2 Levels in the Architecture

Using Microsoft .NET platform as a base for development, the RobIN-II

framework assumes three types of programmers described below –

1) The Base Level Programmer (BLP)

Proficient in writing device drivers and tools for hardware, this programmer is the one

who is looked upon synonymously with the manufacturer of the device/robot in question.
The BLP has extensive knowledge of the device at hand and is the sole authority who
writes and supplies device specific code for a customer. This software, which is usually
the device driver itself, comes in the form of DLLs that work in conjunction with the
hardware device controller. The rest of the world only sees and talks to the device driver
to control and command the device.

2) The Middle Level Programmer (MLP)

Conventionally, this programmer is the one who can understand the intricacies of

using and extending functionality of device drivers supplied by the BLP. He is proficient
in at least one of the conventional programming languages and is capable of using the
DLLs and APIs supplied by the BLP, to create custom code for the End-user. In RobIN-
II, the Wizard, frees the MLP, to a great extent, the task of programming and deploying
the robots/devices on the Internet.

3) The End User Programmer (EUP)

 A user of a robot/device is finally forced to deliver a sequence of instructions or
commands that form the end-user program. In RobIN-II, the EUP is basically a
user commanding the robot through a client machine connected to the Internet. The
EUP may also program the robot for command and control, if certain provisions are
made by the BLP and endorsed by the MLP.

Figure 2 schematically depicts the broad levels of task distribution. The view at the
base level is that of registers. The programmer at this level (generally the manufacturer)
views the robot and its interface circuitry as a set of registers and logic gates that have to
be controlled. This set is provided to the MLP, the person who buys and wishes to deploy
the robot. The MLP in turn deploys the robot thereby exposing its functionality to the
EUPs on the network who either merely use the robot or create their own meta-level
programs. Each level handles the details the upper level has abstracted away, and directs
some commands/abstractions to the lower level. The LocalRobot is the robot that is
operable locally at the computer hosting it while the WebRobot is operable remotely,
through the Internet.

4. ROBOT DEVICE DRIVERS – SOME GENERIC VIEWPOINTS

After a study of a variety of robots and devices, it was found that in order to be
operable most devices need to pass through a definite set of sequences. The most
prominent ones have been listed below.

A. Device initialization

After a robot/device interfaced to the hosting machine is powered on, the electronic
or infrared controllers are activated. These active communication paths support the
communication protocol between the device and the host computer as defined by the
manufacturer. The major phases of device initialization are:

1) Configuration loading

Robots are basically a congregation of actuators and sensors, each of which has its own
operation settings. For instance, servo motors of a Robix Rascal robot can be positioned
within a range corresponding to 1 to 1400 units. Similarly the robot as a whole needs
to keep track of a number of sensors and motors attached to it. Though most of the
small scale robots have this information hard coded into their firmware, the larger robots
with variable configuration support need to be initialized. This task is done at this
phase.
2) Loading history-database for intelligent operation

In advanced robots where past experience and intelligence are preserved, reloading the
relevant databases becomes a pre-requisite. This operation has to be performed each time
the robot/device becomes functional.

B. Device operation

Once the device becomes directly operable by the device driver, it is in a position to
accept a command from the user and convert it into a sequence of register operations
supported by the hardware controller of the robot. It can also query the controller for
feedback from the robot/device and pass on the information onto the user.

C. Device clean-up

This is the reverse process of initialization. Before the device is powered down or

disconnected it needs to update some book-keeping information, the most prominent ones
being -

1) Back up of configuration data

If there is any change in the configuration of the device, like, for instance the
elbow servo motor of a robotic hand has been shifted to its shoulder position, then
this needs to be remembered so that the device functions correctly the next time it is
referenced.
2) Updating the Intelligent data store
 The more the experience gathered by an intelligent robotic agent the more decisive its
operation. Thus each session can make it richer in terms of the knowledge it has gathered.
This substantiates the need to update the existing databases.

All the programmable robot/devices come with their own device drivers and the

rest of the world sends commands or requests to these drivers through the relevant
Application Programming Interfaces (APIs) provided along with. Device drivers, as
mentioned, are often made available in the form of a Dynamic Link Libraries (DLLs),
which get loaded into the memory and make the concerned functions available to other
applications. These libraries contain low-level functions and internal data structures to
store a variety of state information about the robot. The low-level functions usually
contain machine code to directly access system resources useful to the robot. During
execution the application should be able to locate the DLL so that it can load it onto
the memory to enable it to dynamically bind to the referred functions. Once the
application has used the functionality provided by the DLL, it should be unloaded from
memory.

5. A CONCISE CASE STUDY
In order to test the generic nature of the Wizard, two robots, a Lego robot rover and a
Robix® Rascal robot, configured as a stationary robotic arm with 6 Degrees of
Freedom were deployed on the Internet. The framework was also used to deploy an ink-
jet printer successfully. Since the printer is a comparatively simple device and unlike
specific robots does not need intricate explanations about the nature of functioning, we
describe how we deployed it using the Wizard.

A Hewlett Packard DeskJet 840c printer, connected to a Windows 2000 machine was
used. Instead of going through the complete documentation and viewing the device from
the manufacturer’s perspective, we created a simple DLL to print a representative “Hello
World” file by invoking the Windows Notepad application on the hosting machine. This
no doubt simplified the BLP’s (manufacturer) task but in no way affected the credibility
of the test. The RobIN-II Wizard shown in Figure 3 was invoked to assist the MLP in the
deployment. Figure 4 lists the files generated using the Wizard.

Figure 3 The RobIN-II Wizard

Figure 4 Files & Classes generated for the Printer

It was found that only a few lines of code had to be altered in five of the fourteen files
created by the Wizard before compiling. The code as well as the files which had to be
touched up are shown in Table 1.

Table 1. Code to be altered for deploying the Printer
File name Line no. Contents to be inserted

14 #define DLL_PATH "C:\\Documents and
Settings\\puneet\\Desktop\\raju\\Deskjet
840c
Printer\\printer_dll\\Debug\\printer_dll.dll
"

managed_printerdll_head
er.h

18 Dll_Func int helloWorld(void);
localprinter.h 21 int printHello(void);
localprinter.cpp 45 // other functions required to support the

advertised webmethods
int localPrinter::printHello(){
 return helloWorld();}

Printer.h 35 String __gc*
Hello_World_to_the_Printer();

Printer.cpp 13-26 String __gc*
webPrinter::Hello_World_to_the_Printer(
)
 { if (Printer->printHello())
 return "Successfully
printed";
 else
 return "there is some
problem"; }

These minor alterations clearly depict the drastic reduction in work on part of the MLP. A
conventional C programmer can easily comprehend the meaning of each of the contents
being altered or inserted. When the compiled code was run on the host machine, the
printer became visible on the network in the form of a webservice. Using the Wizard and
adding extra functionality, an MLP can now make all features of a standard printer
accessible over the network.

6. CONCLUSIONS
After deploying two robots and a device, we concluded that Robin-II could certainly
promoted amateur roboticists to professional deployers. With the added Wizard support it
can potentially make almost every programming-savvy person an MLP. By enabling
EUPs to program remotely hosted robots/devices, it opens a plethora of interesting
scenarios. For instance, a EUP can graduate to a Meta level Internet programmer by
using web methods exposed by different robot/device deployers (MLP). Assuming that
each MLP exposes the entire set of primitives (instruction set) of a robot as web
methods a large number of EUPs can pitch in to use web methods of different robots to
program them over the Internet These EUPs may further expose their enhanced web
methods for use by another generation of EUPs, leading to encapsulated web methods
that are highly user-friendly. RobIN-II thus gradually motivates EUPs to narrow the
man-machine barrier over the Internet.

ACKNOWLEDGEMENTS
The authors wish to thank Microsoft Inc. for the funding provided for this work under
their Academic Alliance Scheme. The authors also express their gratitude for the
support rendered by the South Korean Science and Engineering Foundation.

REFERENCES
[1] Harvey I., Husbands P., and Cliff D. Issues in evolutionary robotics. In
J. -A. Meyer, H. L. Roitblat, and S. W. Wilson, Editors, From animals to animates
2: Proceedings of the Second International Conference on Simulation of Adaptive
Behavior, Honolulu, Hawaii, 1992,. The MIT Press, pp. 364-373.

[2] G. S. Sukhatme, Maja J. Mataric, Embedding Robots into the Internet,
Communications of the ACM, May 2000, Vol.43, No.5, pp. 67-73.

[3] Weiser, M. Some Computer Science problems in ubiquitous computing.
Communications of the ACM, July 1993, Vol. 36,No.7.

[4] Open Robot Interface for the Network, http://www.jara.jp/E_ORiN/En_ORiN.htm

[5] R-Cubed Transfer Protocol, R-Cubed Manipulation Language Home Page,
http://www.star.t.u-tokyo.ac.jp/projects/RCML

[6] Malviya M., Nair S.B., “WeBAssistant: An Intelligent Web Agent”, Proceedings of
the International Conference on Information Technology, ICIT’01, Gopalpur-on-sea,
India, December 2001, pp. 351-354.

[7] Nair, S.B., Pandey, V.N., “A Remote Data Mining tool for Agents”, Artificial
Intelligence – Future Trends - Proceedings of the International Symposium on Artificial
Intelligence, ISAI 2001, Fort Panhala, India, Akerkar, R. (Ed.), Allied Publishers, India,
2002, pp.311-316.

[8] http://ranier.hq.nasa.gov/telerobotics_page/realrobots.html

[9] Backes P.G., Tao K.S., and Tharp G.K., “Mars pathfinder mission Internet-based
operations using WITS” in Proc. IEEE International Conference on Robotics and
Automation, , May 1998, pp.284-291.

[10] Simmons Reid, Fernandez J., Goodwin R., Koenig S. and Sullivan J.O, “Xavier: An
Autonomous Mobile Robot on the Web.” Robotics and Automation Magazine, 1999.
Available: http://www.cs.cmu.edu/~Xavier

[11] E-services: a cornucopia of digital offerings ushers in the next Net-based evolution,
Communications of the ACM, Volume 46, Issue 6, and June 2003.

[12] ICSOC04, 2nd International Conference on Service Oriented Computing,
New York City, NY, USA, November, 15-18, 2004.
Available: http://icsoc.org/icsoc04.html

	ACKNOWLEDGEMENTS
	REFERENCES

