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ABSTRACT

The acceleration of relativistic particles in a viscous accretion disk containing a standing shock is investigated
as a possible explanation for the energetic outflows observed around radio-loud black holes. The energy/space
distribution of the accelerated particles is computed by solving a transport equation that includes the effects of
first-order Fermi acceleration, bulk advection, spatial diffusion, and particle escape. The velocity profile of the
accreting gas is described using a model for shocked viscous disks recently developed by the authors, and the
corresponding Green’s function distribution for the accelerated particles in the disk and the outflow is obtained
using a classical method based on eigenfunction analysis. The accretion-driven, diffusive shock acceleration scenario
explored here is conceptually similar to the standard model for the acceleration of cosmic rays at supernova-driven
shocks. However, in the disk application, the distribution of the accelerated particles is much harder than would
be expected for a plane-parallel shock with the same compression ratio. Hence the disk environment plays a key
role in enhancing the efficiency of the shock acceleration process. The presence of the shock helps to stabilize the
disk by reducing the Bernoulli parameter, while channeling the excess binding energy into the escaping relativistic
particles. In applications to M87 and Sgr A*, we find that the kinetic power in the jet is ~0.01 Mc?, and the
outflowing relativistic particles have a mean energy ~300 times larger than that of the thermal gas in the disk at the
shock radius. Our results suggest that a standing shock may be an essential ingredient in accretion onto underfed
black holes, helping to resolve the long-standing problem of the stability of advection-dominated accretion disks.
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1. INTRODUCTION

The hot, collisionless plasma in advection-dominated accre-
tion flows (ADAFs) around black holes makes them ideal sites
for the Fermi acceleration of relativistic particles because the
gas is so tenuous that a small fraction of the particles can gain
a large amount of energy via multiple interactions with magne-
tohydrodynamical (MHD) waves. The required velocity disper-
sion between the waves may be the result of shear flow, random
turbulence, or bulk compression. The most efficient possibility
is first-order Fermi acceleration due to multiple crossings of a
discontinuous shock. Since it has been known for the past two
decades that advection-dominated accretion disks can admit dy-
namical solutions including standing shocks, it is interesting to
consider the possible role of shocks in accelerating an energetic
population of nonthermal particles which may escape to form
the outflows observed in systems containing underfed black
holes. In this scenario, the concentrated particle acceleration
due to the shock is augmented by additional acceleration result-
ing from the overall (smooth) convergence of the background
flow as it is funneled toward the event horizon.

There are two central questions regarding the possible pres-
ence of shocks in advection-dominated disks. The first question
is whether the presence of the shock can help to stabilize the
disk by reducing the Bernoulli parameter and thereby allowing
the remaining gas to accrete. This would solve the problem of
the large positive values obtained for the Bernoulli parameter
in standard ADAF disks (e.g., Narayan et al. 1997; Blandford
& Begelman 1999). The second question is whether shock ac-
celeration is efficient enough to power the outflows observed
around underfed black holes. In a series of previous papers, the
authors have developed a sequence of self-consistent models for

the dynamics and the particle acceleration occurring in invis-
cid, shocked ADAF disks (Le & Becker 2004, 2005, 2007) and
also in viscous disks (Becker et al. 2008; Das et al. 2009). This
work helped to establish that shock acceleration in the disk can
power the observed outflows in active galaxies and in systems
containing stellar-mass black holes.

In the present paper, we continue to investigate the role of
standing shocks in hot, tenuous accretion disks in order to
understand more fully the nature of the particle acceleration
and transport occurring in the disk, and how that is related to the
structure of the predicted outflows. The main result presented
here is the Green’s function energy/space distribution for the
accelerated relativistic particles in the disk and the outflow. In
that sense, this paper represents the viscous analog to the inviscid
model considered by Le & Becker (2007).

The dynamical structures of the accretion flows considered
here are computed using the model for viscous, shocked,
advection-dominated disks developed by Das et al. (2009), in
which the angular momentum transport is governed by the
standard Shakura—Sunyaev viscosity prescription (Shakura &
Sunyaev 1973). The incorporation of viscosity into the model
represents an important step toward the development of a
comprehensive understanding of the coupled accretion and
outflow processes taking place around underfed black holes.
These authors found that in general, shocks can exist in ADAF
disks provided the Shakura—Sunyaev viscosity parameter « does
not exceed ~0.27, assuming the canonical value y = 1.5 for
the ratio of the specific heats (e.g., Narayan et al. 1997).

The particle transport scenario we focus on here is anal-
ogous to the model for the diffusive acceleration of cosmic
rays in supernova shock waves investigated by Blandford &
Ostriker (1978) and Jones & Ellison (1991). In that model,
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low-energy seed particles are converted to high-energy cosmic
rays via multiple shock crossings. The dynamical structure of
the shock is determined by the thermodynamics of the back-
ground (thermal) plasma, which is the interstellar medium in
the supernova/cosmic-ray application. In the disk application,
the shock is located at a fixed radius, and the background ther-
mal plasma is provided by the magnetized accreting gas, which
passes through the shock on its way to the event horizon. A small
population of background particles crosses the shock multiple
times due to diffusion, and this leads to the development of a
high-energy power-law tail in the particle distribution, which is
a natural consequence of the first-order Fermi process (Fermi
1954).

Our study of the particle transport centers on computation
of the Green’s function describing the evolution of monoen-
ergetic seed particles injected into the disk at a single radius.
The solution for the Green’s function is obtained by analyz-
ing a cylindrically symmetric transport equation that describes
the acceleration and spatial transport of protons and/or elec-
trons. We solve for the Green’s function by applying separation
of variables combined with eigenfunction analysis based on
the asymptotic boundary conditions. The eigenvalues and the
corresponding spatial eigenfunctions must be determined nu-
merically because the associated differential equation cannot be
solved in closed form. The resulting solution for the Green’s
function provides a detailed description of the relativistic parti-
cle distribution as a function of energy and space. In particular,
the solution clearly illustrates how the particle distribution is
influenced by advection, spatial diffusion, particle escape, and
first-order Fermi acceleration. Based on the solution for the
Green’s function, we are able to deduce the energy spectrum
of the relativistic particles escaping from the disk to form the
observed outflows (jets). The energy distribution of the escap-
ing particles is nonthermal in character, with a relatively flat
power-law tail.

The remainder of the paper is organized as follows. In
Section 2, we briefly review the dynamical model used to de-
scribe the structure of the viscous ADAF disk/shock system. In
Section 3, we develop the steady-state particle transport equa-
tion appropriate for the situation of interest here, and in Section 4
we obtain the general solutions for the associated energy mo-
ments. In Section 5, we solve the transport equation for the
Green’s function describing the evolution of a monoenergetic
seed distribution injected at the shock radius, and in Section 6
we evaluate the Green’s function and the escaping particle dis-
tribution using dynamical parameters appropriate for M87 and
Sgr A*. We discuss the astrophysical significance of our results
and summarize our main conclusions in Section 7.

2. ACCRETION DYNAMICS

It has been known for some time that standing shocks can
exist in inviscid, advection-dominated accretion disks (e.g.,
Chakrabarti 1989a, 1989b, 1996; Abramowicz & Chakrabarti
1990; Yang & Kafatos 1995; Das et al. 2001). Chakrabarti
(1990), Chakrabarti & Das (2004), and Das et al. (2009)
demonstrated that shocks can also form in viscous disks if the
angular momentum and the viscosity do not exceed critical
values. More recently, De Villers et al. (2003) performed
detailed general relativistic simulations that confirmed the
formation of shocks in the inner region, due to the obstruction
of the flow by the centrifugal barrier. Our goal here is to
analyze the transport and acceleration of relativistic particles
in viscous disks governed by the standard Shakura—Sunyaev
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viscosity prescription. The specific dynamical model we employ
was developed by Das et al. (2009), who characterized the region
of the parameter space for the existence of steady-state standing
shocks in viscous disks, and also obtained results describing the
disk/shock/outflow structures in M87 and Sgr A*.

Le & Becker (2007) pointed out that efficient particle acceler-
ation in the vicinity of a standing shock may power the outflows
frequently observed around radio-loud, underfed black holes.
This early study focused on inviscid accretion disks, and hence
neglected the important role of viscosity in determining the disk
structure and regulating the dissipation of energy. Becker et al.
(2008) and Das et al. (2009) extended the model to include
viscous disks. These studies confirmed that first-order Fermi
acceleration inside a viscous, shocked ADAF can accelerate
particles more efficiently than in a smooth disk. In the present
paper, we continue to extend the earlier results by calculating
the detailed particle distributions describing the transport, ac-
celeration, and escape of relativistic particles in the disks around
the central black holes in M87 and Sgr A*. We argue that stand-
ing shock waves are not only able to power mildly relativistic
outflows, but they may actually be required dynamically in or-
der to stabilize the disk and allow the remaining gas to accrete.
Furthermore, shocked solutions are expected to possess higher
entropy than smooth solutions, and therefore the second law
of thermodynamics suggests that when shocked solutions are
permitted, they should be expected to form (Becker & Kazanas
2001).

The dynamical effect of the pressure of the accelerated
particles is not included in our model for the disk structure,
and therefore we are treating the particle transport in the test-
particle approximation. This approach parallels that used in the
earliest treatments of the diffusive acceleration of cosmic rays
at supernova-driven shock fronts (e.g., Blandford & Ostriker
1978). The validity of the test-particle approximation can be
examined ex post facto by comparing the resulting pressure
of the accelerated relativistic particles with that of the thermal
background gas, as discussed in Section 7. In this section, we
briefly review the primary dynamical results obtained by Das
et al. (2009) before exploring the implications of these results
for the transport and acceleration of relativistic particles in the
disk.

2.1. Conservation Equations

Within the context of the one-dimensional, steady state,
vertically integrated ADAF model of interest here, the accretion
rate M and the angular momentum transport rate J are conserved
quantities given by

M =4nrHpv J=Mr’Q—g, (1)
respectively, where p denotes the mass density, v is the radial
component of the flow velocity (defined to be positive for
inflow), H represents the disk half-thickness, 2 denotes the
angular velocity, and G represents the torque. The angular

velocity gradient dQ/dr is related to the torque via (e.g., Frank
et al. 2002)

Ola2

dQ
G(r) = —4nr*Hpv—, v=—, 2)
dr QK

where the kinematic viscosity v is computed using the standard
Shakura—Sunyaev prescription with constant c.
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The vertical hydrostatic structure of the disk is described by
the standard expression

HO) = 50 @)= % 3)

where a denotes the isothermal sound speed, P is the pressure
of the thermal gas, and Qg represents the Keplerian angular
velocity in the pseudo-Newtonian potential (Paczyriski & Wiita
1980), defined by

o GM  fx(n)
() = r(r —Rs)?  r* @

for a black hole with mass M and Schwarzschild radius Rg =
2R, =2GM/c>.
The angular momentum per unit mass transported toward the
horizon, £, is given by
J g
bo=—=r 2 Q— —_, 5
0= v Q)
which is a conserved quantity throughout the disk in our
model. Since the torque G vanishes at the event horizon as a
consequence of general relativity, it follows that £, equals the

specific angular momentum of the material entering the black
hole, i.e.,

Lo = L(r) . ) =1t Q). (6)

r=R5
The differential equation governing the angular velocity € is
obtained by combining Equations (1), (2), and (5), which yields

dQ  vQg(ly —r’Q)

g KO#. (7
dr o a’r

2.2. Entropy Equation

The effect of viscous dissipation on the entropy of the
background gas is described by the equation

d1 U pvr? (dQ 2 aly = 1Dr? (dQ 2
vdrn<pv> U (m) Ox (dr) ’

8
where U is the internal energy density of the thermal gas,
y = (U + P)/ U denotes the ratio of specific heats, and the final
result follows from Equations (2) and (3). We set y = 1.5 in our
numerical examples since it is expected that the magnetic field
strength will be close to the equipartition value in underluminous
disks (e.g., Narayan et al. 1997). In the absence of viscous
dissipation, the right-hand side of Equation (8) vanishes, and
we obtain U « p?, as expected for adiabatic flow. The entropy
equation can also be written as

d K ar? (dQ\? ©)
—1In —_ - s
v dr Qg \ dr

where K (r) is the dimensionless “entropy function” (see Das
et al. 2009), given by

1

rv a\y+)/(y=1 U\ 1
K(r):QKR§ (2) o<<p—y> . (10)

where R, = GM /c* = Rg/2. Note that K remains constant in
adiabatic regions, for example, close to the event horizon, where
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viscous dissipation is negligible. The entropy per particle S is
related to K via (Le & Becker 2005)

S=kInK +co, (11)

where k is Boltzmann’s constant and the parameter ¢y depends
on the composition of the gas but is independent of its state.

2.3. Wind Equation

The conservation equation for the radial component of the
momentum is given by

dv 1dP

T 4 (QE -2, 12
Vo= G (@9 (12)
or, equivalently,
d d
v d_: =g - In(pa®) +r (Q* — QF). (13)

The density p can be eliminated by using Equations (1) and (3)

to write

QM
p=7 , (14)
Trav

which can be combined with Equation (13) to obtain

Vi Yo lod @k (@)
r a Qg a? ’

15)

where primes denote differentiation with respect to r.
Using Equation (14) to substitute for p in the entropy
Equation (8) yields, after some algebra,

INad v 1 2 7dQ\?
LA L e L (i IS 15,
y—1) a v r Qg v Qg \ dr

By eliminating a’ between Equations (15) and (16) and sub-
stituting for Q' using Equation (7), we obtain the differential
“wind equation” (e.g., Narayan et al. 1997)

(v_z_ 2y )v_’zr(Qz—QZK)+ 2y <l_§2%)

a> y+1/) v a? y+1\r Qg
y—1\v QK(rZQ — £p)?
* (y +1 ) arla* > D

which is the fundamental differential equation describing the
transonic radial accretion of matter toward the horizon. The
final transport rate in the model is that describing the radial
propagation of the total energy, given by

. (1 1 P+U
E=-GQ+M|(=-r*Q*>+=-0v*+
2 2 Jo

+ <I>) , (18)
where the pseudo-Newtonian potential @ is defined by
(Paczynski & Wiita 1980)

-GM
r — RS'

d(r) = (19)
By using Equation (5) to eliminate the torque G in Equation (18)
and also utilizing Equation (3), we find that the energy transport
rate per unit mass can be written as

1 1
= —v2—§r292+€0§2+

E
€ = —
M 2 y —1

a’?+®. (20)
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This relation allows the calculation of @ for given values of v
and Q, and it therefore closes the system when combined with
Equations (7) and (17). The transport rates M, J, and E are
all defined to be positive for inflow, and in general they are all
conserved throughout the disk, although the energy transport
rate E will display a discontinuous jump at the location of an
isothermal shock if one is present in the flow.

In order to obtain global solutions for the flow variables
v(r), a(r), and Q(r), we must numerically integrate Equa-
tions (7), (17), and (20) with respect to radius beginning at
the inner radius, rm;,, which is located close to the event hori-
zon. The velocity profile v(r) must be well-behaved throughout
the disk, and therefore if the left-hand side of Equation (17)
vanishes at some radius, then the right-hand side must vanish
at the same radius, which is referred to as a critical point. The
infalling gas must pass through at least one critical in the outer
region, where the flow transitions from subsonic to supersonic,
since general relativity requires supersonic inflow at the event
horizon (Weinberg 1972). If the flow is smooth (shock-free),
then there is only one critical point, located at radius r = r,.
On the other hand, if a shock is present in the flow, then the
gas must pass through one critical point in the outer (pre-shock)
region at r = ™", and through another critical point in the inner
(post-shock) region at r = ri“ (e.g., Abramowicz & Chakrabarti
1990). The detailed solution procedure is discussed by Das et al.
(2009), including the determination of the critical structure of
the flow and the application of the inner boundary conditions
required to establish the starting values for the flow variables
near the horizon.

2.4. Global Dynamical Solutions

A global dynamical model for the structure of the
disk/outflow system in a particular source can be developed
whenever observational values are available for the black hole
mass, M, the accretion rate, M, and the jet kinetic luminosity,
Liet. In general, the determination of the structure of an accre-
tion disk containing a shock is a more complex problem than
for smooth disks due to the additional restrictions imposed by
the shock jump conditions, which tend to reduce the region
of the parameter space admitting steady-state dynamical solu-
tions. The process begins with the selection of input values for
the three fundamental free parameters for the model, namely the
viscosity constant, «, the specific heat ratio, y, and the specific
energy transport rate for the gas supplied at a large radius, de-
noted by €_. Based on these fundamental free parameters, we
utilize an iteration procedure to compute the specific angular
momentum at the horizon, £y, and the entropy parameter at the
horizon, K, defined by (see Equation (10))

Ko= K(r) . 21
r=Rs

The constants ¢y and K are initially set equal to provisional
values and are thereafter iterated until the required boundary and
critical conditions are satisfied. Corresponding values for v and
Q at the starting radius 7, = 2.001 GM /c?* are computed using
the asymptotic expressions derived by Becker & Le (2003).
Equations (7), (17), and (20) are then integrated numerically in
the outward direction, beginning at r = ry,, and the value of
Ky is varied until the left- and right-hand sides of the “wind
equation” (Equation (17)) vanish at the same radius, which is

identified as the inner critical point, at radius ri“.
When a shock is present, we use the subscripts “—"" and “+” to
refer to quantities measured just upstream and just downstream
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from the shock, respectively. The specific energy transport rate
€ drops from the upstream value €_ to the downstream value
€, as the gas crosses the shock, reflecting the escape of energy
from the disk into the outflow. Since no energy is lost from the
disk between the shock and the horizon, it follows that €y = ¢,
where €, represents the accreted specific energy. In order for
the dynamical model to be consistent with the energetics of a
particular source, we must require that the power lost from the
disk at the isothermal shock location is related to the observed
jet kinetic luminosity, Lie, via
Lt = —MAe, Ac=e€,—ec_, € =c¢,, 22)

where the negative sign appears because Ae < 0. Equation (22)
is used to calculate the value of the accreted specific energy €
for a specific source based on the input value of e_.

Another, independent expression for Ae can also be derived
from the isothermal shock jump conditions, which can be written
as (e.g., Chakrabarti 1989a)

2 2

U+ 2 -2 T vC
— =M:=M"", Ae= , 23
v_ * - € 2 (23)

where M_ = v_/a_ and M, = v,/a, denote the pre-
and post-shock Mach numbers, respectively. We determine the
shock radius, denoted by r,, by requiring that the values of
Ae computed using Equations (22) and (23) agree. Note that if
no shock is present, then € is continuous throughout the entire
flow, and consequently Ae = 0 and ¢y = €, = e_. By definition,
the flow maintains a uniform temperature across the isothermal
shock, and therefore a, = a_.

After the shock location has been determined, the integration
continues into the upstream (supersonic) region. The entire
integration process, beginning at the starting radius 7y, iS
repeated using different values for the accreted specific angular
momentum, £y, until the solution passes smoothly through the
outer critical point, located at radius r2". For a given set of input
parameters €_, «, and y, at the end of the procedure one obtains
unique values for €p, £o, Ko, 74, ri“, and ré’“‘, in addition to
the associated global dynamical profiles for the inflow velocity
v(r), the angular velocity €(r), and the isothermal sound
speed a(r), hence providing a complete physical description
of the disk/shock/outflow structure. Das et al. (2009) used this
approach to model the dynamics of the accretion disks and the
associated outflows in M87 and Sgr A*. In the next section, we
develop and analyze the associated transport equation governing
the evolution of the relativistic particle distribution resulting
from the injection of monoenergetic seed particles.

3. TRANSPORT EQUATION

The role of the shock in accelerating a significant population
of nonthermal relativistic particles has been examined in the
inviscid case by Le & Becker (2005), who established that the
process is capable of powering the outflows observed in both
active galaxies and stellar-mass black hole systems. Chakrabarti
& Das (2004), Lu et al. (1999), and Chakrabarti (1990) analyzed
the consequences of a standing shock for the heating of the
thermal background gas in the post-shock region of a viscous
disk. However, no comprehensive study of the implications
of the shock for the acceleration of nonthermal particles in
viscous disks has yet been undertaken. The acceleration of
nonthermal particles can occur very efficiently in hot, tenuous
ADAF disks because the plasma is collisionless (Le & Becker
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2005), and therefore a small fraction of the particles crosses
the shock multiple times, producing the power-law energy
spectrum characteristic of Fermi acceleration. In this section,
we provide an overview of the transport equation used to model
the nonthermal particle acceleration occurring in the disk.

In the steady-state situation considered here, the nonthermal
(relativistic) particle distribution is described by the Green’s
function, f, o erg~> cm~3, representing the steady-state in-
jection of monoenergetic seed particles subject to acceleration,
diffusion, and advection inside the hot tenuous disk. The Green’s
function is governed by the fundamental transport equation

9 N 1 0 L = . .
% =0= —V-F—@ a—E(E3U'VfG)+fsource_feSC9 (24)

where the specific particle flux Fis given by

< L E af G

v 3 9E (25)
and « and v denote the spatial diffusion coefficient and the vector
velocity, respectively. The second term on the right-hand side
of Equation (24) represents the differential work performed on
the relativistic particles by the MHD waves in the convergent
background flow. The total number density 7, and energy density
U, of the relativistic particles are related to the Green’s function
via

nr(r)=/ 4w E? f,(E,r)dE,
0

U,(r) = /OO 4w E3 f.(E,r)dE, (26)
0

which establishes the normalization of f,,.
Equations (24) and (25) can be combined to rewrite the
transport equation in the standard form

- =d E 8 hd N d - . .
U'vf(;:?a_];v'v+v'(’(vfc)+fsource_fesc~ (27

The left-hand side of Equation (27) represents the comoving
(advective) time derivative and the terms on the right-hand side
describe first-order Fermi acceleration, spatial diffusion, particle
sources, and the escape of particles through the upper and lower
surfaces of the disk, respectively. The velocity has components
given by ¥ = v,7 + v.Z + vs ¢, with v, = —v < 0. Note that
the transport equation does not include synchrotron or inverse-
Compton losses, and therefore it is not expected to describe the
acceleration of highly relativistic electrons. Equation (27) was
used previously by Becker et al. (2008) to calculate the energy
distribution of the relativistic particles escaping from the disk to
form the observed outflows in M87. We provide further details
of that calculation here and also extend the model to treat the
Galactic center source Sgr A*.

In ADAF disks, both the spatial transport and the acceleration
of the relativistic particles are regulated by collisions with MHD
waves propagating through the thermal background plasma, and
therefore the width of the shock is expected to be comparable
to the magnetic coherence length, An,.. The spatial diffusion
coefficient « is related to Ay, via the standard expression
K = CAmag/3, and the shock can be treated‘as a discontinuity
provided A < 7. The source function fiource appearing in
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Equation (27) describing the injection of monoenergetic seed
particles is given by

: No 8(E — Eg)8(r — 1)

Fawee = = = (28)
where H, = H(r,) denotes the disk half-thickness at the shock
location, Ey represents the energy of the injected particles, and
Ny is the seed particle injection rate. The seed particles are
assumed to originate in the tail of the Maxwellian distribution
of the thermal background gas. The model considered here does
not include any energy loss mechanism, and therefore all of the
particles in the disk (or escaping from it) have energy E > Ej.

The escape of particles via spatial diffusion through the upper
and lower surfaces of the disk is represented in Equation (27)
by the term

fese = Ao c8(r — 1) £y (29)

where the dimensionless constant Ay determines the importance
of particle escape. Based on analysis of the three-dimensional
random walk of the escaping particles, Le & Becker (2005)

demonstrated that
A 3.\’ 1 (30)
= <
0 cH. )

and «, = (k_ +«;)/2 is the mean value of the spatial diffusion
coefficient at r = r,. The condition Ay <1 is required for
the validity of the diffusive treatment of the vertical escape
employed in our approach. Most of the particles that escape from
the disk are expected to emanate from the region surrounding the
shock because the efficiency of the first-order Fermi acceleration
is highest there. The localization of the particle escape near the
shock radius is represented approximately using the §-function
in Equation (29). The self-consistency of this approximation
will be examined in Section 7.

After the velocity profile has been determined using the
procedure summarized in Section 2.4, we can compute the
Green’s function describing the energy and space distribution
of the accelerated relativistic particles inside the disk by solving
Equation (27). Following Le & Becker (2007), we set the
injection energy using Ey = 0.002 erg, which corresponds to
an injected Lorentz factor Ty = Eo/(m, ¢*) ~ 1.33, where m,
is the proton mass. The seed particles with initial energy E are
picked up from the high-energy tail of the local Maxwellian
distribution, and subsequently accelerated to high energies via
multiple shock crossings. The Maxwellian seed particles may
also be pre-accelerated due to magnetic reconnection at the
shock location, triggered by the density discontinuity. The speed
of the injected particles, vp = ¢ (1 — I’y 2)1/ 2, exceeds the mean
ion thermal velocity at the shock location, vys = (3kT,/m p)l/ 2
by a factor of 3—4, where T, is the ion temperature at the shock.

In order to maintain a steady-state energy balance in the
disk, the energy source associated with the injection of the seed
particles must be equal to the rate at which energy is lost from
the background plasma into the jet, given by Equation (22).
Hence the particle source must be concentrated at the shock
location, as reflected by the radial §-function in Equation (28).
With E specified, we can compute the particle injection rate Ny
using the energy conservation condition (cf. Equation (22))

No Eg = —M Ae = Lig. 31)

We must also specify the radial variation of the spatial diffusion
coefficient « in order to close the system of equations. Following
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the approach taken by Le & Becker (2004, 2005, 2007), we adopt
the general form

2
«(r) = By u(r) Rs (RLS - 1) , (32)

where Ry = 2R, = 2GM/62, and By > 0 is a dimensionless
positive constant. In Section 4.5, we show that the value of By
can be computed by imposing a global energy balance condition.
The presence of the radial speed v in Equation (32) causes « to be
discontinuous at the shock. This is a reasonable behavior since
the MHD waves scattering the particles are likely to experience
a density compression at the shock that is comparable to that of
the background gas. By combining Equations (30) and (32), we
find that the dimensionless escape parameter Ay is given by

2 4
Ao = <M> (’—* - 1) <1, (33)
CI‘L,< RS

where v, = (v_ + v;)/2 is the mean flow speed at the shock.
The diffusion parameter By must satisfy the inequality given
by Equation (33) in order to ensure the validity of the diffusion
approximation we have employed in our treatment of the vertical
escape process.

The disk is assumed to be cylindrically symmetric, and
therefore we can combine Equations (24), (28), and (29) to

obtain
b 0 E 0 1d d 10 0
ooy e _ES 1A oy dv| 19 () e
or 0z 3 0FE | rdr dz ror or

No8(E — Eo)8(r —r4)
(47 Eo)? r. H,

—Aocd(r —ry) f,.
(34)

The vertically integrated form of the transport equation can be
written as (see Le & Becker 2005, Appendix A)

—HU% = —l i(rHv)E % + li (rH/c %>

or r dr 3 0E ror or
No8(E — Eo)8(r — ry)
—AgcH, 6(r —ry s
(dr Eo)r, 0¢ B3 =1 Jo
(3%
where v = —v, > 0, and f;, «, and v will denote vertically

averaged functions throughout the remainder of the paper. The
first-order Fermi acceleration of the particles is concentrated
near the shock, where v is discontinuous, and the velocity
derivative is singular, i.e.,

d
av — (V= —v)8(r —ry), T = Ty, (36)

dr
where v_ and v, represent the (positive) inflow speeds just
upstream and downstream from the shock, respectively. The
strong Fermi acceleration near the shock is augmented by
additional acceleration occurring in the surrounding region due
to the general convergence of the MHD waves in the accretion
flow.

4. VARIATION OF THE ENERGY MOMENTS

Our primary goal in this paper is to calculate the Green’s
function describing the particle distribution resulting from the
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continual injection of monoenergetic seed particles from a
source located at the shock radius. In order to validate the
solution obtained for the particle distribution, it is useful to
have available separate solutions for the “energy moments” of
the Green’s function, I,(r), defined by

L) = foo AE" f.(E.r)dE. (37)
0

The two most interesting examples are I, and I3, which are
related to the relativistic particle number and energy densities
via (cf. Equations (26))

ny(r) = I(r),

By operating on Equation (35) with fooo 4m E" d E and integrat-
ing by parts, we find that the nth energy moment satisfies the
vertically integrated differential equation

dl, n+l1\ 1, d 1d dl,
—Hv = — — (rHv)+—-—— (rHk
r dr rd

Uy (r) = I3(r). (38)

dr 3 r dr

.\ No EL728(r —r,)
4 1y

—Agc Hy 0(r — 1) I,
(39)

which can also be expressed in the flux-conservation form

d 2—n\ dI, NoE}*8(r—r.)
o @rnrHF,) =4nrH v +
,

3 dr dmwr.H,
—Agcd(r —ry) I,,:| , (40)

where 4 r H F,, represents the rate of radial transport of the nth
moment, and the associated radial moment flux F, is defined by

n+1 dl,
F,=— vl, —k . 41
3 dr

Once the disk/shock dynamics have been computed based on
the selected values for the free parameters €_, «, and y using the
results in Section 2, the corresponding solutions for the number
and energy densities of the relativistic particles in the disk can
be obtained by numerically integrating Equation (39).

4.1. Derivative Jump

The solution for /,, displays a derivative jump at the location
of the source/shock due to the §-functions appearing on the
right-hand side of Equation (39). The jump condition can be
obtained by integrating this equation with respect to radius over
a small region surrounding the shock location. For an isothermal
shock, with continuous H, this yields

dl, Ny El~? n+1
Al « = ——— —Agcl,(ry) — I,(ry) Av,
dr 4wr . H, 3
(42)

where the symbol “A” refers to the difference between post- and
pre-shock quantities (see Equation (22)). The corresponding
jump condition for the radial moment flux F, is

N() E872

AF, = Agc I,(ry) — m,

(43)

obtained by integrating Equation (40).
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4.2. Asymptotic Behavior

In order to solve the second-order differential Equation (39)
for the moment functions /,,(r), we must introduce two bound-
ary conditions. The required conditions can be developed by
analyzing the asymptotic variation of /, near the event horizon
and at large distances from the black hole.

Close to the event horizon, the gas must advect inward at
the speed of light, in accordance with general relativity, and
therefore diffusion is negligible in this regime. Conversely,
far from the horizon, advection is negligible and consequently
the particle transport in the disk is dominated by diffusion as
r — 00. We can use these physical principles to determine the
asymptotic variation of the energy moments /,, as follows.

General relativity requires that as r — Rg = 2GM /c?, the
inflow velocity v must approach the free-fall velocity,

26M \'?
vﬂﬂ=<r_&> : (44)

and therefore we obtain the asymptotic behavior

v(r) o (r — Rs)™Y?,  r — Rs. (45)
Note that v diverges as r — Rs, and therefore it actually
represents the radial component of the four-velocity in this limit
(see Becker & Le 2003). Since the viscous stress is negligible
close to the horizon, viscous dissipation is unimportant, and
the flow behaves adiabatically, with P o p”, in which case
Equation (3) yields
a(r) o« pr=72, r — Rs. (46)
Incorporating these relations into Equations (1) and (3) and
eliminating H, we find that the density variation close to the
horizon is given by
p(r) o (r = Rg) D — R, 7
in agreement with Equation (55) from Becker & Le (2003).
In the adiabatic region near the horizon, the right-hand side
of Equation (39) is dominated by the first term, describing first-
order Fermi acceleration, and therefore we obtain

o _ (PN L4 Rs.  (48)
— = _—— e .
vdr 3 rdrr v d S

Eliminating H using Equation (1) yields upon integration

(n+1)/3 I (F—Rs)_(n+l)/(37/+3),

I,(r) o p r — Rs, (49)
where the final result follows from Equation (47). In particular,
by setting n = 2 or n = 3, we find that the asymptotic variations
of the relativistic particle number and energy densities close to
the horizon are given by the adiabatic relations

n(ryocp o (r— Rg) V0D, r—> Rs, (50)

U.(r) < p*? o¢ (r — Rg) ™G r 5 R, (51)
These expressions provide the inner boundary conditions re-
quired to solve Equation (39) for I, = n, and I = U,.

Far from the black hole, the sound speed a and the density p
are expected to approach constant values as the gas merges
with the ambient interstellar medium of the host galaxy. It
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follows from Equations (1), (3), and (4) that H and v display the
asymptotic behaviors

v(r) « 32,

H(r) o r/?, r = 00. (52)
The corresponding asymptotic variation of the diffusion coeffi-
cient « is obtained by combining Equations (32) and (52), which
yields

1/2

k(r)ocr /=, r — 00. (53)

In this limit, the particle transport is dominated by outwardly
directed diffusion, and therefore bulk advection and Fermi accel-
eration are negligible. We therefore conclude that Equation (39)

reduces to
1d dl,
-— | rHk =0,
rdr dr

Based on Equations (52), (53), and (54), one can show that at
large radii, the asymptotic variation of the moment function 7,
is given by

r — o0. 54)

1
L(r) oc — ocr !, r — 00. (595)
Hxk

It follows that the two outer boundary conditions required to
solve Equation (39) for I, = n, and Iz = U, are given by

n(r) ocrt, F — 00, (56)

U(r) ocr™!, r — 00. 67N

4.3. Formal Solution

The global solution for 7,(r) can now be expressed as

AQOi(r), r=ry,

QWZ{B&mxr<m, 58)

where A and B are constants and the functions Q;(r) and
On(r) satisfy the homogeneous differential equation (see
Equation (39))

—Hvd—Q = <n+ 1) g i(rHv)+li (rH/cd—Q),
r dr rdr

dr 3 dr
(59)
which can be rewritten as
2
d-Q N [dln(rHK) +Ei| d_Q+ (n+1v din(rHv) 0=o.
dr? dr k| dr 3k dr
(60)

Physically acceptable solutions to this equation must also satisfy
the asymptotic boundary conditions given by Equations (49)
and (55), and therefore we require that

—1
rmax
( Rs > ’
. —(n+1)/Gy+3)
_ ( min 1) 7 61)
Rs

where rpin and 1. denote the radii at which the inner and
outer boundary conditions are applied, respectively. In our
calculations, we set rpi, = 2.001 R, and rp = 10° R,.

O1(r)

T =Tmax

Onu(r)

T =Vmin
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By substituting for «(r) using Equation (32), we can rewrite
Equation (59) in the alternative form

20 [dn(-Hv) 2 Rs do

+ + + —=
dr? dr r—Rs By(r — Rs)* | dr
(n+1)RsQ dIn(rHv) _
3Bo(r — Rs)?> dr

In order to solve this equation, we require knowledge of the
velocity profile v(r) and the disk half-thickness H(r). By
combining Equations (3) and (10), we find that

(y=D/(y+1)
KQx(r R?
¢ |: k() g:| 7 63)

0. (62)

HO=am | o0

where Qg is the pseudo-Newtonian angular velocity and K is
the entropy function, which is discontinuous at the shock but is
otherwise constant (see Becker & Le 2003). Hence the variation
of H(r) can be computed once a dynamical solution for v(r) has
been obtained using the procedure discussed in Section 2. This
allows us to evaluate all of the coefficients in Equation (62), and
therefore the solutions for Qy(r) and Qy(r) can be obtained via
numerical integration in combination with the inner and outer
boundary conditions given by Equations (61).

The constants A and B in Equation (58) are calculated by
requiring that /,, be continuous at r = r, and that the derivative
dl,/dr comply with the jump condition given by Equation (42).
After some algebra, we obtain

A= (64)
Q r=r.
_ N() Eg_z n+1
B 4rr, H, On |: 3 (= v-)
’ ’ -1
+ % — % + AO c , (65)
QH QI r—r

where primes denote radial differentiation. The solutions for
the functions Q(r) and Qr(r) are determined by numerically
integrating Equation (60) subject to the asymptotic relations
given by Equations (61). Once the constants A and B are obtained
using Equations (64) and (65), the global solution for I,(r)
is computed using Equation (58). The escape constant Ay is
evaluated using Equation (33) if a shock exists in the flow;
otherwise we set Ap = 0. Hence the formal solution applies
whether or not a shock is present.

4.4. Relativistic Particle Number Density

In the case of the relativistic particle number density, n, = I,
it is interesting to recast Equation (40) in the flux-conservation
form

dN,
dr
where N, (r) is the relativistic particle transport rate, expressing
the number of particles per second crossing a cylindrical shell

at radius r. The transport rate N, is related to the relativistic
particle number density, n,(7), via

= No8(r —ry) — 4nr H,Agcn, 8(r —ry), (66)

. dn,
N,(r) = —4nrH (v — dir) « sl (67
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We define N,(r) to be negative if the net particle transport
is in the inward direction at radius r. The derivative term in
Equation (67) represents the contribution to the particle flux
due to spatial diffusion. Since the particle flux must be finite
everywhere in the disk, we require that the number density
n,(r) must be a continuous function of r.

The two spatial regions of concern in our calculation are
referred to as region I (r > r,) and region Il (r < r,). Away
from the shock location, r # r,, and therefore the right-hand
side of Equation (66) vanishes, leaving N, = constant. Hence
we find that )

Ny, r>r,,

NHa r < r*9 (68)

W=
where the constant NH < 0 is the rate at which particles
are transported radially inward toward the event horizon, and
the constant N; > 0 denotes the rate at which particles are
transported radially outward.

Only a small fraction of the injected seed particles escape
through the disk surface to form the jet, with the rate of escape
denoted by Nege << No. The majority of the particles are either
transported outward to large radii at the rate Ny, or inward
through the event horizon at the rate Ny. The escape rate Neg.
can be computed by integrating Equation (66) with respect to
radius in a small region around r = r,, which yields

Nese = 4nr H Agcny, (69)

where n, = n,(r,). The corresponding jump condition for the
particle transport rate at the source location is given by

Nl_Nll:NO_Nesc- (70)

The jump in the value of N, across the source/shock radius gives
rise to a corresponding discontinuity in the derivative dn, /dr
via Equation (67). Note that if no shock is present in the flow,
then Ag = 0 and consequently N, = 0.

4.5. Relativistic Particle Energy Density

The conservation equation for the relativistic particle energy
density, U, = I3, can be recast in the flux-conservation form

dE, vdU, NoEo8(r —ry)
=4nrH | —= +—
dr 3 dr dmwr.H,
—AMUJU—mq, 1)

where

. 4 dU, 1
E.(ry=—-4nrH 3 vU, +« e X ergs (72)

denotes the relativistic particle energy transport rate. We define
E,(r) to be negative if the net energy transport is in the inward
direction at radius r. The value of E, varies throughout the flow
due to the action of the first term on the right-hand side of
Equation (71), which represents the compressional work done
on the relativistic particles by the background flow.

By integrating Equation (71) in a very small region around
r = r,, we find that the energy transport rate E, possesses a
jump at the shock/source location given by

AEr = Lege — NO Ey, (73)
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where
Lese = 4mr HyAgc U, o ergs™ (74)

represents the rate of escape of particle energy from the disk
into the outflow/jet at the shock location, U, = U, (r,), and the
symbol “A” refers to the difference between post- and pre-shock
quantities (see Equation (22)).

The energy density U, (r) must be a continuous function of
the radius r throughout the disk in order to avoid generating
an infinite diffusive flux. However, the derivative dU, /dr will
possess a discontinuity at » = r, due to the jump in the energy
transport rate E, indicated by Equation (73). The corresponding
derivative jump condition for the energy density at the shock
location is given by

du, NoEy— L 4
Al =L) = 020~ 1 Aw. (75)
dr dmwr H, 3

If no shock is present, then Ay = 0, and therefore L. = 0 in
this case.

A fundamental constraint on the model parameters can be
obtained by imposing the global energy conservation condition

Lese = No Eg = —M Ae, (76)

which mandates that the energy lost from the disk per unit time
in the form of the escaping relativistic particles is exactly equal
to the energy input rate for the seed particles, which in turn is
exactly equal to the energy loss rate for the background accretion
flow at the shock location. We vary the value of the diffusion
constant By (see Equation (32)) until the value of L, computed
using Equation (74) satisfies Equation (76), hence ensuring the
global self-consistency of our treatment of energy conservation.
The energy provided in the form of the seed particles is
redistributed via first-order Fermi acceleration over a much
smaller population of escaping particles, and therefore we
anticipate that the mean energy of the escaping particles, (E),
will greatly exceed the energy of the injected particles, Ey. We
can quantify the relationship between these two energies by
writing
(E) = Y _ L _ Mo Eo. (77)
Ny N, esc N, esc
Since Nese < Ny, it follows that (E) > E,, as expected. The
mean amplification ratio, (E)/Ey, will provide a useful means
for characterizing the efficiency of the particle acceleration
process in the specific applications that will be explored later in
the paper. By combining Equations (73) and (77), we find that

AE, = 0. (78)

The relativistic particle energy transport rate E, is continuous
at the shock location due to the balance between the energy
contained in the injected seed particles and the energy contained
in the (smaller) population of escaping, accelerated particles.

5. SOLUTION FOR THE GREEN’S FUNCTION

Equation (35) governs the evolution of the vertically inte-
grated Green’s function, f;,, which describes the response of the
system to the continual injection of monoenergetic seed parti-
cles with energy Ey from a source located at radius r,. Since
the fundamental transport equation is linear, it follows that the
particular solution for the relativistic particle distribution result-
ing from any energy/space source distribution can be obtained
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from the Green’s function via convolution. Hence the solution
for f, contains the essential physics describing the transport
and acceleration of the relativistic particles throughout the disk.
In this section, we employ standard methods of mathematical
physics to obtain an expression for f; in terms of an orthogonal
set of basis functions.

5.1. Separation of Variables

The source term in Equation (35) vanishes for values of
the particle energy E # Ey, and in this case the remaining
homogeneous equation may be separated in energy and space
by utilizing dimensionless functions of the form

E —X
S E r)= (E_> e, 1), (79)
0

where A is the separation constant, and the dimensionless spatial
functions ¢(A, r) satisfy the second-order ordinary differential
equation

do Ad do

—Hv— = ——((rHv)o+—-——|rHx —

dr 3rd dr dr
—Agc H, 8(r — 1) @. (80)

Since the coefficients in Equation (80) cannot be represented in
closed form, it is not possible to obtain analytical solutions, and
therefore the spatial separation functions ¢ must be determined
numerically. Equation (80) can be rearranged to obtain

d? dIn(rH d
_¢+[M+z}_¢

dr? dr k| dr

Av din(rH A
+_UM¢=L63(r_r*)(p' (81)

3k dr K

The final term on the right-hand side of Equation (81) vanishes
away from the shock (r # r,), in which case it reduces to the
homogeneous equation

d*e dIn(rHv) 2 Rs do
— 4+ + + —
dr? dr r—Rs By(r —Rs)? | dr
N ARg dIn(r Hv) —0 82)
3Bor — Rs?  dr |77V

where we have substituted for «(r) using Equation (32), and
H (r)is computed using Equation (63) once a dynamical solution
for v(r) has been obtained.

5.2. Asymptotic Behavior

Equation (81) is a linear second-order differential equation,
and therefore we must impose two physical boundary conditions
in order to determine the global solutions for the spatial
separation functions ¢. These conditions can be easily developed
by noting that away from the shock (r # r,), Equation (81)
is equivalent to Equation (60) if we make the replacement
A — n+ 1. Following the same reasoning utilized in Section 4.1,
we can immediately conclude based on the adiabatic nature of
the flow close to the event horizon and the diffusive nature of
the particle transport at large radii that

(A, r) o (r—Rs)™*H  r 5 Rs,  (83)

oA, 1) « r_l, r — o0. (84)
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The global solution for the spatial separation function ¢(r) can
therefore be written as

a; Gy(r),
o) = {GIH(;),

where qj is the matching coefficient and G(r) and Gy (r) rep-
resent the fundamental solutions to the homogeneous Equa-
tion (82) satisfying the boundary conditions (cf. Equations (61))

Fmax - Tmin MG
= < ) Gu(r) = < - 1) ,
RS RS

¥ =Vmax 7=Tmin (86)
with rmin = 2.001 Ry and rmax = 10° R, denoting the inner
and outer boundary radii for the calculation, respectively. The
value of the matching coefficient gy is determined by ensuring
the continuity of ¢(A, r) at r = r,, which yields
_ Gu(ro)

Gi(rs) ‘

5.3. Eigenvalues and Eigenfunctions

r>r*7

r < Ty, (85)

G1(r)

ar 87)

By integrating Equation (80) or Equation (81) with respect
to radius in the vicinity of the shock, we find that the spatial
separation functions @(A, r) must satisfy the derivative jump
condition

dey
A — ) =
<K dr)

where the symbol A denotes the difference between post-shock
and pre-shock quantities and we have utilized the fact that ¢
is continuous across the shock. The jump condition given by
Equation (88) is only satisfied for certain values of A, and this
criterion defines the set of discrete eigenvalues, denoted by A,,,
which form an increasing sequence of positive numbers. The
associated spatial eigenfunctions, ¢, (r), are defined by

_ (Ao ot %Av) o). (88)

@n(r) = @(An, 7). (89)

The procedure for obtaining the set of eigenvalues and spatial
eigenfunctions begins with the integration of Equation (82) in
the outward and inward directions, starting with the asymptotic
boundary conditions given by Equations (86). This yields
solutions for the inner and outer spatial functions Gy(r) and
G1(r), respectively. The matching coefficient a; is computed by
requiring continuity of the solution at the source radius r, using
Equation (87), and the resulting global solution for ¢ is evaluated
using Equation (85). The value of A is varied until the derivative
jump condition (Equation (88)) is satisfied at the shock location.
This process establishes the complete set of eigenvalues A, and
the associated spatial eigenfunctions ¢, (r).

5.4. Eigenfunction Orthogonality

Away from the shock (r # r,), the spatial eigenfunctions
@, (r) satisfy Equation (82), which can be rewritten in the
Sturm—Liouville form

sy 2n | 4 220 6y 0 ©0)
ar 12V ar R2 Onlr) =5
where S(r) is given by the dimensionless definition
rHk 1 Ty ! r !
S(r)= expi — || ——1 —[— -1 ,
Fy H*K* BO RS RS
oD
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where k, = (k_ + «;)/2 and the dimensionless weight function
o(r) is defined by

_ 2RIS()
- 330(1’ — Rs)2

dIn(r Hv)
dr

w(r)

, 92)

where R, = Rs/2 = GM /c. Due to the dependence of w(r)
on the velocity derivative dv/dr, the weight function possesses
a §-function singularity at the shock location. According to
Equation (91), S(r,) = 1, and therefore we can combine
Equations (32), (36), and (92) to show that the behavior of
the weight function in the vicinity of the shock is given by

Vo — vy

3Ky

o(r) > R; < )5(r —r), . (93)

Next we employ standard methods to show that the spatial eigen-
functions form an orthogonal set. Consider the eigenfunctions
¢, (r) and ¢, (r) with distinct eigenvalues A, and A,,, respec-
tively. Since ¢, satisfies Equation (90), we can write

d dom
ar [S“) 7]

Am (1)

+———ou(r)=0. (%94)
Rs

Multiplying Equation (90) by A,, and Equation (94) by A, and
subtracting the first from the second yields

L5092 |~ ) L | 50y 2
el dr " dr om' dr " dr
(An — Ap) (1)
= @n (1) @m(r). 95)
g
After integrating by parts from r = Rg to r = oo and
simplifying, we obtain
dm de. 1™
RS W (F)—— — O
25(r) [go (=" = on) = Ls
= ()"n — Am) Cz)(}’) ®n (V) Dm (r) dr. (96)
Rs

Based on the boundary conditions for ¢ given by Equations (83)
and (84), we conclude that in the two limits r — Rgandr — oo,
the left-hand side of Equation (96) vanishes, leaving the standard
orthogonality relation

/00 On(r) om(r)w(rydr =0, m #n. 97)
Rs

This result confirms that the family of spatial eigenfunctions
¢, (r) form an orthogonal set relative to the weight function
o(r) given by Equation (92).

5.5. Orthonormal Expansion

The integral relation given by Equation (97) implies that
the spatial separation functions ¢,(r) form a complete set,
as expected for a standard Sturm-Liouville problem. We can
therefore express the Green’s function f, using the expansion
(see Equation (79))

Nimax

E\ ™™
fG<E,r>=an<pn(r><E—0) . E>E, (%)
n=1
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where the b,, constants are the expansion coefficients and Ny is
the index of the largest eigenvalue considered in the summation,
based on analysis of the term-by-term convergence of the series.
In our numerical examples, we generally set Ny,x = 10, which
typically yields about three decimal digits of accuracy in the
solution for f,,. The eigenvalues form an increasing sequence of
positive numbers, and therefore the dominant behavior at high
energies is given by the first eigenvalue, ;. In order to obtain
a finite result for the total energy density of the accelerated
relativistic particles, U,, we must require that »; > 4 (see
Equation (3)).

We can compute the expansion coefficients b, by exploiting
the orthogonality of the spatial eigenfunctions ¢,(r). At the
source energy, £ = Ej, Equation (98) reduces to

Numax

Jo(Eo. 1) =D by on(r). 99
m=1

Multiplying both sides of this equation by ¢,(r)w(r) and
integrating with respect to radius from r = Rg to r = oo
yields

Nmax

| Eo e e dr =3 by /R () gu(r) (r) dr.

=1 s

(100)
The orthogonality relation (Equation (97)) implies that only
the m = n term in the sum survives on the right-hand side of
Equation (100), and therefore we obtain

(o]

Jo(Eo, 1) @u(r) w(r)dr = by /oofﬂf(r)w(r)dh (101)

RS RS

which yields for the expansion coefficient b, the result

_ f;go fG(E()’ r)ﬁon(r)w(’")d}’

, 102
%4 (102)

n

where the dimensionless quadratic normalization integrals, Z,,,
are defined by

o]

Z, @) w(r)dr.

(103)
Rg Rs

In order to compute the integrals in Equation (102), we need to
evaluate the Green’s function at the source energy, f,(Eo,r).
An expression for f,(Ey, r) can be obtained by substituting for
the velocity derivative in Equation (35) using Equation (36) and
subsequently integrating with respect to energy in a small range
around the injection energy Ej, which yields

3N
(4m)2E3 rHy(v- — vy)’
0, r o r.

=r*5

fs(Eo, 1) = (104)

Note that f,(E,r) = 0forall E < Ey, because no deceleration
processes are included in the particle transport model considered
here. In the Blandford & Ostriker (1978) model for the diffusive
acceleration of cosmic rays in a plane-parallel supernova shock
wave, the Green’s function evaluated at the injection energy Ey
has a finite value at all locations in the flow, because there is no
convergence in the plasma away from the shock. By contrast, in
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the model considered here, the MHD scattering centers converge
at all radii due to the general convergence of the accretion flow in
the disk. This additional, distributed particle acceleration causes
the Green’s function to vanish at the injection energy for all
r £ Fy.

Substituting for f,(Eop,r) in Equation (102) using
Equation (104) and performing the required radial integration,
we find that

No R @u(r.)

3
= 105
(47 2 E} roHoki T, (105)

n ' erg_3 cm

where we have accounted for the §-function behavior of
the weight function w(r) in the vicinity of the shock (see
Equation (93)). This effect also needs to be considered when
evaluating the quadratic normalization integrals Z,, defined in
Equation (103). By combining Equations (93) and (103), we
obtain

o0

w(r) gX(r)dr

ryte

1 /’*76 ) 1
I, = lim — o(r) g, (r)dr + —
<=>0 Ry Jis R

v_ — v
+ R, (T+> Pr(ry),

which serves as the basis for computing the required normaliza-
tion integrals.

(106)

5.6. Distribution Function for the Escaping Particles

Based on the solution for the Green’s function, f,, which
describes the relativistic particle distribution in the disk, we
are also able to compute the Green’s function distribution for
the relativistic particles that escape from the disk to form the
outflow. The number of particles escaping from the disk per
unit energy per unit time is computed by performing a volume
integration of the escape term f.c (Equation (29)) and also
multiplying by the factor 4 E? to convert the result to a number
distribution (see Equation (3)). The result obtained is

o0
NES(E) = 4w E? / A7y H fose dr
Rs

= 4w EYryH, c Aof,(E. 1), (107)
which is the Green’s function number distribution for the
escaping particles. The number of particles escaping from the
disk per unit time with energy between E and E +dE is equal
to Ng° d E, and therefore the total number of particles escaping
from the disk per unit time is given by the integral

o0
Nesczf NS(E)dE o s~ (108)
E

0

We have set the lower bound of integration equal to the seed
particle energy E( because there is no energy loss mechanism
included in the model, and therefore all of the injected particles
must continually gain energy until they escape from the disk. In
similar fashion, the total energy carried away per unit time by
the escaping particles is given by the integral

oo
Lesc =/ ENS(E)dE o erg s, (109)
Ey
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Figure 1. Accretion velocity v (solid lines) and isothermal sound speed a (dashed
lines) plotted in units of ¢ as functions of the radius  in units of R, = GM/c? for
(a) M87 and (b) Sgr A*. The thick and thin lines denote the shocked and smooth
solutions, respectively. The sound speed is multiplied by [2y /(y +1)]'/? so that
the curves for v and a intersect at the critical points. The shock and critical point
locations are indicated for each model using the notation discussed in the text.

5.7. Evaluation of Solution Accuracy

It is important to have a separate means for evaluating
the validity of the results obtained for the relativistic particle
distribution using the power series solution for the Green’s
function given by Equation (98). Fortunately, there are several
methods available that can be utilized for this purpose.

The first method is based on the conservation of particle
number, which requires that the rate at which accelerated
particles escape from the disk per unit time, N, computed
using Equation (108), must be equal to 4mr,H,Agcn, (see
Equation (69)). The second method is based on the principle of
global energy conservation, which requires that Les. computed
using Equation (109) is equal to —MAe (see Equation (76)).
This condition ensures that the power in the escaping particles
is equal to the energy loss rate for the accretion flow at the shock
location, hence eliminating any unphysical sources or sinks of
energy.

In addition to the two global balance conditions described
above, we can also test the solution for the Green’s function
f, by calculating the associated number and energy density
functions n,(r) and U, (r) using the Green’s function integrals
given by Equations (3). The results obtained for the number
and energy densities in this way should agree closely with
those computed via numerical integration of the fundamental
differential equation (62), which leads to the formal solutions
for n, = I, and U, = I3 given by Equation (58). We will use
these two methods to compute the number and energy densities
in Section 6 in order to evaluate the robustness of the solution
obtained for the Green’s function.

6. ASTROPHYSICAL APPLICATIONS

In our numerical examples, the disk/outflow structures for
MB87 and Sgr A* are determined based on observational esti-
mates for the black hole mass M, the mass accretion rate M,
and the jet kinetic power Lie;. The multistep iterative procedure
required to determine the dynamical structure for a particular
source was summarized in Section 2.4, and the specific dynam-
ical models we utilize for M87 and Sgr A* were discussed in
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Figure 2. Specific angular momentum ¢ (solid lines) and Keplerian specific
angular momentum £ (dot-dashed lines) plotted in units of R, ¢ as functions

of the radius r in units of R, = GM /c? for (a) M87 and (b) Sgr A*. The thick
and thin lines for £ denote the shocked and smooth solutions, respectively. The
dotted vertical lines indicate the shock location for each model.

detail by Das et al. (2009). These new dynamical solutions rep-
resent the first-ever self-consistent models for ADAF disks with
isothermal shocks and a significant level of viscosity (¢ = 0.1).

We briefly review the results obtained for the disk structure
below, as part of our discussion of the new solutions for the
Green’s function describing the relativistic particle distribution
in the disk/outflow system. In our numerical calculations, we
utilize gravitational units for convenience unless otherwise
noted. Hence we express the disk radius r and half-thickness
H in units of R, = GM/ 2, the accretion velocity v and sound
speed a in units of the speed of light ¢, the angular velocity
€ in units of ¢/R,, the specific angular momentum £ in units
of R,., and the energy transport rate per unit mass € in units of
¢2. In this convention, the Schwarzschild radius has the value
Rs = 2. Results for the relativistic particle number density
n,, energy density U,, and Green’s function f, are presented
in cgs units to facilitate comparison with previously published
work. Following Narayan et al. (1997), we set y = 1.5, which
corresponds to an approximate equipartition between the gas
and magnetic pressures.

6.1. M87

The application of the model to M87 is based on the
observational values M = 3.0 x 10° M (e.g., Ford et al.
1994), M = 1.34 x 107" Mg yr~' (Reynolds et al. 1996),
and Lj = 5.5 x 10% erg s7! (Reynolds et al. 1996; Bicknell
& Begelman 1996; Owen et al. 2000). The Shakura—Sunyaev
viscosity parameter is set using @ = 0.1, which allows us to
examine the performance of the model in the presence of a
relatively high level of viscous dissipation.

The results obtained for the inflow speed v(r) and the
isothermal sound speed a(r) in the shocked-disk model for
MS87 are plotted in Figure 1(a), and the corresponding radial
distribution for the specific angular momentum £(r) is compared
with the Keplerian profile £x (r) in Figure 2(a) (see Equation (4)).
The dynamical parameters obtained for the M87 shocked-disk
model are e_ = 0.001516¢?, €, = €9 = —0.005746¢?, £y =
2.6257 Rye, Ko = 0.00608, r, = 26.329 R,, r;" = 6.462 R,
and r™" = 96.798 R,. The associated pre-shock and post-shock
velocities and Mach numbers are v_ = 0.138 ¢, v, = 0.068 ¢,
M_ = 1427, and M, = 0.701, respectively, and for the disk
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half-thickness at the shock location we obtain H, = 12.10 R,.
The value of £ merges with £k at reqgee = 4658 R, which defines
the outer edge of the ADAF region (Narayan et al. 1997).

The values for €, and e_ determine the energy budget for the
jet via Equation (22), which states that L, = —MAe, where

A€ = €, —e_. Inthe case of M87, we obtain Lje, = 0.0073 M 2,
and therefore ~0.7% of the incident accretion energy is used to
power the jet outflow. This is close to the efficiency computed by
Narayan & Fabian (2011) for this source, in their consideration
of the accretion of slowly rotating matter onto a supermassive
black hole. Adopting for the accretion rate M = 8.43 x
10* gs~! yields Ljy ~ 5.5 x 10¥ erg s™!, in agreement with
the observed jet luminosity for M87. The results for the specific
angular momentum ¢ plotted in Figure 2(a) are significantly sub-
Keplerian, whether or not a shock is present, due to the relatively
large value adopted for the viscosity parameter, « = 0.1 (see
Narayan et al. 1997). The evolution of the angular momentum
distribution as the gas accretes is discussed in more detail in
Section 7.

It is also interesting to compute the structure of an equivalent
shock-free (smooth) disk model based on the same set of outer
(incident) boundary conditions employed in the shocked-disk
case. The comparison between the two models will help to
illustrate the dynamical effect of the shock. In the smooth model
for M87, we use the same value for the incident energy transport
rate e_ = 0.001516 ¢? and the outer radius Tedge = 4658 R, as
in the shocked case, and the resulting values for the accreted
specific angular momentum and the accreted entropy parameter
in the smooth model are £y = 2.3988 R,c and Ky = 0.0084,
respectively. Since there is no shock present in this case, the
specific energy transport rate is constant, and consequently
€ = €, = e_ = 0.001516 ¢2. The smooth model possesses
a single critical point, located at 7. = 7.572 R,, and its structure
is consistent with results obtained by Narayan et al. (1997),
who solved the identical set of ADAF conservation equations
considered here, under the assumption of smooth flow. As
demonstrated in Figure 1(a), the presence of the shock tends
to reduce the sound speed, and therefore the temperature, due to
the escape of energy from the disk into the outflow at the shock
location. Hence, the gas in a shocked disk is more bound than
in a smooth flow, a point that is discussed further in Section 7.

Once the dynamical structure of the disk/shock has been
established, we can compute the Green’s function describing
the distribution of the relativistic particles in the disk using
the procedure discussed in Section 5, which culminates in
Equation (98). The results obtained for the particle transport
parameters in the shocked-disk model are By = 0.01632,
Ny = 2.75 x 10*%s7! N = 5.81 x 10¥s7!, and 4y =
0.0153. The number and energy densities of the relativistic
particles at the shock radius are n, = 1.62 x 10*cm™ and
U, = 1.52 x 10%erg cm™3, respectively. For comparison, the
number density of the background (thermal) protons at the shock
radius is n'" = 2.08 x 10° cm~3, and the corresponding energy
density is U™ = 5.86 x 10! ergcm™. We therefore conclude
thatn,/n™ ~ 0.0078 and U,/ UM ~ 2.59, and consequently the
mean energy of the escaping particles, (E) = U,/n,, is ~333
times larger than the mean energy of the thermal protons at the
shock radius, (EM) = n/ UM, The mass loss associated with
the outflow is given by Moy = Nesem, = 9.71 x 10> gs7!,
and consequently Mo,/M ~ 0.0012, implying that the loss of
mass from the disk into the outflow is completely negligible, as
we have implicitly assumed by treating M as a global constant
in our model.
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Based on Equation (77), we find that (E) = 4.71 E(, which
confirms that the mean energy of the particles escaping to form
the outflow is substantially higher than that of the seed particles
injected with energy Ey. This ratio illustrates the cumulative
effect of Fermi acceleration on the seed particles. The outwardly
directed particle transport rate in the region r > r, is found
to be N; = 2.90 x 10* 57!, and the inwardly directed particle
transport rate for r < r, is Ny = —1.88 x 10* s~!. We therefore
find that ~68% of the injected particles are ultimately advected
across the event horizon and into the black hole, whereas ~11%
are able to diffuse outward through the disk to large radii, and
~21% escape from the upper and lower surfaces of the disk to
form the energetic outflow. We also note that the quantities No,
Nese, N1, and Ny satisfy Equation (70) as required.

In the shock-free (smooth) case, the particle transport parame-
ters are By = 0.01632, Ny = 2.75x 10*s~!, Noie = 0, Ag = 0,
ne = 1.63x10*cm™3, and U, = 4.97 x 10" erg cm 3. Although
there is no shock in this case, we leave the source located at
r = 26.329 R, for consistency. The corresponding number and
energy density values for the thermal protons at the source radius
are ™ =2.49 x 10°cm~> and UM = 8.88 x 10" ergem ™3, re-
spectively. In the smooth model, the outwardly directed particle
transport rate is Ny = 2.13 x 10* s7!, and the inwardly directed
particle transport rate is Ny = —2.54 x 10*s~!. Hence, only
~8% of the particles diffuse outward through the disk to large
radii and the remaining ~92% are advected across the event
horizon. The result obtained for the mean energy boost ratio at
the source radius, (E)/E, = 1.53, is significantly lower than
that observed in the shocked-disk model because the only Fermi
acceleration operative in the smooth disk is that due to the over-
all convergence of the accretion flow, which is much weaker
than the concentrated acceleration obtained in the presence of
the velocity discontinuity.

The computation of the solution for the Green’s function in-
cludes the determination of the set of eigenvalues, A, based on
the derivative jump condition given by Equation (88). Since the
eigenvalues form a sequence of increasingly positive numbers,
it follows from Equation (98) that the first eigenvalue, X, de-
termines the shape of the particle distribution at high energies.
The sequence of eigenvalues associated with the M87 particle
transport model is plotted in Figure 3(a) for both shocked and
smooth disks. The comparison between the two cases is inter-
esting because the smooth disk only includes the acceleration
associated with the overall convergence of the accretion flow,
whereas the shocked model adds the concentrated acceleration
occurring in the vicinity of the velocity discontinuity. In the
shocked-disk case, we obtain for the first eigenvalue A = 4.22,
and in the shock-free model we obtain A; = 4.90. The hard-
ening of the high-energy spectrum in the shocked disk clearly
illustrates the dominance of shock acceleration over first-order
Fermi compression in the background flow.

In Figure 4(a), we plot the Green’s function energy distribu-
tion f, for the accelerated particles in the M87 disk computed
using Equation (98). Results are presented for both shocked and
smooth disks. The presence of the shock results in a harder (flat-
ter) energy spectrum at all radii as expected. The correspond-
ing number and energy distributions for the escaping particles,
N3¢ and ENZ°, respectively, are plotted in Figure 5(a) using
Equation (107). At high energies, the escaping number distribu-
tion has a power-law shape, with N7*° oc E~%. Since the diffu-
sion time for particles to escape from the disk is independent of
the particle energy in our model (see Equation (29)), it follows
that «, is related to the first eigenvalue, A, via o, = A} — 3,
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Figure 3. Eigenvalues 1, plotted as a function of the index n for (a) M87
and (b) Sgr A*. Filled circles denote the shocked-disk model and open circles
represent the results obtained in the corresponding smooth-disk model. Note
the marked decrease in the first eigenvalue A; when a shock is present, leading
to characteristic spectral hardening.
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Figure 4. Green’s function (Equation (98)) describing the distribution of
particles in the disk plotted in units of erg~> cm™> as a function of energy
E/Eo and radius r in units of R, = GM/c? for (a) M87 and (b) Sgr A*.
The injection energy Eop = 0.002 erg, corresponding to Lorentz factor
Iy = Eo/(m) ¢2) ~ 1.33. The shocked and smooth solutions are denoted
by the thick and thin lines, respectively. The enhanced Fermi acceleration due
to the presence of the shock decreases the first eigenvalue A; (see Figure 3),
resulting in spectral hardening at high energies.

which yields o, = 1.22 in our model for M87. The flatness
of the escaping particle energy spectrum is another reflection of
the high efficiency of the particle acceleration process occurring
in the shocked disk.

The total power in the escaping particles, computed using
Equation (109), is found to be Lee = 5.5 x 10¥ergs™!,
which agrees with the value of Ly, as required for global
energy conservation. This confirms that particle acceleration
in the shocked, viscous disk is sufficient to power the observed
outflows in M87. We can also check the value of the total particle
escape rate N by computing it using the Green’s function
integration in Equation (108) and comparing the result with that
obtained using the alternative formula given by Equation (69).
Both methods yield the same result, N, = 5.81 x 10571,
which validates the solution obtained for the Green’s function.
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Figure 5. Number and energy distributions for particles escaping through the
disk surfaces to form relativistic outflows in (a) M87 and (b) Sgr A*, plotted in
cgs units using Equation (107). The total energy escape rate is consistent with
estimates of the kinetic luminosity in the two sources.
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Figure 6. Relativistic particle number and energy densities, 7, and U,, plotted
in cgs units as functions of radius r in units of R, = GM/c2 for (a) M87
and (b) Sgr A*. Solid lines denote the density values computed using the
formal solutions for the moments Ir(r) = n,(r) and I3(r) = U,(r) given
by Equation (58), and circles represent the values obtained using Equation
(3) to numerically integrate the series solution for the Green’s function
(Equation (98)). Filled circles and thick lines represent the shocked-disk results;
the corresponding smooth-disk results are denoted by the open circles and thin
lines. The dotted vertical lines indicate the shock location for each model. The
close agreement confirms the accuracy of the solution for the Green’s function.

In Figure 6(a), we plot the relativistic particle number and
energy density profiles, n,(r) and U, (r), respectively, computed
by integrating the M87 Green’s function f, using Equations
(3). Results are presented for both shocked and smooth disks.
We can assess the accuracy of the Green’s function solution
by comparing the number and energy density values with those
obtained using the formal solution for the nth moment 7,(r)
(Equation (58)), which is based on numerical integration of
Equation (62). These results are also included in Figure 6(a).
It is clear that the two methods agree quite closely, as they
should, which confirms the accuracy of the series expansion
for the Green’s function given by Equation (98). The results
obtained for the number density distribution in Figure 6(a) are
very similar in the shocked and smooth disks, but the energy
density values are amplified by a factor of ~3 when a shock is
present due to the enhanced level of particle acceleration.
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6.2. Sgr A*

For Sgr A*, we adopt the values M = 2.6 x 10° Mg
(Schodel et al. 2002), M = 8.96 x 1077 My yr~! (Yuan et al.
2002; Quataert 2003), and Lje, = 5 x 10°® ergs™' (Falcke
& Biermann 1999). We also set y = 1.5 and ¢ = 0.1. In
Figure 1(b), we plot the profiles for the inflow speed v(r) and
the isothermal sound speed a(r) obtained in both the shocked-
and smooth-disk models for Sgr A*. In Figure 2(b), we plot the
corresponding profiles for the specific angular momentum £(r)
and the Keplerian specific angular momentum £ (r).

In the shocked-disk case, the results obtained for the model
parameters are e_ = 0.00134884 %, €, = ¢y = —0.0085 ¢,
Ly = 2.6728 Ry, Ko = 0.005448, r, = 19917R,, r" =
6.380 R,, and r>" = 112.384 R,. For the pre-shock and post-
shock velocities and Mach numbers we find that v_ = 0.159 ¢,
vy = 0.0748 ¢, M_ = 1.4578, and M, = 0.6860, respectively,
and the disk half-thickness at the shock location is H, =
8.72 R,. The source is located at r, = 19.917 R,, and we find
that £ = fx at radius reqee = 5432 R,, which is the outer
edge of the ADAF region. In the case of Sgr A*, the energy-
budget relation Ljel = —MA(e; — €_) yields (cf. Equation (22))
Liee = 0.0098 M ¢, and therefore ~1% of the incident accretion
energy is converted into the kinetic energy of the outflowing Jet
particles. Utilizing the accretion rate M = 5.65 x 10" gs~
yields Lig ~ 5.0 x 10¥erg s~!, which establishes that our
shocked-disk dynamical model successfully accounts for the
observed energetics of the accretion flow and the outflow in
Sgr A*.

We can also obtain a smooth (shock-free) solution for the
dynamical structure of Sgr A* by integrating the conservation
equations using the same value for the incident energy transport
rate €_ as adopted in the shocked-disk model, but with no
shock included. The value of ¢ is then varied until we obtain
¢ = fx at the same outer radius, regee = 5432 Ry, as in the
shocked disk. The resulting parameter values for the smooth
solution are ¢y = €, = e_ = 0.00134884 2, Ly = 2.416 Ry,
Ko = 0.008293, and r. = 7.51135 R,. These results are
indicated in Figures 1(b) and 2(b). Note that once again we
observe that the sound speed (and temperature) are significantly
reduced when a shock is present.

The transport and acceleration of relativistic particles in the
Sgr A* disk can be analyzed based on either the shocked
or smooth dynamical profiles. The results obtained for the
particle transport parameters in the shocked-disk model for
Sgr A* are By = 0.021292, No 2.5 x 108 s Ny =
5.63 x 10%s71, Ag = 0.01889, n,, = 3.09 x 10°cm~>, U, =
2.74 x 10%ergcm™3, and (E)/E, = 4.44. For comparison,
the corresponding values for the number and energy densities
of the background (thermal) protons at the shock radius are
n" = 3.00 x 107cm™ and UM = 1.07 x 10°ergem™3,
respectively. We therefore conclude that the mean energy of
the escaping particles, (E) = U,/n,, is ~248 times larger
than the mean energy of the thermal protons at the shock
radius, (EM) = n/U™. The mass loss rate into the outflow
is Moy = Nesern, = 9.40 x 10" gs™!, and consequently

Meyy/M ~ 0.0017, confirming that the loss of mass from the
disk into the outflow is negligible, as we have assumed.

In the shock-free (smooth) case, the transport parameters are
given by By = 0.021292, Ny = 2.5 x 10" 57!, Nee = 0,
Ag =0, n, = 3.10 x 105 em3, U, = 8.74 x 102erg cm’3,
and (E)/Eq = 1.41. The source is located at r = 19.917 R, to
facilitate comparison with the shocked case. The corresponding
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number and energy density values for the thermal protons at
the source radius are n'" = 3.56 x 10"cm™ and UM =
1.65 x 10%ergem—3, respectively. Once again we note that
the mean energy boost ratio at the source location, (E)/E, is
significantly greater when a shock is present, which reflects the
dominance of the Fermi acceleration occurring near the velocity
discontinuity.

In the shocked-disk model for Sgr A*, the outwardly directed
particle transport rate for r > r, is Ny = 2.38 x 10757,
and the inwardly directed transport rate for r < r, is NH =
—1.70 x 10*'s~!. Hence, ~68% of the test particles are
advected across the horizon, ~10% diffuse outward to large
radii, and ~22% escape through the disk surfaces to power the
outflows. Conversely, in the smooth-disk model, we find that the
outwardly directed transport rate is Ny = 1.56 x 10% s~! and
the inwardly directed transport rate is Ny = —2.34 x 10*! s~
indicating that ~94% of the particles are advected into the black
hole and only ~6% are able to diffuse to large radii.

The sequence of eigenvalues obtained in the Sgr A* appli-
cation is plotted in Figure 3(b). The eigenvalues form a se-
quence of increasingly positive real numbers, and therefore the
first eigenvalue, X, determines the shape of the Green’s func-
tion particle distribution at high energies. In the shocked-disk
case, we obtain A; = 4.24, and in the shock-free model we
find that A; = 5.07. Comparison between the shocked- and
smooth-disk cases reveals the characteristic spectral hardening
at high energies due to the efficiency of the shock acceleration
process.

The Green’s function for the accelerated relativistic particles
in the Sgr A* disk can be computed using Equation (98) based on
either the shocked or smooth dynamical structures. The results
obtained are plotted in Figure 4(b). As expected, the shocked-
disk model produces a much harder energy spectrum due to
the enhanced Fermi acceleration occurring near the velocity
discontinuity. The associated number and energy distributions
NZ* and ENZ* for the escaping particles are computed using
Equatlon (107) and plotted in Figure 5(b). The escaplng number
distribution has a power-law shape at high energies, with
Nesc x E7%, where o, = Ay — 3. In our model for Sgr A*
we obtain a, = 1.24.

By utilizing Equation (109), we find that the total power
in the escaping particles is Lee = 5 x 1038 erg s~!, which is
consistent with the observational value of L;e, hence confirming
that the shock acceleration model developed here is capable
of powering the observed outflows in Sgr A*. As a further
check on the normalization of the escaping particle spectrum,
we can compute the total particle escape rate N using
Equations (69) and (108). Both equations yield the same result,
Nege = 5.63 x 10571 as required, which establishes that the
Green'’s function is properly normalized.

In Figure 6(b), we compare the results for the Sgr A*
relativistic particle number and energy densities n,(r) = I»(r)
and U,(r) = I3(r) computed using the Green’s function in-
tegrals (Equations (3)) with the corresponding profiles com-
puted using the formal solution for the nth moment 7,,(r) given
by Equation (58), which is based on numerical integration of
Equation (62). The two sets of results are consistent, which es-
tablishes the validity of the Green’s function series expansion
given by Equation (98). The number density curves plotted in
Figure 6(b) for the shocked- and smooth-disk models are very
similar, but the energy density curve is boosted by a factor of ~3
in the shocked disk, reflecting the enhanced particle acceleration
created by the velocity discontinuity.
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7. DISCUSSION AND CONCLUSION

In this paper, we have presented a rigorous analytical model
for the production of energetic particles via diffusive shock
acceleration in advection-dominated accretion disks. Such disks
are ideal sights for first-order Fermi acceleration because the
plasma is tenuous and the gas is collisionless, and therefore a
small population of particles can gain a great deal of energy
via repeated shock crossings. The main result obtained here is
a detailed description of the Green’s function describing the
energy/space distribution of the accelerated particles in the disk
(Equation (98)). The solution for the Green’s function is also
used to compute the energy distribution of the particles escaping
from the disk to form the energetic outflow.

It has been recognized for some time that advection-
dominated disks have a positive Bernoulli parameter, which im-
plies that the gas is unbound from the black hole (see Narayan
et al. 1997; Blandford & Begelman 1999). In this sense, the
original ADAF model is not fully self-consistent. Despite this
problem, no microphysical mechanism for funneling the excess
gravitational binding energy into a population of outflowing par-
ticles has been identified in the previous literature. In this paper,
we have investigated the possibility that diffusive shock accel-
eration in viscous disks serves as the primary mechanism for
transferring the excess gravitational binding energy to a popula-
tion of escaping energetic particles. Diffusive shock acceleration
is quite efficient in the tenuous gas around underfed black holes,
but the process only results in bulk heating in more luminous X-
ray sources in which the gas is too dense to allow efficient Fermi
acceleration of a small population of relativistic particles. This
interpretation is consistent with the observed anticorrelation be-
tween radio/outflow strength and X-ray luminosity (Reynolds
et al. 1996). Our results suggest that the efficiency of the dif-
fusive shock acceleration mechanism is high enough to explain
the observed outflows, while at the same time solving the long-
standing problem of the stability of ADAF disks.

We have developed detailed models for the particle popula-
tions in the accretion disks around the central black holes in
Sgr A* and M87 and we conclude that the observed jet power in
the outflows from these sources can be provided via shock ac-
celeration. The associated Green’s function solutions are plotted
in Figure 4, and the escaping particle distributions are plotted
in Figure 5. The validity of the Green’s function describing the
particle distribution in each source was confirmed via indepen-
dent calculations of the total particle number and energy density
distributions in the disk (see Figure 6). By comparing the re-
sults obtained in shocked and smooth disks satisfying the same
outer boundary conditions, we have clearly demonstrated the
crucial role of the shock in creating a very hard high-energy
distribution versus the weaker form of acceleration associated
with the general convergence of the background accretion flow.
We find that the presence of a shock is required in order to
create a population of particles that can diffuse out of the disk
to form the observed outflows; the acceleration associated with
the general convergence of the background accretion flow is not
adequate.

The terminal (asymptotic) Lorentz factor, I'so, of the jet
emanating from the disk can be computed using the relation
I = (E)/(mpcz). For M87 and Sgr A*, we obtain in the case
of a proton outflow ', = 6.26 and I', = 5.91, respectively.
The associated values for the mean energy boost ratio are given
by (E)/Ey = 4.71 and (E)/Ey = 4.44 for M87 and Sgr A*,
respectively. We find that in the corresponding shock-free
models, the energy is boosted by a factor of only ~1.4—1.5. This
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clearly establishes the essential role of the shock in efficiently
accelerating particles up to very high energies, well above the
energy required to escape from the vicinity of the black hole.

7.1. Angular Momentum Variation

The dynamical model employed here was fully described
by Das et al. (2009) and is based on the standard set of ADAF
conservation equations considered by Narayan et al. (1997). The
conservation equations are supplemented by the inner boundary
conditions developed by Becker & Le (2003) which allow
the calculation of starting values for the physical variables
close to the horizon. The fundamental model parameters are
the specific energy of the gas supplied at a large radius €_, the
Shakura—Sunyaev viscosity parameter o, and the ratio of specific
heats y. The formation of a shock requires that the flow possess
at least two critical points. This possibility has been studied
by many authors (e.g., Abramowicz & Zurek 1981; Chakrabarti
1989a, 1989b, 1990, 1996). Flows with discontinuities must first
pass through an outer critical point, and subsequently through an
isothermal shock and an inner critical point in order to represent
physically acceptable accretion solutions.

For a given set of input parameters ¢_, o, and y, the
computational procedure outlined in Section 3 produces unique
values for the accreted specific energy ¢, the accreted specific
angular momentum £y, the horizon entropy parameter K, the
shock radius 7, the inner critical point radius ri“, and the outer
critical point radius r;’“‘. As expected, the outer critical radius,
ro", is comparable to the Bondi radius, at which the thermal
energy of the accreting gas equals the gravitational potential
energy.

The results for the specific angular momentum plotted in
Figure 2 exhibit a sharp drop close to the outer edge, r ~ regge-
This phenomenon is explored in more detail in Figure 7, where
we compare the angular velocity distribution Q(r) with the
Keplerian profile Qg (r) (Equation (4)). At the outer edge of the
disk, Q = Qg, but the orbital motion soon becomes significantly
sub-Keplerian due to the strong viscous drag between adjacent
annuli in the disk, which tends to lock them together, leading
to solid-body rotation with €(r) ~ constant. The initial drop
in £(r) observed in Figure 2 reflects the approximately rigid
rotation at large radii. This behavior is consistent with the results
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obtained by Narayan et al. (1997) in their study of viscous ADAF
disks. The same behavior was also observed more recently by
Narayan & Fabian (2011) in their study of the Bondi accretion
of slowly rotating matter onto supermassive black holes.

To understand this phenomenon quantitatively, we rewrite
Equation (7) in the equivalent form

dinQ M, Mg [ ¢
_ (=2 _1). (110)
dinr o l
where
v riig
M,=—-, Mg=— (111)
a a

denote the Mach numbers for the radial flow velocity and the
Keplerian orbital velocity, respectively. In the outer region, close
t0 7 ~ Tegge, We note that £ > £y (see Figure 2), and therefore
Equation (110) reduces to

dlnQ Mr./\/l](
~ = I ™~ Tedge-

dlnr a

The Mach numbers M, and Mk are plotted in Figure 7. The
radial flow in the outer region is highly subsonic, i.e., M, < 1,
whereas Mg ~ 1 for the azimuthal Keplerian flow. This leads
to strong viscous coupling, and the associated viscous timescale
is therefore much shorter than the characteristic accretion
timescale at that radius. This effect explains the near-constancy
of Q in the outer region. The subsequent inward acceleration
of the flow causes the radial Mach number to increase, which
drives up the value of |d In Q/d Inr|, resulting in the differential
rotation seen in Figure 7. In the inner region, the specific angular
momentum ¢ nearly levels off (see Figure 2), exhibiting a
gradual decline as r — Rg due to the dwindling viscous stress,
which vanishes at the horizon since no stress can be supported
there (Weinberg 1972).

The general trend of decreasing ¢ is temporarily reversed
near the shock, where ¢ actually increases slightly due to the
fact that the particles are moving from a supersonic region
with low pressure and weak viscous coupling to a subsonic
region with higher pressure and strong viscous coupling. In
this situation, the particles near the shock gain more angular
momentum from the downstream (subsonic) gas than they lose
to the upstream (supersonic) gas. The imbalance between these
two effects causes the particles to gain angular momentum as
they pass through the vicinity of the shock. In the post-shock
region, the angular momentum ¢ resumes its gradual decrease
to the horizon value ¢y, which represents the specific angular
momentum of the particles entering the black hole.

(112)

7.2. Comparison with Cosmic-Ray Acceleration

The model presented here parallels the earliest developments
in the study of the diffusive acceleration of cosmic rays at
supernova-driven shock waves. The transport equation we use
(Equation (24)) is essentially the same one introduced by
Blandford & Ostriker (1978), although the velocity profile
and the location of the shock in an accretion disk are new
features. However, the basic principle is the same. In the cosmic-
ray application, the particle acceleration is powered by the
supernova explosion, whereas in the accretion disk application,
the acceleration is powered by the release of gravitational
binding energy. Either mechanism provides copious energy for
the shock, which efficiently transfers it to a population of high-
energy particles via the first-order Fermi process.
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It is therefore interesting to compare the first eigenvalue ob-
tained in the shocked-disk model with the value computed using
the classic plane-parallel model for cosmic-ray acceleration in
supernova-driven shock waves. In the cosmic-ray application,
the Green’s function has a power-law shape with index (e.g.,
Blandford & Ostriker 1978)

ep = R R= (113)
CR_R—]’ - ’

where R is the shock compression ratio. In the shocked-disk
model, the compression ratio R is computed using the isothermal
shock jump condition given by Equation (23). Based on the M87
parameters, we find that R = 2.04, which yields Acg = 5.90.
This is significantly larger than the value A; = 4.22 obtained
in the shocked-disk model for M87, and therefore we reach
the surprising conclusion that the particle spectrum in the
disk is much harder than would be obtained in the cosmic-
ray application for a shock with the same compression ratio.
In the case of Sgr A*, we obtain for the compression ratio
R = 2.13, and consequently Equation (113) yields for the
equivalent supernova-driven shock Acg = 5.67. Asin the case of
M87, we note that the first eigenvalue in the Sgr A* application,
A1 = 4.24, is much less than Acgr. These results suggest that the
presence of the disk environment surrounding the shock has a
profound influence on the acceleration of the particles.

We can gain further insight into this issue by comparing
the mean energy of the accelerated particles, (E), at the shock
location in both the disk and cosmic-ray scenarios. The mean
energy in the cosmic-ray application is given by (Blandford &
Ostriker 1978)

3

(E)cr = 1I_R Ey,
where Ej is the energy of the injected seed particles. Using
the shock compression ratio R = 2.04 obtained in the M87
case yields (E)cr/Eo = 1.53 for the equivalent cosmic-
ray shock. This is much less than the corresponding result
(E)/Eg = 4.71 obtained in the M87 shocked-disk model. In
the Sgr A* application, we have R = 2.13 and consequently
(E)cr/Eo = 1.60 for the equivalent cosmic-ray shock. Once
again, this is much less than the value (E)/E, = 4.44
obtained in the shocked-disk model for Sgr A*. Since the shock
compression ratio is the same in each of these comparisons,
the dramatic difference between the two results must be due
to the different environments surrounding the shock in the two
situations.

In the model explored here, the shock is embedded in an
accretion flow which makes an additional contribution to the
particle acceleration due to the overall convergence of the
background plasma. This additional component of acceleration
is not included in the plane-parallel models for cosmic-ray
acceleration in supernova-driven shock waves. However, the
additional acceleration due to the background flow convergence
is actually quite weak, and therefore this effect is not likely to
explain the strong enhancement in the energy boost ratio (E) / Eg
when comparing a supernova-driven shock to an accretion-
driven shock of the same compression ratio.

We believe that the marked increase in efficiency in the
disk case versus the cosmic-ray shock model stems from the
nature of the particle transport in the region surrounding the
shock. In the plane-parallel cosmic-ray shock, the upstream
and downstream flows have constant velocity and density, and
the region upstream from the shock has no net particle flux,

(114)
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Figure 8. Background pressure P (solid lines) and relativistic particle vertical
momentum flux F), (Equation (115), dot-dashed lines) plotted in cgs units as
functions of radius 7 in units of R, = GM /¢? for (a) M87 and (b) Sgr A*. Thick
and thin lines denote shocked- and smooth-disk solutions, respectively. Particles
are expected to escape when the momentum flux exceeds the background
pressure, which occurs near the shock, if one is present. If no shock is present,
P > F,, and the particles are confined to the disk.

assuming the particle source is located at the shock. In this
situation, all of the particles are ultimately swept away by
advection into the downstream region. On the other hand, in
the accretion disk context, the number density of the scattering
centers increases strongly toward the event horizon, and this
profoundly alters the nature of the particle transport upstream
and downstream from the shock. We find that ~10% of the
particles in the disk are able to diffuse back across the shock into
the far upstream region, to be “recycled” across the shock many
more times than occurs in the plane-parallel cosmic-ray shock.
The mean fractional energy increase generated by each shock
crossing is ~|Av/c|, and therefore the energy of the relativistic
particles in the disk can grow to values far exceeding what
would be possible in the classic model for diffusive cosmic-ray
acceleration, even though the shock compression ratio is the
same in both cases.

7.3. Spatial Distribution of Escaping Particles

We have assumed here that all of the escaping relativistic
particles emanate only from the shock location. This is expected
to be the case since the shock acts as the epicenter of the
acceleration process that powers the escaping particles. We can
examine the validity of this assumption by analyzing the detailed
results we have obtained for the particle distribution in the disk.
In particular, it is interesting to compare the momentum flux of
the diffusing particles with confining pressure provided by the
background gas and the magnetic field. The vertical momentum
flux of the diffusing particles is given by

F=Y 3 (115)
p = — Udiff, Vdiff = —7»

I o vt diff =

where vgige denotes the vertical diffusion velocity, and the spatial
diffusion coefficient « is evaluated using Equation (32). The
vertical momentum flux F), is compared with the background
pressure P for the M87 and Sgr A* models in Figure 8.
Note that in the smooth-disk models, the background pressure
greatly exceeds the vertical momentum flux throughout the disk.
However, when a shock is present, there is a small region around
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Figure 9. Background pressure P (solid lines) and relativistic particle pressure
P, = U, /3 (dot-dashed lines) plotted in cgs units as functions of radius r in units
of Ry = GM/ ¢? for (a) M87 and (b) Sgr A*. Thick lines denote the shocked-
disk solution, and thin lines represent the corresponding smooth-disk results.
When a shock is present, the relativistic particle pressure slightly exceeds the
background pressure near the shock. When no shock is present, the particle
pressure is insignificant.

the shock where F, > P and the particles are expected to
escape. This supports our assumption that particle escape is
strongly focused at the shock location.

7.4. Test-particle Approximation

In the present work, we have utilized the “test-particle”
hypothesis, in which the dynamical effect of the pressure of
the accelerated particles is neglected. However, the marked
flatness of the particle energy distribution in the shocked-disk
application suggests that the particle pressure may be significant,
and therefore it is important to compare the pressure of the
relativistic particles with that of the background, composed of
the thermal gas and the magnetic field, which are assumed to
be in equipartition. If the pressure of the accelerated particles
becomes comparable to or exceeds the background pressure, as
occurred in the earliest models for supernova-driven cosmic-ray
acceleration, then clearly the test-particle approximation would
have to be abandoned and it would be necessary to include the
pressure of the accelerated particles in the dynamical model
in order to ensure complete self-consistency. In the context of
cosmic-ray acceleration, this led to the development of the “two-
fluid” model (e.g., Becker & Kazanas 2001).

In Figure 9, we compare the background pressure P with the
pressure of the accelerated relativistic particles, P, = U, /3,
computed by integrating the Green’s function expansion using
Equation (3). We find that in the smooth (shock-free) disk, the
relativistic particle pressure is never dynamically important.
In the shocked disk, P exceeds P, everywhere except in the
immediate vicinity of the shock, where they are comparable.
This suggests that, as was found in the early models of cosmic-
ray acceleration, the pressure of the accelerated particles is likely
to alter the dynamical structure of the flow, and it may lead to a
“softened” shock transition, possibly containing a discontinuous
“subshock” (e.g., Becker & Kazanas 2001). The inclusion of the
dynamical effect of the relativistic particle pressure is beyond
the scope of the present paper, but it will be the subject of
future investigation. However, since the particle pressure barely
exceeds that of the background, even at the shock location, we do
not expect substantial alteration of the disk structure compared
with the results presented here.
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7.5. Conclusion

Our results establish that the kinetic power in the outflows
around M87 and Sgr A* can be explained as a consequence
of accretion-driven, diffusive particle acceleration in viscous,
shocked accretion disks. In applications to M87 and Sgr A*,
we find that the energy of the relativistic particles that escape
to form the outflow exceeds that of the thermal background
gas at the shock radius by a factor of ~300. The resulting
kinetic power in the jet is ~0.01 Mc?. The shock efficiently
channels gravitational binding energy into a small population
of escaping particles, thereby explaining the formation of the
observed outflows around radio-loud black holes, and also
resolving the long-standing problem of the stability of ADAF
disks. In fact, it can be argued that the self-consistency of the
ADAF model requires the presence of a shock since it is the
only identified microphysical mechanism capable of converting
the excess gravitational binding energy into particle energy,
thereby stabilizing the disk and allowing the remaining gas to
accrete. We therefore conclude that a standing accretion shock
may be an essential ingredient in understanding many observed
disk/outflow systems.

The authors are grateful to the anonymous referee for pro-
viding several interesting comments that led to substantial im-
provements in the manuscript.
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