

A FRAMEWORK FOR SHARING INTELLIGENCE AMONG MOBILE
ROBOTS ON A NETWORK

Naveen Kumar Toppo Shivashankar B. Nair
Dept of Computer Science and Engineering

Indian Institute of Technology Guwahati, Assam
INDIA, PIN – 781039

{toppo, sbnair}@iitg.ernet.in

ABSTRACT
The use of robots has dramatically expanded the potential
of e-services. Intelligent robotic systems have been
extensively used in a variety of different ways, both in
industry and domestic life. In recent years, several
researchers have been using the Internet as a command
transmission medium to control intelligent robots and
obtain feedback signals. This kind of system limits users to
issue only dedicated commands and does not empower
them to reprogram the system. This paper describes a
framework to deploy robots, access them over a network
and facilitate sharing of knowledge to realize an
intelligent multi-robot society. The paper also discusses
the development of a framework, which can aid in
programming several robots. The framework can also
coordinate their tasks by passing different degrees of
intelligence using web services.

KEY WORDS
Robotics, Internet, Intelligence, Web Services.

1. Introduction

Recent advances in web technology have made it easier to
realize a reliable and widely accessible communication
framework. Remote control via the Internet is a
comparatively young field of research, which has
significant applications in the near future. Robotics,
manufacturing, traffic control, space exploration, health
care, disaster rescue, house cleaning, security, inspection
and tele-presence are examples of such applications. Since
the first robots appeared on the Internet in 1994 [1] an
enormous amount of effort has been undertaken by several
research laboratories to improve the underlying techniques.
However, most of the initial robots on the Web have been
of the industrial type operating within a very structured and
contained environment [2]. Similarly, the first mobile
robots on the Web have been mainly teleoperated systems
[3] with very limited or no autonomy working in highly
structured environments. With the advancement of
technology, teleoperated systems and remote operating
methods [4] have also changed their faces in the same pace.
To get real unbound interaction with a distant
environment, a mobile platform [5] is most adequate. It
has no workspace limitations and thus allows for

movement to places of interest and for real exploration of
distant locations. A major breakthrough in this area has
been the advent of technologies like Web Services in the
.NET framework. Java and Jini have also contributed
greatly to the domain of remote control. While past
research has concentrated largely on robots with a
centralized executive on board, current research has
identified many benefits from distributed robotic systems
[6],[7],[8]. Distributed systems are inherently more
complex than single systems, introducing new challenges
such as synchronizing the distributed set. All the robots
currently deployed on the Internet are mainly teleoperated
[9] systems, designed to to perform some predefined task.
The user does not have much flexibility to maneuver the
robot. These robots lack facilities for reprogramming and
intelligence sharing. Data or knowledge acquired by them
locally cannot be used by or shared with any other robots or
devices on the Internet. The concept of embedding and
sharing intelligence [10] among robots hosted on the
Internet is still in its primitive stages. In this paper we
endeavour this deficit by proposing a framework that takes
into account the issues of storing and sharing information
amongst robots deployed on a network.

The concept of web services in the .NET framework
provides an ideal solution for accessing remote robots via
a device independent platform. The web service
applications also provide safe and secure connections
with the robots. The framework does not confine itself to
computers but also makes the whole operation inter
compatible across devices.

The RobIN-II [Robots on the Internet] [11] is a framework
for deploying robots and devices on a network. It is based
on discernible functional decomposition and is suited
against a stack of expertise levels. It enables users to
command a variety of devices including robots and home
appliances through normal desktop and smart devices.
Users connect to a robot through a web interface and
use the functionality supported by it.

The work described in this paper is an extension of this
framework. While RobIN-II merely facilitates the
deployment of devices, the enhancements described herein
allow for sharing of knowledge and experience gained by

individual robots thereby culminating in the creation of a
co-operative human-robot society over a network.

2. ROBIN II FRAMEWORK

RobIN-II [11] is primarily a peer-to-peer distributed
architecture, with an additional specification of how to
find one’s peer. RobIN-II is based on the service oriented
architecture (SOA) [12]. A wizard developed for RobIN-II,
assists in the creation of template-files for the .NET
environment with specifications that conform to the
framework. RobIN-II follows a step-by-step
improvement approach similar to the one used by Reid
G. Simmons et al for Xavier [13], to make robots/devices
appear on the Internet.

Using .NET as a base for development, the RobIN-II
framework assumes three types of programmers-

1) The Base Level Programmer (BLP)
Base Level Programmers write device drivers for the
specific machine or hardware. They constitute the
programmers employed by the manufacturers of the
robot/device who are fully aware of the hardware.

2) The Middle Level Programmer (MLP)
This programmer is proficient in at least one of the
programming languages and is aware of the techniques
used to couple the software (DLLs, APIs, etc.) supplied by
the BLP, to finally create custom code for the final user.
The wizard in Robin-II frees (to a great extent) the MLP
from the arduous task of programming and deploying the
device on the Internet.

3) The End User Programmer (EUP)
In RobIN-II, the EUP is basically a user commanding
the robot through a client machine. A client could be a
normal desktop machine or some other smart device
connected to the Internet. It empowers the EUP to
program the device for command and control, if certain
provisions are made by the BLP and endorsed by the MLP.

3. iRobIN ARCHITECTURE

The core of the proposed framework christened iRobIN
(Intelligent RobIN) lies in the underlying .NET technology
which is the basis of the RobIN-II framework. By using
RobIN-II as our base we have proposed an intelligence
layer that can assist in sharing and passing information
intelligently amongst the robots. Figure 1 depicts the
overall architecture of iRobIN. All deployed robots strictly
follow the proposed framework explained in the succeeding
sections. Each host acts as a server and mediates an access
with other deployed robots. Each robot has some basic and
some complex functions depending on its purpose and
capability.

Robots are deployed by the MLPs using web services that
allow the EUPs to access and program them if required.
Sharing of information gathered by each robot is achieved
by a set of standardized web methods. These web methods
can be consumed mutually by the robot programs. Their
consumption by a third (human) party (EUP) can facilitate
in multi robot programming over the network that can lead
to a robot-human society on the network.

Figure 1 iRobIN Architecture

Each robot shares information on what it has learnt at the
local machine that controls it. The word information could
mean for instance the various obstacles and situations
explored so far by a mobile robot. The MLP deploys the
robots on the network through the server and publishes its
capabilities and functions using web services, so as to
enable its access remotely over the Web. The .NET
Framework is facilitated by Web Service Description
Language (WSDL). It describes the methods exposed by a
web service and the number of parameters required by
those methods. It provides the information using XML.
Web services are advertised with the help of DISCO
(Discovery of Web Services) so that a user can find these
services on the Web. A user who wants to use the exposed
web services consumes the DISCO file in his/her
application to enable use of the given service. To conform
to the iRobIN framework the MLP has to necessarily
follow a set of specifications which help in transferring and
interpreting information among the robots. The current
version of the framework is being tested using several
mobile robots (LEGO) each having a standard set of web
services conforming to the framework.

Host1 Host2

Host3

Web

MLP
EUP

BLP Application program

intelligence
access point

Legends

Robots consuming each others’ web service
Robot’s web services consumed by application
Connectivity of Server and Robot
Connectivity with the Data Access Point

4. KNOWLEDGE SHARING SCENARIO

Knowledge sharing is imperative to enable a society of
robots to co-exist on a network. A typical scenario when
robots can share information and co-exist is cited below.

A mobile robot R1 stuck at some location is either forced to
take a random move that could jeopardize its existence or
ask for assistance from another robot the Web. Assuming it
goes for the latter option, it is essential that R1 search for
such robots over the network that are similar to itself in
structure and behave in the same or similar environment.
Querying for help to robots whose structure and
environments are vastly different, could result in another
equally or more precarious situation. This calls for a
network wide search for similar robots (structurally and
environmentally). To achieve this every robot deployed in
the iRobIN framework should host its configuration and
environment information in such a manner that it is
available to all other robots on the network. Robots also
maintain a database that contains the information regarding
the sensory conditions when they get trapped in a place and
the action they took to recover from it. These databases are
maintained on the local server hosting the robot and are
updated on the fly. A search mechanism to find the best
match yields the robot (R2 for instance) that is most similar
to the querying robot R1. The database in the server hosting
R2, is searched for the set of conditions in which R1
presently is. If a match is found the task which R2
performed for these conditions is mimicked by R1 thereby
sharing the experience of R2.

4.1 Specifications

iRobIN prescribes that any robot embedded on a server
should publish its web service and maintain all the
information in its local database. The meaning of the word
information has to be interpreted based on the perception of
robot, i.e., in the way the robot views and interacts with the
real world. It pertains directly to the sensors on board the
robot and the tasks it executes. For instance during the task
of exploration if a robot detects an obstacle in the front, it
will make an entry of this information in its database
specifying the kind of obstacle (static/dynamic)
encountered and the side where it was detected. More
detailed and relevant information can also be stored,
depending on the capabilities of the robot.

4.2 Mandatory Functions

The iRobIN framework enforces all MLPs to expose some
mandatory functions and also perform book keeping as
well as information of the configuration of the robot being
deployed and its environment, details of which are
exemplified below-

4.2.1 Configuration Information

This information includes the name of the robot, its type
and number of actuators and sensors. It also includes the
information about the details of the orientation of the
sensor. The information is stored in a file using XML.
Contents of a sample robot configuration is depicted in
Figure2.

T
b

M
R
S
r
S
T
T
L
M
M

4

T
T
a

<!DOCTYPE config>
<config>
 <MAKE>LEGO</MAKE>
 <ROBOTID>Mylego</ROBOTID>
 <STRUCT>ROVER</STRUCT>
 <SENSORS>3</SENSORS>
 <TOUCH1>LEFT</TOUCH1>
 <TOUCH2>RIGHT</TOUCH2>
 <LIGHT1>DOWN</LIGHT1>
 <MOTOR1>OUTA</MOTOR1>
 <MOTOR2>OUTC</MOTOR2>
</config>
Figure 2 A Sample Robot Configuration

he meanings of each of the mandatory tags used are given
elow –

AKE :- Specifies the manufacturer’s name.
OBOTID :- This is used to identify the robot
TRUCT : - It describes the structure of the robot (like
over, caterpillar etc.)
ENSORS :- quantity of sensors
OUCH1 :- Touch sensor
OUCH2 :- Touch sensor
IGHT1 :- Light sensor
OTOR1 :- Motor1
OTOR2 :- Motor2.

.2.2 Environment Information

his conveys the nature about the environment of the robot.
he environment information, is also stored as an XML file
 sample of which is depicted in Figure 3

<environment>
 <shape>RECTANGLE</shape>
 <area>2500sqcm</area>
 <objects>
 <static>3/NULL</static>
 <dynamic>NULL</dynamic>
 </objects>
</environment>
Figure 3 A Sample Representation of a Robot
Environment

The environment information includes among other
aspects, details like the shape, number of obstacles detected
so far and their nature (dynamic or static).

4.2.3 Web services at the Robot Hosts

At each robot host some mandatory web services are hosted
to facilitate the access of the database, configuration and
environment information. The details of these functions
hosted as web services are cited below.

Every robot in the network consumes the dedicated web
services hosted at the IAP. Given the configuration,
environment information and sensor conditions of the
querying robot, the web services at the IAP searches the
network for the best matched robot and returns the solution
along with the corresponding name of the robot server that
supplied the information.

a) Information retrieval function (share())

This function retrieves the solution from the database at the
robot server hosting this service and passes it on to the
requester. For the Lego robot society this function takes
sensor values as input parameters and returns the
corresponding action taken by the local robot.

b) Robot configuration retrieval function (config ())

The function is used to procure the configuration
information of the robot. This function takes no parameters.

c) Robot environment retrieval function (enviro ())

This function provides access to the environment
information of the local robot and does not take any
parameters.

d) Database at the Robot host

This database is an XML file that contains the information
on what the robot has learnt so far. One such file for a
LEGO robot is shown in Figure 4. The contents can be
interpreted as the rule - if TOUCH1 = 1 and TOUCH2 = 0
and LIGHT = 55 then action is TURN-RIGHT. The
contents are constantly updated as the robot learns to
survive in its environment using the MLP deployed custom
learning algorithm.

Figure 4 A Sample Database file for LEGO robot

5. INTELLIGENCE ACCESS POINT

The Intelligence Access Point (IAP) forms the hub of the
iRobIN framework. The IAP is hosted on a server and
facilitates searching for the solutions to queries from the
robots in the network. Figure 5 depicts the working of the
IAP. The dashed lines show the flow of information.

The
confi
conn
that i
there
robot
in th
match

WC =

Wher
in the
on th
envir

WE ={

W

R1 R2

<info>
<TOUCH1> 1 </TOUCH1>
<TOUCH2> 0 </TOUCH2>
<LIGHT1> 55 </LIGHT1>
 <action> RIGHT </action>
</info>
 .
 .
Host1
Figure 5 iRobIN

search is perform
guration and envir
ected robots to the n
s most similar to the
 is a good degree of r
 and the robot that is
e terms of configura
 amongst configurat

 ∑
=

N

i
iS

1

e Si = 1 if the ith sens
 same fashion, else
e querying robot. T
onments of two robo

+∑
=

××
n

i
iSxA

0
(×y

eb
Host2

Intelligence Access Point
Host3
 - Sharing Intelligence

ed by initially, procuring the
onment information of all the
etwork and then finding the one
 querying robot. This assures that
esemblance between the querying
 offering a possible solution, both
tion and environment. The best

ion is found using equation 1.

 (1)

or of both the robots are mounted
Si = 0. N is the number of sensors
he final “distance” between the

ts is found using the equation 2

}+ G)()
000
∑∑∑
===

+÷
n

i
i

n

i
i

n

i
i DSD

 (2)

where A is the area of the environment, S and D are the
number of static and dynamic objects, discovered by the
robot to date, respectively and x and y are constants that
weight the number of these objects. We have taken the
values of x and y as 1 and 2 respectively in our current
studies. The value of G depends on whether the two
environments match. G equals 1 if it is an exact match, else
it is taken to be 0. The total distance is calculated based on
the sum of the distances between the configuration and
environment information obtained using equations 1 and 2.

Total distance = WC + WE

Once the best match is found the IAP searches the local
database of the concerned robot for sensor conditions
identical to that of the querying robot. It retrieves the action
taken for this combination and returns it to the querying
robot as the solution.

The IAP maintains a list of the best matches in order to
enable the querying robot to ask for information from the
remaining set of robots in case the solution from the first
one fails.

The IAP hosts the following web services for realizing the
above searching and sharing of information. The services
can also aid the deployer to write his own custom search
mechanism. (C and E stand for configuration and
environment information respectively, S the sensor values
and R the name of the server which serves the solution.)

1. get_solution() - The querying robot uses this service to
find a solution to its problem. The service accepts the
E, C and S values from the robot, searches and sends
back the action to be taken along with R.

2. get_all_information() - This web service takes no input
parameters and returns the C and E of all robots on the
network together with their respective R values.

3. get_solution_from_server () - It takes as input a
specific R value and the current S of the querying
robot and retrieves a solution from R.

6. WORKING OF FRAMEWORK

The two scenarios described in Figure 6 and Figure 7 show
a broad view of the working of the framework. Scenario 1
depicted in Figure 6 throws more light on the working of
the iRobIN framework. Three robots connected to the three
different servers form the robot hosts. WSi denotes the web
services at host i. In a typical case, the robot at host1 could
be one with a wandering behaviour while that at host2
could be exhibiting photo taxis. If the wandering robot gets
stuck at some place in its environment, it requests for help
via the IAP. The latter in turn finds the best-matched robot
and provides a solution, if it exists from within this robot’s

database. If a valid solution was provided from the database
of the robot at host2, the robot1 builds its trust level on this
robot else it reduces it below a threshold value.

If the robot at host1 again requires a solution it consults the
trust levels it has built and requests the IAP to provide a
solution from this specific robot. If the wandering robot at
host1 were to continuously consult the one at host2, it may
as well forget wandering and learn to exhibit photo taxis as
and when it get stuck, thereby generating specific skills.

Scenario 2 in Figure 7 brings out the scalability of the
framework. If the deployer of robot at host3 wishes, he
may consume the web services of the robots at host1 and 2
to realize his own search strategy thereby bypassing the
mechanisms hosted at IAP.

7. Conclusion

While the RobIN-II framework concentrated
robots on a network, its extension iRobIN
intelligence sharing over the network. The f
scalable in the sense that deployers can add
and host them as web services to allow other
consume them. The IAP serves as a starting m
iRobIN providing the bare initial web service
bed we have currently deployed three Lego
embedded with a unique behaviour. Investiga
intelligence, acquired using Artificial Imm

Intelligence Access Point

Intelligence Access Point

Web

Robot host 3
Robot host2
Robot host1
WS1
 WS2
s
Figure 7 iRobIN - Scenario 2
WS3
web
Robot host3
Robot host2
Robot host1
WS1
WS2
Figure 6 iRobIN - Scenario 1
WS3
on deploying
 focuses on
ramework is
new features
 deployers to
echanism for
s. On our test
robots, each

tions on how
une Systems

[14], can be augmented to the iRobIN framework, is in
progress.

References:

[1] K. Goldberg, Desktop Teleoperation via the World
Wide Web. Proc. IEEE International Conference on
Robotics and Automation, Nagoya, Japan, 1995, 654-659.

[2] Ken Goldberg, Billy Chen, Rory Solomon, Steve Bui,
Bobak Farzin, Jacob Heitler, Derek Poon, Gordon Smith,
Collaborative Teleoperation via the Internet. Proc. IEEE
International Conference on Robotics & Automation, San
Francisco, CA, 2000, 2019-2024.

[3] O. Michel, P. Saucy, and F. Mondada, Khep-
OnTheWeb: An Experimental Demonstrator in
Telerobotics and Virtual Reality. Proc. Virtual Reality and
Multimedia Conference, IEEE Computer Society Press,
Switzerland, 1997, 99-115.

[4] Dirk Schulzy Wolfram Burgardz Armin B. Cremers,
Robust Visualization of Navigation Experiments with
Mobile Robots over the Internet. Proc. IEEE/RSJ
International Conference on Intelligent Robotics and
Systems, Kyongju, Korea, 1999, 942-947.

[5] Sukhatme, G.S. and Mataric, M.J, Embedding Robots
Into the Internet. Communication of the ACM, 43(5) 2000,
67-73.

[6] Gregory Dudek and Michael Jenkin, A Multi-Layer
Distributed Development Environment for Mobile
Robotics. Proc. International Conference on Intelligent
Autonomous Systems, , Pittsburgh, PA, 1993, 542-550.

[7] http://ic.arc.nasa.gov/projects/psa/

[8] Pui Wo Tsui and Huosheng Hu, A Framework for
Multi-robot Foraging over the Internet. Proc. IEEE
International Conference on Industrial Technology,
Bangkok, Thailand, 2002, 897-902.

[9] Tse Min Chen, Ren C Luo, Remote Supervisory
Control of An Autonomous Mobile Robot. Proc. IEEE
Internat. Symp. on Industrial Electronics, ISIE’97-
Guimaraes, Portugal, 60-64.

[10] Liam Cragg, Pui Wo Tsui and Huosheng Hu,
Building a Fault Tolerant Architecture for Internet Robots
using Mobile Agents. Proc. 1st British Workshop on
(IORW), Reading, May 2003.

[11] Rajendra P. Badapanda, Shivashankar B. Nair, Dong
Hwa Kim, A Framework for Rapid Deployment of Devices
and Robots on a Network. Proc. 1st International

Computer Engineering Conference, 2004, Cairo, Egypt,
625-629.

[12] M.P. Papazoglou and D. Georgakopoulos, Service
Oriented Computing. Communications of the ACM,
46(10), 2003, 25-28.

[13] Simmons Reid, Fernandez J., Goodwin R., Koenig S.
and Sullivan J.O, Xavier, An Autonomous Mobile Robot
on the Web. Robotics and Automation Magazine, 1999.
Available: http://www.cs.cmu.edu/~Xavier

[14] A. Ishiguro, Y. Watanabe, T. Kondo and Y.
Uchikawa, Immunoid, A robot with a Decentralized
Behavior Arbitration Mechanism Based on Immune
System. Proc. 4th International Conference n Automation,
Robotics and Vision,1996, 1600-1605.

