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ABSTRACT
Matter accreting on to black holes has long been known to have standing or oscillating shock
waves. The post-shock matter puffs up in the form of a torus, which intercepts soft photons from
the outer Keplerian disc and inverse Comptonizes to produce hard photons. The post-shock
region also produces jets. We study the interaction of both hard photons and soft photons, with
on-axis electron–positron jets. We show that the radiation from post-shock torus accelerates
the flow to relativistic velocities, while that from the Keplerian disc has marginal effect. We
also show that the velocity at infinity or the terminal velocity ϑ depends on the shock location
in the disc.

Key words: accretion, accretion discs – black hole physics – radiation mechanisms: general
– radiative transfer – ISM: jets and outflows.

1 I N T RO D U C T I O N

Jets around quasars and microquasars show relativistic terminal
speeds. While jets are quite ubiquitous and are associated with a
wide range of celestial objects, only some jets around quasars and
micro-quasars show highly relativistic terminal speed (e.g. GRS
1915+105, Mirabel & Rodriguez 1994; 3C 273, 3C 345, Zensus,
Cohen & Unwin 1995; M87, Biretta 1993). These relativistic jets are
generally associated with compact objects and circumstantial evi-
dence shows that many of these central gravitating objects are black
holes. Black holes do not have ‘hard surfaces’ nor do they have at-
mospheres, hence if observations show that many of these jets come
from the vicinity of the black hole, then they must originate from
the accretion discs around these black holes.

The inner boundary conditions of matter accreting on to a black
hole are (i) supersonic and (ii) sub-Keplerian. Liang & Thompson
(1980) showed that sub-Keplerian matter accreting on to a black
hole has at least two X-type critical points. In much of the parame-
ter space, it has been shown that supersonic matter crossing the outer
critical point undergoes centrifugal pressure-mediated shock (Fukue
1987; Chakrabarti 1989), becomes subsonic and enters the black
hole through the inner X-type critical point. Entropy is generated at
the shock making the post-shock region hot. The region in which
the flow slows down may be extended if the shock conditions are
not satisfied. This hot, slowed-down region is puffed up in the form
of a torus (hereafter, CENBOL ≡ CENtrifugal pressure-supported
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BOundary Layer; see Chakrabarti et al. 1996, hereafter, CTKE96).
This disc, due to its advection term, may be called an advective accre-
tion disc (Chakrabarti 1989, hereafter C89; Chakrabarti 1990, here-
after C90; Chakrabarti 1996, hereafter C96; CTKE96). Chakrabarti
& Titarchuk (1995, hereafter CT95) proposed a disc model which
contains both Keplerian matter and sub-Keplerian matter. In this
model, the Keplerian matter is of higher angular momentum and low
specific energy, and settles around the equatorial plane to form the
Keplerian disc (see, Shakura & Sunyaev 1973; Novikov & Thorne
1973, hereafter NT73) while the sub-Keplerian matter with high
energy and lower viscosity flanks the cooler Keplerian disc from
the top and bottom, sandwiching the Keplerian disc and forming
what is known as the sub-Keplerian halo (see, CT95; Chakrabarti
1997, hereafter C97) in the literature. The sub-Keplerian halo may
suffer a standing shock at xs, a few tens of Schwarzschild radii,
and it may be sustained there if the post-shock thermal pressure is
sufficiently high. The shock compresses the pre-shock flow making
it denser and at the same time hotter. In the model solution pro-
posed by Chakrabarti & Titarchuk (CT95), the post-shock region
comprises a mixture of the Keplerian and sub-Keplerian compo-
nents. Thus, though the sub-Keplerian halo (pre-shock) is optically
thin for the radiations from the Keplerian disc, the post-shock torus
could be optically thin, intermediate, or even thick depending on the
Keplerian and sub-Keplerian rates (see CT95, CTKE 96, C97 for
details). This is because (1) the Keplerian radiation falls on it at
a glancing angle, thereby increasing the path length, and (2) the
mixed matter in this region has higher density. CT95 showed that
soft radiation from the cool Keplerian disc is inverse-Comptonized
by the CENBOL to produce hard radiation. If the sub-Keplerian
halo rate (Ṁh) is higher, then it supplies more hot electrons to the
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CENBOL than the soft photons from the Keplerian disc and hence
the soft photons cannot cool down the CENBOL significantly. Thus
the CENBOL remains puffed up and hot and can intercept a large
number of soft photons and inverse-Comptonize them to produce the
hard power-law tail of the accretion disc spectrum – a state called
the hard state. If, on the other hand, the Keplerian accretion rate
(Ṁ K ) is higher, then it supplies more soft photons to cool down the
CENBOL region. This results in more power to the soft end of the
accretion disc spectrum – a state known as the soft state. Recently,
however, Chakrabarti & Mandal (2003) showed that raising the
Keplerian rate even higher does not necessarily soften the spec-
trum, because the Keplerian flow also adds to the number density of
electrons in the post-shock region and at some point the spectrum
starts to be hardened once more.

This kind of hybrid disc structure is known as the two-component
accretion flow or the TCAF disc (see, CT95, CTKE 96, Ebisawa,
Titarchuk & Chakrabarti 1996, C97), and has wide observational
support (Smith et al. 2001; Smith, Heindl & Swank 2002). In Fig. 1,
a schematic diagram of such a disc is presented. The figure shows
how the Keplerian disc is sandwiched by the sub-Keplerian halo.
The shock location (xs) and the compact object are also shown. Jets
are shown close to the axis of symmetry. Thus jets are illuminated
by the Keplerian disc with soft photons and by the CENBOL with
hard photons.

Chakrabarti and his collaborators have also shown that the
CENBOL can drive a part of the infalling matter along the axis of
symmetry to form jets (Chakrabarti 1998, 1999; Das & Chakrabarti
1999; Das et al. 2001). There is wide support that the jets are in-
deed leaving from a region within 50–100 Schwarzschild radii of the
black hole (Junor, Biretta & Livio 1999). Similarly, it is believed that
jets are produced only in hard states (see Gallo, Fender & Pooley
2003, and references therein). Thus it is natural to study the in-
teraction of hard radiation from the CENBOL and the outflowing
jets, with the particular interest of studying whether momentum de-
posited onto the jet material by these hard photons can accelerate
them to ultrarelativistic speeds.

Investigation of the interaction of radiation and astrophysical flow
is not new. A number of astrophysicists have directed their efforts in
this particular field of study, while consideration of the associated
accretion disc depended on their personal choice or the popularity
of the particular model of accretion at the given time. Icke (1980)

Figure 1. Cross-sectional view of the two-component accretion disc model. Only the top half is shown.

studied the effect of radiative acceleration of the gas flow above
a Keplerian disc. But the effect of radiation pressure on the gas
flow was ignored. Sikora & Wilson (1981) showed that even if the
jet is collimated by geometrically thick discs (Lynden-Bell 1978;
Abramowicz & Piran 1980), radiation drag is important for astro-
physical jets. Piran (1982), while calculating the radiative acceler-
ation of outflows about the rotation axis of thick accretion discs,
found out that in order to accelerate outflows to γ > 1.5 (where γ

is the bulk Lorentz factor), the funnels must be short and steep, but
such funnels are found to be unstable. Sol, Pelletier & Assêo (1989)
proposed a two-flow model for jets, one consisting of relativistic
particles (electrons and positrons) and of a relativistic Lorentz fac-
tor, while the other is a normal, mildly relativistic plasma. In a very
important paper, Icke (1989) considered blobby jets about the axis
of symmetry of thin discs and he obtained the ‘magic speed’ of vm =
0.451c, where c is the velocity of light, vm being the upper limit of
the terminal speed. Fukue (1996) extended this study for rotating
flow above a thin disc and drew similar conclusions, although for
rotating flow, away from the axis of symmetry, the terminal speed
was found out to be a little less than the magic speed of Icke. To sum-
marize, earlier work showed that it is not possible to accelerate jets
to ultrarelativistic terminal velocities, by radiation from the earlier
accretion disc models. What is more discouraging is the existence of
moderate levels of equilibrium speed (veq, i.e. speeds above which
there would be radiative deceleration). Recently Fukue, Tojyo &
Hirai (2001) have done similar investigations on the interaction of
radiation and pair plasma jets, but they took a disc model which
consisted of an inner ADAF region (non-luminous) and an outer
slim disc (luminous), which resulted in a relativistic terminal speed.

We are working in a different regime, i.e. a less-luminous Keple-
rian disc and a more-luminous post-shock torus or CENBOL. Since
hard radiation is expected to emerge out of the optically thin CEN-
BOL, its intensity (photon counts per unit area per unit time) is low,
but it ‘looks’ directly into the jet vertically above and hence even-
tually deposits its momentum into the latter. Radiation from a hot
CENBOL is likely to be a source of pair-production and hence the
possibility of radiative momentum deposition is likely to be higher
even for radiation from the CENBOL hitting the outflow at an angle
(see, e.g. Yamasaki, Takahara & Kusunose 1999 for the mechanism
of pair-production from hot accretion flows). This is why we be-
lieve that the direct deposition of momentum may be important.
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Chattopadhyay & Chakrabarti (2002a) showed that hard radi-
ation from the post-shock region (CENBOL) does accelerate
electron–proton plasma to mildly relativistic terminal speeds.
Chattopadhyay & Chakrabarti (2002b) also reported that hard ra-
diation from the CENBOL does not impose any upper limit on the
terminal speed.

In the present paper, we solve the equations of photo-hydro-
dynamics of jets for radiation coming out from the TCAF discs,
where the radiation fields from both the inner CENBOL and the
outer Keplerian thin disc are considered. We show that, while
the equilibrium velocity closer to the black hole depends on xs,
and the ratio between the Keplerian disc and the CENBOL lumi-
nosities, the terminal speed or the jet velocity at infinity depends on
the relative proportions and also on the actual magnitude of various
moments of the radiation. We also show that, in hard states (in our
parlance, CENBOL radiation dominating over Keplerian radiation),
optically thin jets can be accelerated to ultrarelativistic speed.

In the next section, we present the model assumptions and the
equations of motion and compute various moments of the radiation
field. In Section 3, we present our solutions and finally in Section 4,
we draw our conclusions.

2 A S S U M P T I O N S , G OV E R N I N G E QUAT I O N S
A N D C O M P U TAT I O N O F T H E M O M E N T S O F
T H E R A D I AT I O N F I E L D

2.1 Assumptions and governing equations

In our analysis, the curvature effects due to the presence of the
central black-hole mass are ignored. The metric is given by ds2 = c2

dt2 − dr2 − r2 dφ2 − dz2, where, r, φ, and z are the usual coordinates
in cylindrical geometry and ds is the metric in four-space. The four-
velocities are uµ. We follow the convention where the Greek indices
signify all four components and the Latin indices represent only the
spatial ones. The black hole is assumed to be non-rotating and hence
the strong gravity is taken care of by the so-called Paczynski–Wiita
potential (e.g. Paczynski & Wiita 1980).

We also do not consider the generation mechanism of the jets.
As the astrophysical jets are observed to be extremely collimated
(Bridle & Perley 1984), and generally aligned along the normal to
the host galaxy, we assume the jet to be along the axis of symmetry.
Thus the transverse structure of the jet is ignored, i.e. ur = uφ = 0
and ∂/∂r = ∂/∂φ = 0, where ur and uφ are the radial and azimuthal
components of the four-velocity. We are looking for steady-state
solutions. Hence, ∂/∂t = 0. We also assume the gas pressure is
negligible compared to the radiation pressure. This is perhaps the
case especially inside the funnel wall close to the axis. The deriva-
tion of the equations of motion of radiation hydrodynamics for an
optically thin plasma was investigated by a number of workers. A
detailed account of such derivations has been presented by Mihalas
& Mihalas (1984, hereafter MM84) and Kato, Fukue & Mineshige
(1998, hereafter K98), and they are not presented here. Enforcing
the above assumptions, the equation of motion presented in MM84
and K98 reduces to

uz duz

dz
= − G MB

(z − 2)2

+ σT

m

[
γ

Fz

c
− γ 2 Euz − uz Pzz

+ uz

(
2γ uz Fz

c
− uzuz Pzz

)]
,

where uz is the z-component of the four-velocity, G, MB, σ T , and m
are the universal gravitation constant, the mass of the black hole, the
Thomson scattering cross-section and the mass of the gas particle,
respectively. E, Fz and Pzz are the radiative energy density, radiative
flux and radiative pressure on the axis of symmetry, and γ (γ = ut)
is the Lorentz factor. The above equation can be rewritten as

uz duz

dz
= − G MB

(z − 2)2

+ [γF − γ 2Euz

− uzP + uz(2γ uzF − uzuzP)], (1)

where

E = σT

m
E,F = σT

mc
Fz and P = σT

m
Pzz .

For simplicity, we will not compute the shock location xs or the
CENBOL luminosity (LC) – instead, we will supply them as free
parameters. They can be easily computed from accretion parameters
(e.g. C89, CT95, Das et al. 2001; Chattopadhyay et al. 2003). We
assume that the outflow is made up of purely electron–positron pair
plasma.

2.2 Computation of radiative moments from the TCAF disc

The radiation reaching each point on the jet axis comes from two
parts of the disc, namely, the CENBOL and the Keplerian disc, hence
all the radiative moments should have both contributions.

In Fig. 2, a schematic diagram of the cross-section of the disc
structure is presented. The black hole is situated at O. The region
bounded between O and xs is the CENBOL, and the thick line be-
tween xs and xo is the Keplerian disc, where xo is the outer boundary
of the Keplerian disc. Thus xs is the outer boundary of the CENBOL
and the inner boundary of the Keplerian disc. The inner boundary
of the Keplerian disc, as seen from position B, is xKi. The shock
height is hs ∼ asx1/2

s (xs − 1), where as is the equatorial sound speed
at the shock and depends on xs. In other words hs = hs(xs), but as
we are not solving the accretion disc equations simultaneously, we
have to make some estimate of hs which will closely mimic reality.
The solutions of Chakrabarti (C89, C90, CT95, C96) show that if
xs = 10rg, where rg is the Schwarzschild radius, then the tempera-
ture at the shock is T 10 ∼ 1.56 × 1011K. Assuming that the shock
temperature is T s = T 10(10/xs), one can estimate the shock height to
be hs ∼ 0.6(xs − 1). The inner surface of the CENBOL is assumed
to be conical. The radiations from a point D(r′, z′) on the surface
of the CENBOL is primarily along the local normal DC. Similarly,
the radiation from a point D′(r′

K, 0) on the Keplerian disc is along
its local normal D′C′.

The radiative moments at B are

E = 1

c

∫
I d = 1

c

(∫
C

IC dC +
∫

K

IK dK

)
, (2a)

Fi

c
= 1

c

∫
I li d = 1

c

(∫
C

ICli
C dC +

∫
K

IKli
K dK

)
, (2b)

and

Pi j = 1

c

∫
I li l j d = 1

c

(∫
C

ICli
Cl j

C dC +
∫

K

IKli
Kl j

K dK

)
.

(2c)

In equations (2a)–(2c), I is the frequency integrated intensity from
the disc, d  is the differential solid angle at B and li are the direc-
tion cosines at B, for example lz

C = (z − z′)/BD and lz
K = z/BD′.
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Figure 2. Schematic diagram of a two-component accretion flow (TCAF). O is the position of the black hole. The centrifugal pressure-dominated boundary
layer (CENBOL) is the puffed up region between O and xs, the shock location. The thick line between xs and xo is the Keplerian disc where xo is the outer
boundary of the Keplerian disc. DC and D′C′ are the local normals of the CENBOL and Keplerian disc. B(0, z) is the field point where various moments of the
radiation fields are computed. D(r′, z′) is the source point on the CENBOL and D′(r′

K, 0) is the source point on the Keplerian disc. r′ is the radial coordinate of
the CENBOL and r′

K is that of the Keplerian disc. The sub-Keplerian halo is not shown.

The suffixes C and K represent quantities linked to the CENBOL
and the Keplerian disc respectively. The expressions of solid angles
subtended at B from D and D′ are given respectively by

dC = r ′cosecθ dr ′ dφ

r ′2 + (z − z′)2
cos(
 C DB), (3a)

and

dK = r ′
K dr ′

K dφ

r ′
K

2 + z2
cos(
 C ′ D′ B), (3b)

where θ is the semivertical angle of the inner surface of the CENBOL
which, for simplicity, is assumed to be constant. It is to be noted
that, from Fig. 2 and equations (3a)–(3b), in general, lz

C > lz
K and

for any unit differential area on the disc, dC > dK. This implies
that the contribution from the CENBOL to the total radiation field
moment is much greater, compared to that from the Keplerian disc.
This will be clear when the comparative study of the moments is
presented later (see Fig. 3).

It is clear from equation (2b) that, due to the symmetry about the
z-axis, the only non-zero pressure tensor components are Pii and
Fr = Fφ = 0 on the axis. Only Fz is non-zero. As we consider jets
on or about the axis of symmetry and the transverse structure is
ignored, Prr and Pφφ do not enter the equation of motion as these
components are only coupled with ur(=0) and uφ(=0), i.e. we have
only to compute Pzz, which is exactly what is seen in equation (1).

From Fig. 2, it is clear that for the outflowing matter within the
funnel, i.e. when z < [hsxo/(xo − xs)], radiation from the Keplerian
disc does not reach the electrons because this radiation is intercepted
by the CENBOL. The CENBOL will reprocess these intercepted
photons, and re-emit them in all directions, especially towards the
jets because of the special geometry and directiveness of the CEN-
BOL surface. Due to the shadowing effect mentioned above, the ra-
diation from the Keplerian disc reaching B is from xKi to xo, where
xKi = xsz/(z − hs), with the additional constraints, xs � xKi � xo

and xKi > 0.
As far as the CENBOL properties are concerned, we follow CT95,

where an effective temperature was computed for the CENBOL

and the radiation intensity was chosen to be uniform. That is IC =
LC/πA = �LEdd/πA = constant, where LC andA are the CENBOL
luminosity and the surface area of the CENBOL, respectively. LEdd

is the Eddington luminosity and � is the CENBOL luminosity in
units of LEdd. The Keplerian disc intensity per unit solid angle is

IK = 3G MB ṀK

8π2r 3
K

(
1 −
√

3rg

rK

)
(NT73).

Let us now multiply σ T/m with equations (2a)–(2c), and then inte-
grate over the whole disc to obtain the following integrated quantities
for the moments:

E = EK 0

∫ xo

xKi

2πz
[
r ′−2

K − √
3r ′−5/2

K

]
dr ′

K(
z2 + r ′2

K

)3/2

+ EC0

∫ xs

rin

2π cot θ{r ′ + (z − r ′ cot θ ) tan θ}r ′ dr ′

[(z − r ′ cot θ )2 + r ′2]3/2

= EK 0 ẼK (z, xs, xo) + EC0 ẼC (z, rin, xs)

= EK + EC, (4a)

where r in is the inner boundary of the disc.

F =FK 0

∫ xo

xKi

2πz
[
r ′−2

K − √
3r ′−5/2

K

]
z dr ′

K(
z2 + r ′2

K

)2

+FC0

∫ xs

rin

2π cot θ{r ′ + (z − r ′ cot θ ) tan θ}r ′(z − r ′ cot θ ) dr ′

[(z − r ′ cot θ )2 + r ′2]2

= FK 0 F̃K (z, xs, xo) + FC0 F̃C (z, rin, xs)

= FK + FC
(4b)
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Figure 3. Variations of the spatial part of the radiation moments, Ẽ (solid) F̃ (dashed) and P̃ (long-dashed) with log(z). (a) Contributions from the CENBOL
denoted by suffix C, and (b) contributions from the Keplerian disc denoted by suffix K; the shock location is xs = 10rg. (c) Contributions from the CENBOL
for xs = 20rg, and (d) contributions from the Keplerian disc for xs = 20rg. The suffixes have the same meaning as in the previous two figures.

P = PK 0

∫ xo

xKi

2πz
[
r ′−2

K − √
3r ′−5/2

K

]
z2 dr ′

K(
z2 + r ′2

K

)5/2

+PC0

∫ xs

rin

2π cot θ{r ′ + (z − r ′ cot θ) tan θ}r ′(z − r ′ cot θ)2 dr ′

[(z − r ′ cot θ )2 + r ′2]5/2

= PK 0 P̃K (z, xs, xo) + PC0 P̃C (z, rin, xs)

= PK + PC
(4c)

The constancy of IC allows us to have analytical expressions
for ẼC, F̃C and P̃C. These were computed by Chattopadhyay &
Chakrabarti (2000, 2002a,b) and are not repeated here. We choose
the unit of length to be 2GMB/c2 (the Schwarzschild radius rg), the
unit of time to be 2GMB/c3 and MB to be the unit of mass. Thus the
unit of velocity is c. In such units, the constants in equations (4a)–
(4c) are

EC0 = FC0 = PC0 = 1.3×1038�σT

2πcmAG M�
(5a)

and

EK 0 = FK 0 = PK 0 = 4.32×1017ṁkσT c

32π2mG M�
. (5b)

We have written the Keplerian accretion rate in units of the Edding-
ton accretion rate ṀEdd, i.e. ṁK = ṀK/ṀEdd. It is to be noted that
two of the disc parameters, i.e. r in = 1.5rg and xo = 1000rg are
kept constant throughout the paper. In Fig. 3, the space-dependent
part of the moments Ẽ, F̃ and P̃ are compared for two shock lo-
cations. In Figs 3(a) and (b), the contributions from the CENBOL
and the Keplerian disc are plotted for xs = 10rg and in Figs 3(c) and
(d) the contributions from the CENBOL and the Keplerian disc are
plotted, where the shock location is xs = 20rg. We see that as xs is
increased, the CENBOL contributions increase while the Keplerian
contributions decrease. We also see another fact that generally, in the
hard state, the CENBOL contribution to the total radiative moments
dominates over the Keplerian counterparts. We see from Figs 3(a)
and (c) that within the funnel (i.e. z � hs), ẼC > F̃C > P̃C. We
also see that, because of the relatively small size of the CENBOL,
ẼC ≈ F̃C ≈ P̃C for smaller values of z, e.g. z ∼ 50.5rg for Fig. 3(a)
and z ∼ 92.5rg for Fig. 3(c), while we see ẼK ≈ F̃K ≈ P̃K at much
larger distances, e.g. z ∼ 900rg for Fig. 3(b) and z ∼ 1500rg for
Fig. 3(d). The small size of the CENBOL ensures that the direction
cosines lz

C → 1 for smaller z. In contrast, the larger size of the Keple-
rian disc ensures lz

K ∼ 1 only for large z. From Figs 3(a)–(d) it appears
that as ẼC � ẼK , F̃C � F̃K , and P̃C � P̃K . So, if the CENBOL is
more luminous, then CENBOL contributions would dominate the
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Keplerian contributions even at large z. While EK 0 (= FK 0 = PK 0)
depends only on ṁK , EC0 (= FC0 = PC0) depends on both � and the
CENBOL surface area. From Figs 3(a) and (c), we see that with the
increase of xs, even if the radiative moments from the CENBOL, say
for example, ẼC increases moderately, calculations show that ẼC0

decreases appreciably with xs (e.g. ẼC0 for xs = 10rg is about four
times larger than ẼC0 for xs = 20rg). So Keplerian contributions
might be comparable to that due to the CENBOL at large z, depend-
ing on the specific combinations of all the parameters �, ṁK and xs,
especially for large values of xs and low �. We also observe that the
shadow effect of the CENBOL ensures that ẼK = F̃K = P̃K = 0 at
z � (hsxo)/(xo − xs).

3 R A D I AT I V E AC C E L E R AT I O N

In the rest of the paper, we will use the geometrical units defined in
the last section, but for simplicity we will keep the same symbols
representing variables as in equation (1). We define a three-velocity
v such that v2 = −uiui/utut = −uzuz/utut. Thus uz = γ v and uz =
− γ v. Under such considerations equation (1) takes the form,

dv

dz
=

− 1
2(z−1)2 + [γF − γ 3vE − γ vP + γ 3(2v2F − v3P)]

γ 4v
. (6)

The first term on the right-hand side of equation (6) is the grav-
itational term with dimensionless Paczynski–Wiita potential and
the term in the square brackets is the radiative acceleration term.
We notice that the radiative acceleration term depends both on v

and the radiative moments. The first and fourth terms in the square
brackets are accelerating terms while the second, third and fifth
terms are the decelerating terms, collectively known as the radia-
tion drag terms. We also see that there is a γ 4 term in the denomi-
nator of the right-hand side of equation (6). This term ensures that,
apart from radiation drag, outflowing matter will be slowed down
as v → 1.

3.1 Equilibrium velocity

Let us now discuss the concept of equilibrium velocity. As a concept,
equilibrium velocity is not new and has been extensively discussed
by a number of astrophysicists (see, Fukue 2003, and references
therein for details). We want to study this issue in the context of
jets in the radiation field of TCAF discs. It is defined in a manner
that at v = veq the square-bracket term in equation (6) is zero. Thus,
for v > veq there is deceleration and for v < veq there is radiative
acceleration.

Putting the square-bracket term in equation (6) to zero we have

Fv2
eq − (E + P)veq + F = 0. (7)

This is a quadratic equation in veq whose solution is

veq(z) = (E + P) −
√

(E + P)2 − 4F 2

2F

= ξ −
√

(ξ 2 − 1), (8)

where ξ = (E + P)/2F . From equations (4a)–(5b), we have

ξ (z) = (ẼC + P̃C) + (ṁK/�)ζ (ẼK + P̃K)

2(F̃C + (ṁK/�)ζ F̃K)
, (9)

where ζ = 6.6×10−13c2A. It is to be noted that ξ depends on xs as
well as on the ratio ṁK/�, but not separately on ṁK and �. In case
(ṁK ζ )/� � 1, veq is completely determined by ẼC, F̃C and P̃C,
and � has no effect in determining veq. We also see that ξ does not

depend on the mass of the gas particles m. Thus ξ (and thus veq) is
the same for both an electron–proton plasma as well as an electron–
positron plasma, provided xs and ṁK/� is the same in both cases. It
is clear from equations (8) and (9) that as E ≈ F ≈ P, veq → 1.
Therefore if the CENBOL contribution dominates then veq ∼ 1
within a few tens of Schwarzschild radii above the disc plane. If
Keplerian radiation dominates, then the condition is achieved at
much larger distance, as we shall see later. We also see that no
outflow is possible, i.e. veq � 0, that is if

F � 0. (10)

From Fig. 3 we see that very close to the horizon, due to the torus
geometry of the CENBOL, F < 0, hence very close to the black
hole, not only enormous gravitational pull but also the radiative
force pushes matter inward.

Icke’s magic speed

Let us now recover an important result from equation (8). If we
consider a thin-Keplerian disc of infinite size, then Pzz

K = Prr
K =

Pφφ

K = 1
3 EK and Fz

K = c
2 EK, and there is no CENBOL in this

particular case. Under such conditions E = 2F = 3P , and putting
these in equation (8) we have

veq = vm = 1

3
(4 −

√
7) = 0.451 ≡ the magic speed of Icke!

Thus we see that, if the radiation field, i.e. the radiative properties
of the disc, can be prescribed, then veq can be found easily.

Equilibrium speed from a TCAF disc

Let us now concentrate on the radiation from TCAF discs. As dis-
cussed in the introduction, jets are produced in the hard state of the
accretion disc when the CENBOL is hotter and the hard state means
more power is on the high-energy end of the spectrum. That is, LC >

LK. The Keplerian disc luminosity is given by

LK = r 2
g

∫ xo

xs

2πIK2πrK drK,

which is a function of ṁK, xs and xo, which when integrated can be
expressed as,

LK = r 2
g

∫ xo

xs

2πIK2πrK drK

= 3

4
ṁK

[
− 1

rK
+ 2

3rK

√
3

rK

]xo

xs

LEdd. (11)

Thus the Keplerian disc luminosity in units of the Eddington lumi-
nosity can be defined as �K = LK/LEdd. As has been stated before,
presently we do not compute LC, but supply it. Typical values of �

that we shall employ should, in general, depend on �K itself because
� ∼ ��K , where � is the enhancement factor by which the incident
photon intensity is increased due to Comptonization and has a value
of around 20–30 in hard states (CT95). Thus, for instance, if �K ∼
0.05, a typical value of � is about 0.1–0.15. However, while we
shall choose � and �K in these regions, we shall use them as free
parameters, since at present we are not interested in computing the
terminal speed as a function of the spectral slope α, though, strictly
speaking, it would be a function of α.

In our case, we see that there are two sources of radiation from
the disc: (i) the CENBOL and (ii) the Keplerian disc. Let us first
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Figure 4. Variation of (a) veq and (b) ξ with log(z) for � = 0.3 and xs = 20rg. The various curves correspond to ṁK = 0.01 (solid), ṁK = 1 (dashed) and
ṁK = 6 (long-dashed). Variation of (c) veq and (d) ξ with log(z) for � = 0.12 and ṁK = 0.5. The various curves correspond to xs = 10 rg (solid), xs = 20rg

(dashed) and xs = 30rg (long-dashed).

concentrate on the CENBOL contribution. From Figs 3(a) and (c),
we see that for z→ few×10rg, (EC+PC) ∼ 2FC, hence equation (8)
determines veq ∼ 1 at such distances.

In general, in the hard state also, LK is not negligible. Though
as z becomes large, ẼK ≈ F̃K ≈ P̃K , but at z ∼ few × 10rg,
(EK + PK) > 2FK. Hence for higher Keplerian luminosity, veq ∼
1 is achieved at distances around a thousand Schwarzschild radii.
In Figs 4(a) and (b), we have plotted veq and ξ against log(z). The
various curves correspond to ṁK ∼ 0.01 (solid), ṁK = 1 (dashed)
and ṁK = 6 (long-dashed). We choose � = 0.3 and xs = 20rg for all
the plots. We see that close to the black hole,veq is independent of �K,
because at such distances radiation from the CENBOL dominates.
If LC � LK (i.e. solid curve), then we see that veq → 1 at around
100rg. For ṁK = 1 (≡ �K ∼ 0.03, i.e. dashed curve), and for ṁK = 6
(i.e. long-dashed curve), veq → 1 at distances over 1000 rg. One
should note that at z < 1.85rg, veq < 0. The reason for this can be
clearly seen from Fig. 3(c), which shows that F < 0 at the same
distance from the black hole. This means that, very close to the black
hole, not only does gravity push in matter but also radiation would
also push matter inside, thus vindicating equation (10). To clarify
this point we have plotted ξ against log(z) in Fig. 4(b). The curve
styles match those of the corresponding case in Fig. 4(a). We see
that within the funnel-like region of the CENBOL, the radiation
is completely dominated by the CENBOL itself, and also due to

this particular geometry ξ > 1, resulting in veq being much smaller
than the velocity of light. In case ṁK becomes small (solid), for
z > 100rg, ξ → 1, resulting in veq → 1. In case ṁK becomes large
(dashed and long-dashed curves), ξ ∼ 1 only at around a thousand
Schwarzschild radii. This means that, if one increases ṁK , then
the higher velocities achieved due to the acceleration of jets by
CENBOL photons might be decelerated. It is quite obvious, though,
that the effect of Keplerian radiation is quite marginal. Of course one
should keep in mind that if the radiative moments due to CENBOL
and Keplerian radiation are comparable at infinite distances, then
there is a possibility of increased terminal speed, with the increase
in ṁK .

We have seen from equation (9) that ξ not only depends on ṁK /�

but also on xs. We now investigate the dependence of veq on xs. In
Fig. 4(c), veq is plotted against log (z) for � = 0.12 and ṁK = 0.5.
The various curves represent xs = 10rg (solid), xs = 20rg (dashed)
and xs = 30rg (long-dashed). With the increase in xs, as the size
of the CENBOL increases – hence it can only behave like a point
source (for which ξ → 1) farther out – and we see that veq → 1
farther out from the black hole. To clarify this, we have also plotted
ξ against log(z) for � = 0.12 and ṁK = 0.5 in Fig. 4(d). The various
curves represent xs = 10rg (solid), xs = 20rg (dashed) and xs =
30rg (long-dashed). As has just been explained, we see that ξ → 1
for larger values of z, as xs is increased.
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Figure 5. (a) Variation of v with log(z), for ṁK = 0.5. The various curves correspond to � = 0.36 (solid), � = 0.24 (dashed) and � = 0.12 (long-dashed). (b)
Variation of ϑ with �. The various curves correspond to ṁK = 0.4 (solid), ṁK = 1.4 (dashed) and ṁK = 2.4 (long-dashed). The shock location is xs = 20rg

for both cases. The injection parameters are zin = 5rg, v in = 10−3.

3.2 Velocity profile

So far, we have only discussed the equilibrium velocity and its de-
pendence on �, ṁK and xs. This was done to study the upper limit
of the allowed velocity as a function of z. We have seen that if the
CENBOL radiation dominates over that from the Keplerian disc,
then jets can be accelerated to very high velocities within around
100rg, but veq is only a measure of velocity which signifies only
the domain of radiative deceleration or acceleration, and is not the
actual velocity. From equation (6) it is quite clear that the radia-
tive acceleration and hence v itself depends on all three quantities
E,F ,P and not just on ξ . Equation (6) also shows that radiative
acceleration also depends on v in a very complicated way. To com-
pute the actual velocity, one has to integrate equation (6). Jets are
believed to be produced from the post-shock region (Chakrabarti
1999; Das & Chakrabarti 1999; Das et al. 2001). If they are gen-
erated from the post-shock region then they should start with very
small velocity. In this paper we are not concentrating on the gener-
ation of jets. Thus we just put the injection height to be close to the
black hole and the injection velocity to be small. We choose injec-
tion parameters to be zin = 5rg and v in = 10−3. Before discussing the
results, let us define the terminal speed. The terminal speed (ϑ) is
the constant velocity at infinite distances or ϑ = v|z→∞. In Fig. 5(a),
the three-velocity v is plotted against log(z), where ṁK = 0.5 and
xs = 20rg. The various curves correspond to � = 0.36 (solid), � =
0.24 (dashed) and � = 0.12 (long-dashed). We see that close to the
black hole as v�1,F dominates resulting in a steep rise in v; as
v increases the jet starts to feel the drag force, resulting in a some-
what less steep increase in v. At z > 100rg, the radiative moments
tend to become weak and the jet settles to a constant velocity at
large z or the terminal speed ϑ . It is clear that v increases with �

and in the three cases depicted, the terminal velocities of jets are
ϑ ∼ 0.93 (solid), ϑ ∼ 0.91 (dashed) and ϑ ∼ 0.88 (long-dashed).
It may seem curious that even if � is increased by equal intervals
the terminal speed achieved does not increase by equal intervals.
The reason is two-fold: first of all, from equation (6), one can see
that the gradient of v is a non-linear function of the moments. The
second reason is the existence of the γ 4 term in equation (6), which

suppresses the acceleration, as v increases to values close to that of
light.

In Fig. 5(b), the terminal speed ϑ is plotted with �, for xs =
20rg. The various curves correspond to ṁK = 0.4 (solid), ṁK =
1.4 (dashed) and ṁK = 2.4 (long-dashed). The terminal speed ϑ

increases with �, though for higher �, the increase of ϑ decreases, for
the same two reasons discussed for the previous figure. We also see
that the dependence of ϑ on ṁK is marginal. In Fig. 3, we have seen
that the CENBOL contribution to the various space-dependent parts
of the radiative moments is a few orders of magnitude higher than
that from the Keplerian contribution, hence the marginal dependence
of ϑ with ṁK is expected. It is to be noted, though, that for � >

0.15, ϑ decreases with increasing ṁK and for � < 0.15, ϑ increases
with increasing ṁK , albeit the dependence is very weak. For the
higher values of �, the jet, powered by the CENBOL radiation,
achieves a very high velocity within a few tens of Schwarzschild
radii. But for the next thousand Schwarzschild radii or so, ξ > 1,
as (EK + PK ) > 2FK in that region – see Figs 3(c) and (d). When
v becomes high, the drag force increases, and slows down the jet.
At a larger distance, a slight increase in radiative moments, due to
the increase in ṁK , is not sufficient to increase ϑ . When � is small,
the velocity achieved within few tens of Schwarzschild radii is not
that high, hence the drag force is less. But at large distances, the
radiative moments due to the CENBOL and Keplerian disc becomes
comparable hence there is a slight increase in ϑ with ṁK .

In Fig. 6,ϑ is plotted against ṁK , for xs =20rg. The various curves
correspond to � = 0.3 (solid), � = 0.24 (dashed), � = 0.18 (long
dashed) and � = 0.12 (dashed-dotted). We see that, as in Fig. 5(b),
for higher �, ϑ decreases with increasing ṁK (see the solid, dashed
and long-dashed curves), but for lower values of �, ϑ increases with
increasing ṁK (see the dashed-dotted curve). So one can conclude
that in the hard state, jets are basically accelerated by radiation from
the CENBOL and the terminal velocity has a weak dependence on
radiation from Keplerian disc.

Let us now investigate the dependence on xs. In Fig. 7(a), v is
plotted against log(z), for � = 0.18 and ṁK = 0.5. The various
curves correspond to xs = 10rg (solid), xs = 20rg (dashed) and
xs = 30rg (long-dashed). We see that with the increase in xs, the
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Figure 6. Variation of ϑ with ṁK , for xs = 20rg. The various curves
correspond to � = 0.3 (solid), � = 0.24 (dashed), � = 0.18 (long-dashed)
and � = 0.12 (dashed-dotted). The injection parameters are zin = 5rg, v in =
10−3.

acceleration is reduced. For xs = 10rg (solid), we see that the jet is
experiencing tremendous acceleration and within a short distance
of z ∼ 40rg, it achieves a velocity ∼ 0.9, and gradually settles to
a terminal value of ϑ = 0.93. As the shock location is increased
to xs = 20rg (dashed) and xs = 30rg (long-dashed), acceleration
is weaker and the terminal speeds achieved are ϑ = 0.9 and ϑ =
0.88 respectively. Thus, the terminal speed depends strongly on the
shock location and decreases with increasing shock location.

In Fig. 7(b), we have plotted ϑ against �. The solid curves corre-
spond to ṁK = 1.4 and the dashed curves correspond to ṁK = 2.4.
The shock locations, xs, are marked on each pair of solid and dashed
curves (xs = 10rg, 20rg, 30rg) in the figure. We see that in general ϑ
increases with �. We also see that, for particular values of xs, ṁK has
very limited influence on ϑ (see each pair of solid and dashed curves
marked with values of xs = 10, 20, 30), and also that with increasing
xs, ṁK is less and less effective in determining ϑ . In particular, the
solid and the dashed curves marked xs = 10 are distinguishable, but
are increasingly less distinguishable for xs = 20 and xs = 30. With
the increase in xs, the inner edge of the Keplerian disc is increased.
We also know that the magnitude of the Keplerian disc intensity
is higher, closer to the black hole, i.e. if xs increases then the size
of the Keplerian disc and the Keplerian luminosity decreases. Thus
with the increase of xs, Keplerian radiation will be less effective in
determining ϑ . Similar to Fig. 5(b), we also notice that if � > 0.11
for the pair of curves (solid and dashed) marked 10 (i.e. xs = 10),
then ϑ increases with decreasing ṁK , but decreases with decreas-
ing ṁK , for � < 0.11. Though this cross-over value of � increases
with increasing xs, i.e. for xs = 20rg, the cross-over occurs at � =
0.15, and for xs = 30rg this occurs at � = 0.24. We also see that,
generally, ϑ decreases with increasing xs. In Fig. 7(c), ϑ is plotted
against xs, for ṁK = 0.5. The various curves correspond to � =
0.24 (solid), � = 0.18 (dashed), � = 0.12 (long-dashed) and � =
0.06 (dashed-dotted). It is clear that ϑ decreases with xs, though for
a fixed value of xs, ϑ increases with �. In Fig. 7(d), ϑ is plotted with
xs, for constant values of � = 0.18. Different curves correspond to
ṁK = 1.5 (solid), ṁK = 3 (dashed) and ṁK = 4.5 (long-dashed).
The first thing to notice is the weak dependence of ϑ on ṁK . We

also notice that, for xs < 22rg, ϑ decreases with increasing ṁK and
for xs > 22rg, ϑ increases with increasing ṁK . The reason for this is
that the CENBOL intensity falls with increasing xs. Thus for larger
xs the radiative moments due to the CENBOL at infinite distances
are comparable to those due to the Keplerian disc. Hence with in-
creasing ṁK , ϑ increases, for exactly the same reason as has been
presented while discussing Fig. 5(b). In general, one can conclude
from Figs 7(a)–(d) that jets can be accelerated to up and around
90 per cent of the velocity of light, provided that xs → 10rg–20rg,
and � → 0.1–0.2. As we discussed earlier, such values of � are not
unreasonable when amplification of photon energy takes place due
to Comptonization and τ ∼ 1. For smaller τ , the amplification fac-
tor is higher (so that � ∼ 1 is achievable) but in that case, both the
number of very energetic photons goes down and also the efficiency
of depositing radiative momentum goes down dramatically.

In the preceding paragraphs of this subsection, we have studied
the issue of radiative acceleration of jets, and its dependence on three
parameters, namely xs, � and ṁK . In the case of CENBOL radiation,
the information we have provided is through its total luminosity, but
Keplerian luminosity is governed by two parameters xs and ṁK (see
equation 11). To gain a better understanding, we now study how the
relative proportions of CENBOL and Keplerian luminosity affect
the terminal speed of the jet.

In Fig. 8(a), ϑ is plotted against �K/�, the ratio of the Keplerian
and CENBOL luminosities, for xs = 20rg. The various curves corre-
spond to � = 0.3 (solid), � = 0.24 (dashed), � = 0.18 (long-dashed)
and � = 0.12 (dashed-dotted). The ratio of luminosities is kept less
than one to mimic the hard state of the accretion disc. We see that
for � = 0.12, ϑ increases with the increase of Keplerian luminosity.
For higher CENBOL luminosities (see the solid, dashed and long-
dashed curves) we observe that ϑ decreases with increasing Keple-
rian luminosity. This has been addressed while discussing Figs 5(b),
6 and 7(b), i.e. for xs = 20rg, if � < 0.15, ϑ increases with the in-
crease of Keplerian luminosity. It is thus clear that if xs = 20rg then
for � higher than 0.15, jets can be accelerated to very high terminal
velocities. In order to study the dependence of shock location and
the Keplerian luminosity, in Fig. 8(b) we have plotted ϑ against
�K/� for � = 0.24. The Keplerian luminosity is thus increased from
3 per cent to 75 per cent of the CENBOL luminosity. The various
curves correspond to xs = 10rg (solid), xs = 20rg (dashed) and xs =
30rg (long-dashed). For xs = 10rg, ϑ is around 0.93 but decreases
with the increase of Keplerian luminosity. With the increase in shock
location the terminal velocity is less (ϑ = 0.91 for xs = 20rg), but
at the same time, the decrement of the terminal velocity due to the
increase of Keplerian luminosity is also smaller. For xs = 30rg,
ϑ ∼ 0.895 is smaller, but the change due to the increase of Keple-
rian luminosity is even less and ϑ remains almost constant. Thus
we conclude that if the shock location is between 10rg and 20rg

then jets can be accelerated to terminal speeds above 90 per cent of
the velocity of light, for disc luminosities around 20 per cent of the
Eddington luminosity.

4 D I S C U S S I O N A N D C O N C L U D I N G R E M A R K S

It is well known that high-energy photons can produce particle–
antiparticle pairs close to the inner edge of a disc. If the pho-
ton energy is h ν � 2mc2, where h is Planck’s constant, ν is the
photon frequency and m is the electron (or positron) mass, then
an electron–positron pair may be created. If, on the other hand,
an electron and positron collide they will annihilate each other to
produce two gamma-ray photons, a process called pair annihila-
tion. Clearly, to produce electron-positron jets the pair-production
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Figure 7. (a) Variation of v with log(z) for � = 0.18 and ṁK = 0.5. The various curves correspond to xs = 10rg (solid), xs = 20rg (dashed) and xs = 30rg

(long-dashed). (b) Variation of ϑ with �. The solid curves correspond to ṁK = 1.4 and dashed curves correspond to ṁK = 2.4. The shock locations, xs, are
marked on each pair of solid and dashed curves (xs = 10rg, 20rg, 30rg). (c) Variation of ϑ with xs, for ṁK = 0.5. The various curves represent � = 0.24
(solid), � = 0.18 (dashed), � = 0.12 (long dashed) and � = 0.06 (dash-dot). (d) Variation of ϑ with xs, for � = 0.18. The various curves represent ṁK = 1.5
(solid), ṁK = 3 (dashed) and ṁk = 4.5 (long dashed). The injection parameters are zin = 5rg, v in = 10−3.

Figure 8. (a) Variation of ϑ with �K/� for xs = 20 for all the curves. The various curves correspond to � = 0.3 (solid), � = 0.24 (dashed), � = 0.12 (long-dashed)
and � = 0.12 (dashed-dotted). (b) Variation of ϑ with �K/� for � = 0.24. The various curves correspond to xs = 10rg (solid), xs = 20rg (dashed) and xs =
30rg (long-dashed). The injection parameters are zin = 5rg, v in = 10−3.
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process has to dominate over pair annihilation. Workers (e.g. Mishra
& Melia 1993; Yamasaki et al. 1999) discussed the production of
electron–positron pairs from the inner part of the accretion disc. Ob-
servationally, there are reports of pair-dominated jets (Sunyaev et al.
1992; Mirabel & Rodriguez 1998; Wardle et al. 1998) from galac-
tic black-hole candidates to quasars. Though there is little doubt
about the existence of pair-dominated jets, radiative acceleration of
such jets, on the other hand, is a different issue altogether. If the
number density of pairs created around the black hole is too high,
then radiative acceleration would be ineffective. In this paper, we
have ignored the details of formation of the pair plasma jets and
have only concentrated on the radiative acceleration of optically
thin pair-dominated jets.

In this paper, we supplied the CENBOL intensity, IC, and the
shock location, xs, as free, but reasonable parameters. We have sep-
arately treated two velocity variables: (i) the equilibrium velocity veq

and (ii) the actual velocity v. While veq decides how much velocity is
allowed before deceleration sets in, v gives us what ‘net’ value of ve-
locity is achieved by actual acceleration. We have shown that if only
CENBOL radiation dominates over the radiation from the Keplerian
disc, veq ∼ 1 is achieved within a few tens of Schwarzschild radii,
but the same condition is achieved at over a thousand Schwarzschild
radii for much higher values of Keplerian luminosity. From Figs
4(a) and (b), we have seen that as the Keplerian accretion rate is
increased, veq decreases in the range z → 15rg–1500rg.

From Fig. 3(d), we have seen that (ẼK + P̃K ) > 2F̃K in this very
range, so in this range the radiation drag is higher due to Keplerian
radiation. This means that for higher values of � and for fixed xs,
i.e. for higher CENBOL intensity, the flow will tend to achieve very
high velocities within a few tens of Schwarzschild radii, but at the
same time if the Keplerian luminosity or �K is increased, then within
the range 15rg–1500rg, Keplerian radiation will tend to reduce the
high velocities because of increased radiation drag.

From this study we generally conclude that:

(i) Radiative acceleration of electron–positron jets does achieve
relativistic terminal speed.

(ii) The space-dependent part of the radiative moments from the
post-shock region dominates the corresponding moments from the
Keplerian disc.

(iii) In general, the terminal speed of jets increases with increas-
ing post-shock luminosity.

(iv) The post-shock radiative intensity decreases with increasing
shock location, so the terminal speed also decreases with increasing
shock location.

(v) Keplerian radiation has a marginal effect in determining the
terminal speed.

(vi) Our calculations show that, if the shock in accretion is lo-
cated at around 10–20 Schwarzschild radii, and if the post-shock
luminosity is about 10–20 per cent of the Eddington luminosity,
then electron–positron jets can be accelerated to terminal speeds
above 90 per cent of the speed of light.
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