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ABSTRACT

We solve the magnetohydrodynamic (MHD) equations governing axisymmetric flows around
compact objects and found all possible classes of solutions for non-relativistic adiabatic accre-
tion flows. We divide the parameter space in terms of these classes. We study the possibility of
the formation of the MHD shock waves and show how the strength of the shocks depends on
the flow parameters. We also show regions of the parameter space where the shock conditions
are not satisfied and therefore the shocks may oscillate. These solutions are astrophysically
interesting as they could give rise to quasi-periodic oscillations seen in hard X-rays.

Key words: accretion, accretion discs – black hole physics – MHD – shock waves.

1 I N T RO D U C T I O N

Magnetic field is ubiquitous in the Universe. Indeed, in many as-
trophysical circumstances it could even be dynamically important.
Our interest in the present paper is to study the trans-magnetosonic
flow properties in accretion on neutron stars (NSs) and black holes
(BHs) in presence of both radial and toroidal magnetic fields. We
identify all possible types of solutions and divide the region of the
parameter space of the flow in terms of these types of solutions.
We also study the properties of the standing magnetohydrodynamic
(MHD) shock waves and especially the possibility that in a large
region the shocks may be non-steady.

The study of magnetized flows in accretion/winds around stars
and BHs is not new. Earlier attempts include pioneering works by
Mestel (1967) and Weber & Davis (1967), who studied the first quan-
titative models of solar winds in the presence of magnetic fields. In
the context of solar winds, the study of the trans-Alfvénic flows
has been carried out by Pneuman & Kopp (1971), Okamoto (1974,
1975), Yeh (1976) and Sakurai (1985). Chakrabarti (1990) gener-
alized the Weber–Davis model of solar wind for rotating compact
stars and BHs and found a few types of solutions which are rele-
vant to accretion and winds. Almost all the other works have been
devoted to understand the effects of the accretion flows on to the
magnetic field of the NS (e.g. Payne & Melatos 2004). However,
there are a large number of studies in the relativistic wind and jet
formation processes by different groups. Camenzind (1986, 1987)
used relativistic Grad–Shafranov equations to find the outflow struc-
tures across the flow lines in a NS environment. These equations are
the most relevant ones which take care of the lateral pressure of
the flow tubes self-consistently. Takahashi et al. (1990) presented
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detailed analysis of the Alfvén point of the poloidal flow equation in
full Kerr geometry. Their focus was on the poloidal flow equation for
smooth trans-Alfvénic flows which can carry a negative energy in-
flux along the field lines to the event horizon and extract energy
out of the BH. They studied the solutions in the region in between
two light surfaces where the injection of plasma takes place very
close to the BH which then passes through the Alfvén point and the
fast magnetosonic points before entering the BH. Nitta, Takahashi
& Tomimatsu (1991) analytically studied the solution of general
relativistic Grad–Shafranov equation and poloidal wind equation in
Kerr BH geometry in the cold limit (p = 0). They consider the MHD
conditions for the plasma inflows which pass through the Alfvén
critical point. The flow is assumed to originate from the stagna-
tion region outside the BH horizon. They find that for very rapidly
spinning BHs, threading of magnetic field lines is suppressed. This
may have profound implication on the evolution of magnetospheric
structure around the BH. Fendt & Camenzind (1996) and Fendt
(1997) numerically studied two-dimensional flow solutions in Kerr
geometry by solving Grad–Shafranov equations and joined solu-
tions across the light cylinders. From the flow topology close to
the axis, it was observed that the formation of highly collimated
jets from the disc boundary close to the BH is possible. Fendt &
Ouyed (2004) studied ultra-relativistic outflows in the context of
gamma-ray bursts. Li (1993) presented a class of self-consistent nu-
merical solutions of outflows while Contopoulos (1994) presented
an exact solution of the cold, relativistic outflows. Tsinganos et al.
(1996) found a relationship of the characteristics with the critical
surfaces in an outflow. Hirotani et al. (1992) showed that the mag-
netic field threading on to a BH has energies and angular momenta
quite independent of the initial conditions (namely, the initial en-
ergy and angular momentum distribution of matter at the injection
point). They showed that even when the energy injected is positive,
the energy of matter may become negative on the horizon and
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they thus showed that the energy extraction via Penrose mechanism
is possible.

However, so far a complete study of the global nature of the ac-
cretion solutions (primarily the velocity versus radial distance) and
their dependence on the flow parameters have not been explored.
By finding the nature of the solutions, we wish to answer the fol-
lowing questions. (i) What are the number of sonic points in the
flow and what is the dependence on parameters? (ii) What are their
relative locations vis-a-vis the Alfvén point? (iii) Is a given solu-
tion closed or open (i.e. joining infinity to the BH horizon or the
NS surface). A given class can be loosely referred to as a solu-
tion topology. In the present paper, we are focusing our attention
to explore the dependence of the solution topology on the flow
parameters such as the energy and the angular momentum of the
flow. For a given pair of the Alfvén radius and the Alfvén velocity,
we could identify as many as 18 types of solutions and divide the
parameter space according to the nature of these solutions. Some
of these topologies will allow shock formations while others will
not (as we will see below). For this study, we use the so-called
Paczyński & Wiita (1980) pseudo-Newtonian potential which mim-
ics the external geometry of a Schwarzschild BH quite accurately.
We also follow a non-relativistic treatment, and thus our solutions
are not very accurate just outside the horizon. In any case, the ra-
diation outside the horizon is totally redshifted away and is not
observable. While Takahashi et al. (1990) and Nitta et al. (1991)
concentrated on two-dimensional flows just outside the horizon, we
seek solutions of flows incoming from a large distance. In this re-
spect, the solutions we seek are complimentary to those obtained by
these workers.

In many astrophysical circumstances, such as in accretion flows
around stellar mass BHs and NSs, the observed spectrum extends to
a very high energy (∼ a few MeV). One of the ways by which such
high energy radiation could be achieved is through shock acceler-
ation of electrons (Bell 1978). These accelerated charged particles
produce power-law synchrotron radiation in presence of the flow
magnetic field. This has recently been used to explain the spectra
of BH candidates, such as Cyg X-1 (Chakrabarti & Mandal 2006).
Thus, it is advisable to look for solutions which will include the
standing, oscillating or propagating shocks which will do the particle
acceleration. Not only are the shocks important to energize charged
particles, they can also energize low-energy photons through inverse
Comptonization by the hot, post-shock (thermal and non-thermal)
electrons. While the spectral characteristics would be a part of future
discussions, presently we concentrate on the solutions of the MHD
problem which include standing shocks and classify the parameter
space especially emphasizing whether steady or non-steady shocks
are allowed in the accretion flows. Though it is a matter of putting
the right boundary condition (in a steady flow, at least) to distinguish
whether a solution represents an outflow or a disc, and though our
solutions encompass both of them, we generally concentrate on the
accretion solutions in this paper. Since the sub-Alfvénic post-shock
flow behaves like a boundary layer and emits most of the high en-
ergy radiation observed from the BH candidates, this is the most
important region of the flow. As the flow here is non-relativistic, our
treatment should be sufficiently accurate and can be readily used for
computing the spectrum.

In the next section, we write the basic equations which govern
the MHD flows in a pseudo-Newtonian geometry. In Section 3, we
present the sonic point analysis and the sonic point conditions of
the global solutions. In Section 4, we present the complete set of
topologies. In Section 5, we discuss the properties of the standing
shocks in detail and explore the possibility of oscillatory shock

waves. Finally, in Section 6, we discuss the possible astrophysical
applications and make concluding remarks.

2 BA S I C E QUAT I O N S

We start with a stationary, axisymmetric, thin, non-self-gravitating,
non-dissipative, highly conducting, adiabatic flow [P = Kργ , P, ρ

and γ being the isotropic (total) pressure, density and the constant
adiabatic index, respectively] on the equatorial plane of a compact
star. In case of binary systems involving BHs and NSs, it is not
always essential to solve the problems using full general relativity,
thanks to a few simplifying tools such as the Paczyński & Wiita
(1980) potential which allows one to use the Newtonian concepts
while at the same time retaining all the salient features of the space–
time geometry around a compact star. As long as one is not inter-
ested in processes very close to the horizon (say, within one or two
Schwarzschild radii), one may safely use this potential and obtain
sufficiently accurate results. Needless to mention, the potential is
used in much of the astrophysical studies around BHs quite satis-
factorily.

With regard to the flow geometry, we assume that the merid-
ional cross-section of the flow to be wedge shaped in nature. In this
case, the angle subtended by the flow surface is constant through-
out. It has been already shown (Chakrabarti & Das 2001) that
flows of various cross-sections are ‘identical’ as far as the transonic
properties are concerned. Thus, we chose the simpler disc geom-
etry and we expect that the basic results will not depend on this
choice.

We use the flow model to be the same as that of Weber & Davis
(1967) and Chakrabarti (1990). We use the following notations.
ϑ r and ϑφ are the radial and azimuthal components of velocity,
Br and Bφ are the radial and azimuthal components of magnetic
field, φ(r ) = − G M

(r−2G M/c2)
is the gravitational potential due to the

compact object as prescribed by Paczyński & Wiita (1980) and �

is the constant angular velocity of the NS or the BH. While for
NS it is always valid, for a BH one has to be careful, since we are
using a pseudo-Newtonian potential which mimics the non-rotating
BH geometry only. However, we have verified that for the magnetic
fields we are using, when � varies from 0 to 4, the BH spin parameter
varies from 0 to 0.4 only. So the usage of the potential may be
justified. We also assume the Bθ component to be negligible. This
is justified if the flow is sufficiently thin.

MHD flow equations on the equatorial plane are as follows.

(i) The energy conservation equation:

E = 1

2
ϑ2

r + 1

2
ϑ2

φ + γ

γ − 1

p
ρ

+ 	(r ) − Bφ Br�r
4πρϑr

. (1)

(ii) The angular momentum conservation equation:

L = rϑφ − Bφ Brr
4πρϑr

. (2)

(iii) The mass flux conservation equation:

Ṁ = ρϑrr 2. (3)

(iv) The radial magnetic-flux conservation equation:

Brr 2 = C1. (4)

(v) Maxwell’s equation (E = −ϑ × B = 0) for a perfectly con-

ducting fluid on the NS surface:

r (ϑr Bφ − ϑφ Br) = −�C1, (5a)
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where we assumed that on the surface r = rn and ϑ r = 0. In case of
a non-rotating BH, where ϑφ = 0 on r = rg , the horizon, the above
condition becomes

r (ϑr Bφ − ϑφ Br) = rgϑrg Bφg = A(constant). (5b)

We rewrite the equations (1)–(3) as

E = E − L� = 1

2
ϑ2

r + 1

2
ϑ2

φ + na2 + 	(r ) − ϑφ�r , (6)

L = rϑφ − C2r Bφ, (7)

Ṁ = a2nϑrr 2. (8)

Here, we use the definition of adiabatic sound speed, a2 = γ P/ρ

and

C2 = Br

4πρϑr
= C1

4π Ṁ
, (9)

n = 1

γ − 1
, (10)

Ṁ ∼ K n Ṁ (11)

and

ϑφ = ϑr L − �C1C2

rϑr − (C1C2/r )
(12a)

for NSs and

ϑφ = ϑr L + AC2

rϑr − (C1C2/r )
(12b)

for BHs. We use n = 3 throughout the study.
At the Alfvén radius, r = ra and ϑ r = ϑ a = C1C2/r2

a = �C1

C2/L. The total angular momentum L and the angular velocity of
the star � are related by L = �r2

a . The flow variables in geometric
units then become

ϑa = c
c̄
, (13)

ra = G M
ϑ2

a g0
, (14)

where c is the velocity of light, G is the gravitational constant and
M is the mass of the central star. Here, c̄ and g0 are constants to be
obtained by fixing ra and ϑ a and M.

In this paper, we will use the dimensionless quantities: lengths
will be measured in units of the Alfvén radius ra, velocities in units
of the Alfvén speed ϑ a and time in units of ra/ϑ a. In this case, L =
�, Bra = C1 and the product of the constants C1C2 = 1. Thus for
NSs, equation (12a) becomes

ϑφ = (ϑr − 1)�r
ϑrr 2 − 1

(15)

and the energy expression becomes

E = 1

2
ϑ2

r + na2 + 1

2

(ϑr − 1)2�2r 2

(ϑrr 2 − 1)2
+ 	(r ) − (ϑr − 1)�2r 2

ϑrr 2 − 1
.

(16)

The corresponding equations for the BHs can be obtained using
equations (5b) and (12b), respectively.

3 M AG N E TO S O N I C P O I N T A NA LY S I S

In the astrophysical context, matter is accreted on a compact object
either from a binary companion or from the winds of the surrounding
stars. We will be interested in flows which have no viscosity so that
the net angular momentum is conserved. This flow gradually moves
towards the compact star and gains radial velocity due to the strong
gravity. In order to study the flow properties, we first calculate the
radial velocity gradient (dϑ r/dr) by differentiating equations (6)
and (8) and eliminating da/dr which is obtained as (Chakrabarti
1990)

dϑr

dr
= N

D
, (17)

where the numerator N is given by

N = ϑrr

[(
ϑrr 2 − 1

)2
(ϑr − 1)�2 +

[
2a2

r 2
− 	′(r )

r

] (
ϑrr 2 − 1

)3

+ ϑr�
2(1 − r 2)(ϑr − 1)

(
1 + ϑrr 2

)]
(18)

and the denominator D is given by

D = (
ϑ2

r − a2
) (

ϑrr 2 − 1
)3 − (

r 2 − 1
)2

ϑ2
r r 2�2. (19)

Here

	′
s(r ) = g0

(r − r0)2
, (20)

where r0 = 2g0/c̄2. Equations (18) and (19) indicate that both
the numerator and denominator simultaneously become zero at the
Alfvén point (r = 1, ϑ r = 1). Apart from the Alfvén point, they may
vanish at some other points also. These points are called the critical
points and are commonly known as the magnetosonic points in the
context of MHD study. At these points, the flow velocity becomes
equal to the speed of the magnetosonic waves. At the outer edge
of the accretion disc, the radial velocity of the flow remains sub-
magnetosonic as the flow velocity is very small. For a NS accretion,
since on the star surface the radial velocity is again zero, the matter
will accrete submagnetosonically. Thus, the flow may or may not
become super fast- or slow-magnetosonic before touching the star
surface. For a BH accretion, however, the inner boundary condition
is different but unique. Here, the flow enters with the velocity of
light, while the speed of the magnetosonic wave is never so high
due to causality reason. Thus, the matter must cross the horizon
super-magnetosonically. This means that the flow must cross the
magnetosonic point at least once before entering into the BH.

4 B E H AV I O U R O F T H E PA R A M E T E R S PAC E

A N D T H E S O L U T I O N TO P O L O G I E S

We now divide the parameter space into various regions depending
on the nature of the solution topologies in NS and BH accretion.
In Fig. 1, we show this division in energy and angular momentum
plane. Accretion flow solution in BH and NSs differs only through
inner boundary conditions. Thus, for a pair of flow parameters, the
curves representing the solutions (velocity versus distance) remain
the same, and only depend on the flow parameters. In other words,
Fig. 1 is independent of the nature of the compact object. For a
BH accretion, the inner boundary condition is that the flow must be
super-Alfvénic on the horizon, while for a NS accretion, the radial
velocity must vanish. This will distinguish between the branches
relevant for BHs and NSs. For each topology, we need to put a
boundary condition to decide whether the solution is for BH or for a
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Figure 1. Division of the parameter space according to the solution topolo-
gies. See text for more details.

NS. The curves ADE and PG are obtained using theoretical consid-
erations alone, while others would come only from the numerical
solutions.

4.1 Curve ADE

This curve is obtained for the special case where the radial velocity
ϑ r = 0 at all the sonic points. In this case, equations (18)–(19) give
rise to

r 3 + 2r0r 2 + r 2
0 r − g0

�2
= 0. (21)

We incorporate the above condition in the energy conservation equa-
tion and obtained a simplified relation as

E = − g0

r − r0
− �2r 2

2
. (22)

For a given angular momentum L, the location of the sonic point
can be obtained from equation (21), and the energy of the flow is
obtained from equation (22). Below the curve ADE, no solution is
possible.

4.2 Curve PG

This curve is obtained by putting (ϑ r = 1) the other extreme case.
The flow velocity at the magnetosonic point (occurring at r < 1) is
exactly the same as the Alfvén velocity. Setting ϑ r = 1 in equations
(18)–(19), we get

2(1 − �2)r 4 − [4r0(1 − �2) + g0]r 3 + 2
[
r 2

0 (1 − �2) − 1
]
r 2

+ (4r0 + g0) − 2r 2
0 = 0. (23)

Now, we put ϑ r = 1 in the energy equation and obtain

E = 1

2
+ nr	′

2
+ 	. (24)

For a given L, equation (23) gives the location of the magne-
tosonic point. The corresponding energy of the flow is obtained from
equation (24).

Other curves are obtained using the following considerations.
Following Chakrabarti (1990), let us first denote the magnetosonic
points with (i) r < 1, ϑ r < 1, (ii) r < 1, ϑ r > 1, (iii) r > 1, ϑ r < 1
and (iv) r > 1, ϑ r > 1 as ‘Bondi-like Slow’, ‘Bondi-like fast’,
‘rotational slow’ and ‘rotational fast’, respectively. The reason for
giving them these names is this: the inner-most magnetosonic point
occurs even with negligible rotational motion, i.e. in spherical or
quasi-spherical Bondi-like flows. The outer magnetosonic points
occur only because of rotation.

Our findings regarding the parameter space are follows. (i) The
Bondi-like slow magnetosonic points exist in a region surrounded
by the boundary PBEGHP. (ii) The Rotational-slow magnetosonic
points exist in a region surrounded by the boundary ABCFGUA
(for L > 0). (iii) The Rotational-fast magnetosonic points exist in a
region surrounded by the boundary RDEQR and L = 0 and E > 0.
(iv) The Bondi-like fast magnetosonic points exist in a region sur-
rounded by the boundary QGUQ (for L > 0). (v) The region sur-
rounded by the boundary SKTS and shaded by the dots indicates
the region in which magnetosonic shocks may form. (vi) The region
of the parameter space shaded by the dot–dashed lines denotes the
forbidden region for the flow solution. (vii) The region surrounded
by the boundary PCKOTUQP has the solution topologies to form
magnetosonic shocks, but the standing shocks do not form as the
shock conditions are not satisfied.

The entire parameter space spanned by the energy and the angular
momentum of the flow is subdivided further according to the nature
of the solutions. We scanned the complete parameter space to look
for new topologies and obtained 18 distinct types of solutions as
shown in Fig. 2. Each solution type is identified by a Greek alphabet
α, β, . . . , etc. These Greek alphabets in the parameter space denote
the regions of the parameters for which the solutions are drawn.
In Fig. 2, the Bondi-like (slow/fast), rotational slow and rotational
fast magnetosonic points are denoted by r1, r2 and r3, respectively.
When L = 0, since ϑφ = Bφ = 0, the solutions become identical to
Bondi type. Note that there are several curves in each plot, all are
drawn for the same flow parameters. Only the trans-magnetosonic
curve which connects infinity with the horizon (with or without
shock, see below) will be a complete solution for a BH provided
it is also super-magnetosonic in the inner boundary. For a NS, the
appropriate branch (which is submagnetosonic on the star surface)
should be chosen.

We wish to emphasize that even though the usage of the
Paczyński–Wiita potential allows us to follow solutions with rel-
ativistic velocity, the treatment will be incorrect in regions right
outside the horizon, since we are not treating the problem relativis-
tically. A proper treatment would perhaps shift the locations of the
inner sonic points one way or the other, but the topologies are not
expected to be different.

5 S TA N D I N G M H D S H O C K S

It is clear that since the inner boundary condition of a BH accre-
tion is super-magnetosonic, the classes of solutions which are en-
dowed with only one magnetosonic point cannot have shocks in
accretion flows on a BH. However, we note in Fig. 2 that there
are several regions of the parameter space in which the solution
may have two magnetosonic points. If the shock conditions are
fulfilled in between these two points, then an accretion flow, after
passing through the rotational-slow magnetosonic point, will pass
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Figure 2. Solutions of the MHD flows for various (E, L) pairs of conserved
parameters. Greek alphabets mark different types of solutions drawn with
parameters from different regions marked in Fig. 1. Along horizontal axis
is the radial distance in units of the Alfvén radius and along vertical axis
is the radial velocity in units of the Alfvén velocity. The magnetosonic
points are labelled as r1, r2 and r3, respectively. The solution of type α

is obtained when L is zero, and the solution becomes similar to a Bondi
solution. Out of several curves in each plot, a complete solution is the one
which connects, through shock or not, infinity with the horizon or the star
surface.

through a (slow) shock and subsequently pass through a Bondi-
like slow magnetosonic point. Even when the shock conditions are
notionally fulfilled, one has to verify that the entropy at the in-
ner magnetosonic point is always higher compared to that at the
outer magnetosonic point. The difference in entropy is guaran-
teed to be generated at the shock (through turbulence, for instance)
if the shock conditions are fulfilled. The shock conditions are as
follows.

(i) The total energy flux is conserved across the shock:

1

2
ϑ2

r+ + 1

2
ϑ2

φ+ + na2
+ − ϑφ+�r+ = 1

2
ϑ2

r−

+ 1

2
ϑ2

φ− + na2
− − ϑφ−�r−.

(ii) The total mass flux is conserved:

ρ+ϑr+ = ρ−ϑr−.

(iii) The radial momentum is balanced:

p+ + ρ+ϑ2
r+ + B2

φ+
8π

= p− + ρ−ϑ2
r− + B2

φ−
8π

.

(iv) The transverse momentum is balanced:

ρ+ϑr+ϑφ+ − Br+ Bφ+
4π

= ρ+ϑr−ϑφ− − Br− Bφ−
4π

.

(v) The radial magnetic flux is conserved:

Br+ = Br−.

(vi) The field equation is independently satisfied on either side
of the shock:

ϑφ+ Br+ − ϑr+ Bφ+ = ϑφ− Br− − ϑr− Bφ−.

In Fig. 3, we provide examples of the solutions obtained using
parameters from the region SKTS, which possess standing, slow-
magnetosonic shocks. We chose the parameters ϑ a = 1010 cm s−1

and ra = 107cm while the central mass was chosen to be 10 M�
for illustration purpose. In this unit, the Schwarzschild radius is
0.296. The parameter (E, L) pairs are (i) 0.0, 1.4, (ii) 1.5, 1.45,
(iii) 4.0, 1.3 and (iv) 6.0, 1.3, respectively, and the shock locations
are rs = 1.034, 1.153, 1.056, 1.09, respectively. These locations are
thus merely about 3.5rg away. The standing shock locations are also
marked with the vertical dashed lines. The single arrowed curve
represents the solution towards a BH. The double-arrowed curve,
which is sub-Alfvénic throughout the flow, is appropriate for a NS
accretion without a shock transition. The triple-arrowed vertical line
(dash–dotted) indicates a typical shock transition at the boundary
of the NS. Since we are not considering relativistic treatment, the
quantities just outside of the horizon would not be accurate. On the
other hand, radiations from regions right out of the horizon would
be redshifted away and would not be astrophysically relevant. From
the astrophysical point of view, the post-shock region, where the ra-
dial flow is slowed down and the flow becomes hotter, is the most im-
portant one as this is the place where hard X-rays are generated. The
major observational findings are thus the outcome of various physi-
cal processes in the post-shock region which is a few Schwarzschild
radii away. Since this region is submagnetosonic and highly sub-
relativistic, our pseudo-Newtonian approach should be adequate in
this region.

In Fig. 4, we show how the number of magnetosonic points is
determined for a given pair of parameters. The procedure is to draw
two sets of contours in a plane spanned by the sonic point location
and the sonic point velocity. One set is for the specific energy and the
other set is for the specific angular momentum, and see where and
how many times the same pair of contours intersect. For instance,
if we take Case (ii) above, three magnetosonic points are found to
be present. Among them r1 is Bondi-like slow, r2 is rotational slow
and r3 is rotational fast magnetosonic points. The solid curves are
for E = 1.5 and the dashed curves are for L = 1.45. These curves
intersect at three points r1, r2 and r3 which are the magnetosonic
points for this case. These contours are drawn using equations (18)–
(19) given above.
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Figure 3. Four examples of solution topologies with the standing MHD
shock waves. The parameters (E , L) used are (i) 0.0, 1.4, (ii) 1.5, 1.45,
(iii) 4.0, 1.3 and (iv) 6.0, 1.3, respectively. The shock locations are written
in box.

Figure 4. Intersections r1, r2 and r3 of the E = 1.5 (solid) and L = 1.45
(dashed) curves in the critical point (rc) versus critical velocity (ϑrc) plane
represent the actual number and locations of the critical points for this pair
of flow parameters.

In Fig. 5, we show how the strength of the shock (defined by
the ratio of the post-shock Mach number and the pre-shock Mach
number) depends on the flow parameters (solid curves). The angular
momenta used are, from the left- to the right-hand side, 1.45, 1.40,
1.35, 1.30, 1.25 and 1.20, respectively. For a given energy of the flow,
the strength of the shock decreases as the flow angular momentum
increases. On the other hand, for a given angular momentum, shock
strength gradually increases with the decrease of the flow energy.

Figure 5. Variation of the shock strength with the energy and angular mo-
mentum is shown in the lower panel (solid curves), and the ratio of post-
shock to pre-shock values of the azimuthal components of the magnetic field
(dashed curves) is shown in the upper panel. The angular momenta used are,
from the left to the right-hand side, 1.45, 1.40, 1.35, 1.30, 1.25 and 1.20,
respectively. For a given angular momentum, the shock strength decreases
with energy. Switch shock occurs for parameters for which q = 0 is reached.

There is a cut-off in the shock strength for each angular momentum
as the shock ceases to exist there. We also show in dashed curves
how the ratio (post-shock quantity divided by the pre-shock quan-
tity) of the azimuthal components of the magnetic fields behaves
for the same set of parameters. As the ratio approaches zero, we
achieve the limit q = 0 for switch shocks which occur at increas-
ingly higher energy for lower angular momenta. It is to be noted
that the submagnetosonic branch cannot pass through any shocks,
let alone the so-called switch-shocks. Thus, the inner boundary con-
dition of matter rotating with the star is always satisfied.

It may be instructive to study how various flow parameters jump
at the shock locations. In Fig. 6, we present the variations of the
flow density ρ, the azimuthal component of the velocity (ϑφ), the
azimuthal component of the magnetic field (Bφ) and the radial com-
ponent of the velocity ϑ r. At the shock (rs = 1.153), ϑφ drops by
more than 20 per cent, Bφ drops by over 40 per cent, ϑ r drops
by about 30 per cent, while the density goes up by more than
40 per cent.

In order to have a ‘feel’ for some important parameters in physical
units, we note that for ra = 107 cm and ϑ a = 1010 cm s−1, the unit
of time is ra/ϑ a = 10−3 s. Thus, the unit of specific energy E is
1020 cm2 and the unit of � is 103 s−1. For a BH accreting with
specific energy (sum of kinetic, thermal and gravitational) of matter
of around 10 per cent of the rest mass, we have E = 0.9 and � =
6.28. The physical difference in these two cases will be that for a
BH, the mass may be MBH = 10 M�, and hence the location of the
Alfvén radius would be at around ra = 3.3rg . However, for a NS, the
mass may be very low, M ∼ 1 M�, and hence the Alfvén radius is
at ra = 33rg , very far away from the star surface. For a given set of
dimensionless flow parameter, the solution branches being different,
the physical quantities on the branch leading to a BH horizon and
to a NS surface would be different. In Table 1, we compare the flow
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Figure 6. Variations of the flow density ρ, azimuthal component of the
velocity (ϑφ ), radial component of velocity ϑ r and azimuthal component of
the magnetic field (Bφ ) across a slow-magnetosonic standing shock in an
accretion flow.

Table 1. Comparison of the flow variables at the shock for a flow around a
BH of mass 10 M� with that around a NS of mass 1 M�

E � ϑr− ϑr+ na2− na2+ 
na2 
T (o K)

BH 0.0 1.4 0.8309 0.4894 2.2330 2.7314 0.4984 7.55104E+10

NS 0.0 1.4 0.2872 0.0 4.6913 4.7473 0.0560 8.48432E+08

BH 1.5 1.45 0.5362 0.3775 3.7825 4.2966 0.5141 7.78891E+10

NS 1.5 1.45 0.4871 0.0 6.1003 6.2730 0.1727 2.61650E+9

BH 4.0 1.3 0.8195 0.4844 5.2323 6.5674 1.3351 2.02275E+11

NS 4.0 1.3 0.7456 0.0 8.2914 8.6987 0.4073 6.17083E+9

BH 6.0 1.3 0.7448 0.4512 6.9196 8.5496 1.6300 2.46954E+11

NS 6.0 1.3 0.9192 0.0 10.0412 10.6988 0.6576 9.96302E+9

variables at the shock for a flow around a BH of mass 10 M� (ra

and va same as above) with that around a NS of mass 1 M� (ra

same as above and ϑ a = 3.3 × 109 cm s−1 so as to keep g0 and c̄
fixed).

In Fig. 7, we show the nature of the velocity and magnetic field
vector of a typical accretion flow around a NS and a BH on the
equatorial plane. In the case of a NS accretion, we have chosen only
the submagnetosonic flow and the matter is seen to wind up while
rotating along with the star. In the case of the BHs, on the other hand,
ϑφ is identically zero on the horizon and Bφ also disappears. At the
outer edge of the disc, matter with significant angular momentum
starts spiralling towards the central object due to strong gravity.
In the case of neutron star, radial flow velocity gradually dominates
over the azimuthal velocity as matter moves inward. But, close to the
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Figure 7. The nature of the velocity and magnetic fields in accretion flows
around a star (upper panels denoted by NS) and a BH (lower panels denoted
by BH) in the equatorial plane. For the star, only the sub-Alfvénic branch has
been chosen where the inner boundary conditions are satisfied on the sur-
face. On BHs, the trans-Alfvénic branch was chosen to satisfy the boundary
condition on the horizon. The dashed circle is drawn at the Alfvén surface.

star surface, the radial velocity becomes negligible and the matter
acquires the angular velocity of the star on the stellar surface. On
the other hand, in the case of a BH, the radial velocity of matter
increases monotonically as it proceeds towards the BHs and crosses
the horizon radially.

The nature of the magnetic field, in both the cases, is quit sim-
ilar. The radial component of magnetic field dominates over the
azimuthal component of magnetic field as matter proceeds towards
the central object. This is not surprising, since in the present study
radial component of magnetic field varies with inverse square of the
radial distance.

The dashed circle represents the Alfvén radius (r = 1) and the
solid circle near the centre represents one Schwarzschild radius
(r = rg) where the Paczyński–Wiita potential is singular. For NS,
ra = 107 cm and ϑ a = 1010 cm s−1, hence rg = 0.296. The energy
and angular momentum parameters are 1.5 and 1.45, respectively.
For BHs, ra = 3 × 107 and ϑ a = 1010 cm s−1, which yields rg =
0.0988. Here, the energy and angular momentum parameters are
0.7 and 0.5, respectively. For a realistic star, the surface is larger
than r � 3rg and the inner boundary condition is to be chosen at the
surface.

6 C O N C L U D I N G R E M A R K S

In this paper, we have presented all possible topologies of a MHD,
quasi-equatorial, adiabatic flow around compact objects. We di-
vided the entire parameter space spanned by specific energy and
angular momentum of the flow according to different types of the
flow topologies. We show that in a significant region (bounded by
SKTS in Fig. 2) the flow satisfies the standing shock conditions. In
another region (bounded by PCKOTUQP), all the required magne-
tosonic points are present to form a shock, but the shock conditions
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themselves are not satisfied. In Chakrabarti (1990), it was shown that
for an accretion flow, the inner magnetosonic points are endowed
with higher entropy than the outer magnetosonic points and we find
that this is always true. Thus, a perturbed flow, even when the shock
condition is not satisfied, is likely to pass through a shock which
will then oscillate as in the case of the hydrodynamic flow (Ryu,
Chakrabarti & Molteni 1997). Since a post-shock region is hot, the
electrons in this region would inverse Comptonize low-energy pho-
tons from the cooler, pre-shock flow either from the Keplerian disc
or from the synchrotron radiation (emitted in presence of magnetic
fields). These photons are then re-emitted as the hard X-rays. This
has been shown to be the case for non-Magnetic flow (Chakrabarti
& Titarchuk 1995; Chakrabarti & Mandal 2006). Moreover, since
the Alfvén radius could be close to the BH depending on the mag-
netic field, a MHD shock could occur close to the BH and thus the
oscillation period, which is close to the infall time-scale (Molteni,
Sponholz & Chakrabarti 1996; Chakrabarti, Acharyya & Molteni
2004), is likely to be very small. This could give rise to the high-
frequency quasi-periodic oscillations of hard X-rays as observed in
several BH candidates. Thus, we expect that the spectral and timing
properties of BH candidates could be modelled satisfactorily with
magnetized, shocked accretion flows. In future, we plan to carry out
numerical simulations to verify some of these assertions. We also
plan to extend our work with various cooling processes and vis-
cous heating processes. In the context of hydrodynamic flows, such
processes would generally shift the region of the parameter space
where shocks are possible (Das & Chakrabarti 2004).
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