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ABSTRACT

The aim of this project is to study the representations of a finite group. The

idea is to know an expansion of a function defined on a group G in terms of

elementary function on the group G. These elementary functions are obtained

on the basis of the fact that how the group G act on a vector space V. These

elementary functions are orthogonal to themselves. Essentially, when a finite

group acts on a vector space V, it acts only on a finite subspace of V. The

minimal subspace which is stable under the action of G is called irreducible

representation of G. Each irreducible representation of G gives rise to an

elementary function on G. Therefore, it is natural to study only irreducible

representations. Schur’s lemma is the main source of getting all irreducible

representations of G.
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Chapter 1

Introduction

In this chapter, we will set up a few basic notations, definitions and some

preliminary results for study the representations of a finite group.

1.1 Representation of a finite group

We will first illustrate the idea of representing a group by matrices through

finite group. Let G = {1, ω, ω2} and V = C. Can the group G act on the

linear space V ? Consider 1 7→ 1.z = z, ω 7→ ω.z = ωz and ω2 7→ ω2.z = ω2z.

Then the map π : G → GL(C) ∼= C∗ is a group homomorphism. That is,

π(gh) = π(g).π(h).

Let G be a group which act on a linear space V. That is, G.V ⊆ V.

A homorphism π : G → GL(V ) such that π(gh) = π(g)π(h) is called a

representation of group G.

(a) Since, π(e) = π(e.e) = π(e).π(e), it implies that π(e)(I − π(e)) = 0.

Hence, λ− λ2 = 0. If λ = 0, then π = 0, which is a contradiction. Hence

π(e) = I.

(b) π(s−1) = [π(s)]−1 for all s ∈ G.
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Remark 1.1.1. Using the forthcoming schur’s lemma, it is enough to consider

finite vector space for any worthwhile representation of a finite group. If G

is finite group and V is a finite dimensional space then for homomorphism

π : G→ GL(V ), the degree of π = dimension of V.

Example 1.1.2. Let π be an 1-d representation of finite group G of order

k. Then π : G→ GL(C) ∼= C∗. That is, π(gk) = π(e) = |π(g)| = 1, ∀g ∈ G.

This implies that G can have at most k many 1-dim representations.

Definition 1.1.3. A subspace W ⊆ V is called stable (or invariant) under

π if π(G)W ⊂ W. Eventually, this is a process that enable to cut the size of

representation space only to acted vectors in V.

Definition 1.1.4. Let W be an invariant space for representation (π,G).

Then (πW , G) is called a sub-representation of (π,G) if πW (gh) = πW (g)πW (h),

where πW (g) = π(g)|W .

Theorem 1.1.5. (Maschke’s theorem) Let π : G→ GL(V ) be a representa-

tion of a finite group G and W be an π-invariant subspace of V. Then, there

exists a π-invariant subspace W0 ⊆ V such that V = W ⊕W0.

Proof. Let W ′ be a complementary subspace of W in V and P : V → W

be a projection. Define P0 = 1
k

∑
t∈G

π(t)p π−1(t). Then for x ∈ V, we have

P0x = 1
k

∑
t∈G

π(t)p π−1(t)x ∈ W. Thus, P0x is a projection of V onto W. That

is, P0 is a projection of V onto W corresponding to some complement W0 of

W. Now, we have

π(s)P0π
−1(t) =

1

k

∑
t∈G

π(s)π(t)pπ−1(t)π−1(s)

=
1

k

∑
t∈G

π(st)pπ−1(st)

= P0.
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If x ∈ W0, then P0x = 0, which in turn implies that P0(π(s)x) = π(s)P0x =

π(s)(0) = 0. Hence, π(s)x ∈ W0,∀ s ∈ G. Thus, W0 is a π-invariant subspace

of V and W ⊕W0 = V. Notice that the linear complement W0 is not unique.

Definition 1.1.6. A representation π : G → GL(V ) is called irreducible

if the π-invariant subspace of V are {0} and V. Let π : G → GL(Vn) and

π′ : G→ GL(V ′m) be two representation of g. Then,

(π ⊕ π′)(g) = π(g)⊕ π′(g) and (π ⊕ π′)(g)(V + V ′) = (π(g)(V ), π(g)(V ′)).

That is, (π ⊕ π′)(g) =

π(g) 0

0 π′(g)

 . Thus g 7→

π(g) 0

0 π′(g)

 .
Now, question that whether a representation be the direct sum of irre-

ducible representations? Suppose G is a finite group, then we will see that

any finite dimension representation of G can be decomposed as the finite

direct sum of irreducible representations of G.

Definition 1.1.7. A representation is said to be completely reducible if it

is the direct sum of irreducible representations.

Theorem 1.1.8. Let G be a finite group. Then every finite dimension rep-

resentation of G is the direct sum of irreducible representations.

Proof. Let π : G → GL(V ) be a finite dimensional representation of G.

If V = 0, then π is trivially irreducible. Suppose dimV ≥ 1. Since every

one dimension representation is irreducible, therefore, we can assume that

the result is true for dimV = n − 1. By Maschke’s theorem, V = V1 ⊕ V2,

where π(G)(Vi) ⊆ Vi and therefore, dimVi ≤ n − 1, for i = 1, 2. Hence,

V = V1 ⊕ V2.
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Example 1.1.9. Let G = Z and V = {(a1, a2, . . .) : ai ∈ R} be the se-

quence space. Define, π(n)(a1, a2, . . .) = (0, 0, . . . , 0, a1, a2, . . .). Then π has

no invariant subspace. Hence Maschke’s theorem fails in this case.

Example 1.1.10. Let G = R and V = R2. Define π : G→ GL(R2) by

π(a) =

1 a

0 1

 .

Then, invariant subspaces of V are 0 and span

1

0

 . Thus π is not completely

reducible.

Definition 1.1.11. Let πi : G→ GL(Vi), i = 1, 2 be two representations of

G and T : V1 → V2 be a linear map such that T ◦ π1(g) = π2(g) ◦ T,∀g ∈ G.

Then, T is said to be intertwining map. The set of all intertwining map

is denoted by HomG(π1, π2). Suppose π1 and π2 ∈ Ĝ (set of all irreducible

representations up to an isomorphism), then any T ∈ HomG(π1, π2) is either

0 or isomorphism.

Lemma 1.1.12. (Schur’s lemma) Let π1, π2 ∈ Ĝ and T ∈ HomG(π1, π2).

Then,

(a) T = 0 or T is an isomorphism, and

(b) if π1 ◦ T = T ◦ π1, ∀ t ∈ G. Then, T = λI for some λ ∈ C.

Proof. Suppose T 6= 0, then write Wi = {x ∈ Vi : Tx = 0}, i = 1, 2. For

x ∈ W1, T ◦π1(t)x = π2(t) ◦Tx = 0 this means π1(t)x ∈ Wi, ∀x ∈ Wi, t ∈ G

this implies π1(G)W1 ⊆ W1. Since π1 is irreducible either W1 = 0 or V1 and

kerT = {0} or V1.
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For the proof of second part, let λ be an eigenvector of T and denote

T ′ = T − λI. Then kerT ′ 6= {0}. It is easy to see that T ′ ◦ π1(t) = π2(t) ◦ T ′.

Thus, from (1), it follows that T ′ = 0, making T = λI.

Corollary 1.1.13. Any irreducible representation of an abelian group G

(need not be finite) is 1-dimensional.

Proof. Let G be a abelian group. Then, it follows that π(gh) = π(hg) and

hence π(g)π(h) = π(h)π(g). For fixed h, we have π(h) ∈ HomG(π, π). The-

ofore, by Schur’s lemma, we obtain π(h) = λI. That is, π leaves invariant

every 1-dimensional subspace of V. Since, π is irreducible, it implies that

dimV = 1.

Theorem 1.1.14. Let G be a finite group. Then every irreducible represen-

tation of G is 1-dimensional if and only if G is abelian.

Proof. Suppose all irreducible representations of G is 1-dimensional. Con-

sider the left regular representation L : G→ GL(V ), where V = C([G]) is the

linear space whose basis element are the members of G. Since L(g)(h) = gh,

by Maschke’s theorem, it follows that L is completely reducible and that

V =
m⊕
i=1

Vi, where V ′i s are irreducible. By hypothesis, dimVi = 1, therefore,

L(g) is a diagonal matrix for all g ∈ G. That is, every element of G is repre-

sented by a diagonal matrix. Hence, L(G) ∼= G which will imply that group

G is abelian. Converse part is followed by the above corollary.

For f, g : G→ C, define 〈f, g〉 := 1
k

∑
t∈G

f(t)g(t−1).

Theorem 1.1.15. Let π1, π2 ∈ Ĝ with dimVi = ni, i = 1, 2. Let π1(t) =

[aij(t)] and π2(t) = [bij(t)]. Then,

(a) 〈ail, bmj〉 = 0, ∀i, j,m, l and
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(b) 〈ail, amj〉 = 1
n
δijδlm.

Proof. For T : V1 → V2 to be a linear map, define an averaging linear map

on V1 by

T0 =
1

k

∑
π1(t)T ◦ π2(t−1).

Then, T0 ∈ HomG(π1, π2). By schur’s lemma, we get T0 = 0. That is,

1

k

∑
t∈G

∑
l,m

ail(t)xlmbmj(t
−1) = 0,

where T = (xlm). Since T is arbitrary, we get

1

k

∑
t∈G

ail(t)bmj(t
−1) = 0.

That is, 〈ail, bmj〉 = 0.

Now, for a linear map T1 : V1 → V2, we define T0 = 1
k

∑
t∈G

π1(t)Tπ1(t
−1).

Then, T0 ∈ HomG(π1, π1). By Schur’s lemma, T0 = λI, for some λ ∈ C,

where λ = 1
n1

tr(T0) = 1
n1

tr (T ). Thus, λ = 1
n1

∑
l

xll = 1
n1

∑
lm

xlmδlm. Observe

that, the (ij)th entry of the matrix T0 satisfies

1

k

∑
t∈G

ail(t)xlmamj(t
−1) = λδij =

1

n1

∑
lm

xlmδlmδij.

Since T is arbitrary by comparing the coefficients of xlm, we set

1

k

∑
t∈G

ail(t)amj(t
−1) =

1

n1

∑
lm

δlmδij.

That is, 〈ail, amj〉 = 1
n1

∑
lm

δlmδij.
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Chapter 2

Character theory

In this Chapter, we will construct a set of scalar valued functions from the

irreducible representations of a finite group G. These functions play the role

of building blocks to get an orthonormal expansion of a function on G.

2.1 Character of a representation

Let (π, V ) be a representation of a group G.

Definition 2.1.1. A function χπ : G→ C that satisfies χπ(gh) = χπ(g)χπ(h),

whenever g, h ∈ G is called the character of representation π.

Proposition 2.1.2. For finite group G, let χπ(g) = tr (π(g)). Then

(a) χπ(1) = n,

(b) χπ(t−1) = χ(t), for all t ∈ G,

(c) χπ(tst−1) = χπ(s), for all s, t ∈ G,

(d) χπ1⊕π2 = χπ1 + χπ2 .

7



Proof. We have χπ(e) = tr(π(e)) = tr(I) = n = dimV.

Since G is finite of orderk, therefore, gm = e, for some m ∈ N with m ≤ k.

Hence (π(g))k = I. This in turn implies that λk = 1 and hence |λ| = 1. Thus

tr(π(t−1)) =
k∑
i=1

λ−1i =
k∑
i=1

λi = tr(π(t)).

We know that tr(ST ) = tr(TS), therefore, tr(STS−1) = tr(T ). This

implies that tr(π(t)π(s)π(t−1)) = tr(π(s)). That is, tr(π(tst−1)) = tr(π(s)).

Hence χπ(tst−1) = χπ(s).

Finally, since we know that (π1 ⊕ π2)(g) = π1(g) ⊕ π2(g), therefore, it is

easily followed that χπ1⊕π2 = χπ1 + χπ2 .

Now, for φ, ψ : G→ C, we define an inner product by (φ, ψ) = 1
k

∑
t∈G

φ(t)ψ(t)

and φ̌(t) = φ(t−1). Then χ̌π(t) = χπ(t−1) = χπ(t). Thus, we can write

(φ, χ) =
1

k

∑
t∈G

φ(t)χ(t) =
1

k

∑
t∈G

φ(t)ψ(t−1) = 〈φ, χ〉.

Theorem 2.1.3. If χπ is the character of representation π of group G then,

(a) (χπ, χπ) = 1.

(b) (χπ1 , χπ2) = 0, whenever π1, π2 ∈ Ĝ.

Proof. In view of Theorem 1.1.15, we have

(χπ, χπ) =
∑
i

∑
j

〈aii, ajj〉 =
∑
i

∑
j

δij
n

= 1.

Also, we have

(χπ1 , χπ2) =
∑
i

∑
j

〈aij, aji〉 = 0.
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The character corresponding to irreducible representations are called irre-

ducible characters or simple characters and they form an orthonormal basis.

Theorem 2.1.4. Let φ be the character of a representation π of a finite

group G. If π′ ∈ Ĝ, then the multiplicity of irreducible representation that

appear in the representation π is 〈φ, χπ′〉.

Proof. Since φ = χπ =
m∑
i=1

χπ̂i , we get 〈φ, χπ′〉 =
∑
i

〈χπ̂i , χπ′〉. That is, the

number of irreducible representation that appear in π.

Corollary 2.1.5. The number of irreducible representation of G is indepen-

dent of the choice of a decomposition of π.

Proof. Let {π̂i : i = 1, 2, . . . ,m} be a irreducible representation of a finite

group G and {χj : j = 1, 2, . . . ,m} be their irreducible characters, then π

can be decomposed as π =
m⊕
i=1

mi π̂i.

Corollary 2.1.6. Let (π, V ) and (π′, V ′) be two representation of finite group

G and χ and χ′ be their characters then π ∼= π′ if and only if χ = χ′.

Proof. If π ∼= π′. Then there exists T ∈ HomG(V, V ′) with π′(g) ◦ T =

T ◦ π(g). That is, π′(g) = T ◦ π(g)T−1. Then by computing trace of both the

sides, we get tr(π′(g)) = tr(T ◦ π(g)T−1). This implies tr(π′(g)) = tr(π(g)).

Hence χ′(g) = χ(g), ∀g ∈ G. Conversely suppose χ′ = χ, then π =
m∑
i=1

miπ̂i

and π′ =
m∑
i=1

niπ̂i. Then by comparing characters of π and π̂ we get

m∑
i=1

(mi − ni)χ̂i = 0.

Since {χ̂i}mi=1 forms an orthonormal set, therefore, it follows that mi = ni.

Thus we infer that π ∼= π′.
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Theorem 2.1.7. (Irreducibility criteria) Let χπ be the character of a rep-

resentation π of finite group G. Then 〈χπ, χπ〉 is a positive integer and

〈χπ, χπ〉 = 1 if and only if π ∈ Ĝ.

Proof. Since, we know that π =
m⊕
i=1

miπ̂i, where π̂i ∈ Ĝ. It follows that

χ =
m∑
i=1

miχi, where χi is the character of πi. Hence 〈χ, χ〉 =
m∑
i=1

m2
i > 0.

Now, 〈χ, χ〉 = 1 if one of the m′is = 1 and rest other mi = 0. That is,

〈χ, χ〉 = 1 if and only if π is irreducible.

2.2 Decomposition of regular representation

Let G be a finite group and V = C(G) be the vector space with element

of G as the basis. Define L : G → GL(V ) such that L(t)(s) = ts. If χL is

the character of L, then χL(e) = tr(I) = k = o(G). If s 6= e, then we get

st 6= t, ∀ t ∈ G and [L(s)] = [aij(s)], where aij(s) = 〈sej, ei〉, ej, ei ∈ G.

Then aij(s) = 〈(s)ej, ei〉 = 〈st, s〉 = 0.

Theorem 2.2.1. If L is the left regular representation of finite group G, then

(a) χL(e) = k and

(b) χL(s) = 0, if s 6= e.

Corollary 2.2.2. Every π ∈ Ĝ is contained in the regular representation L

with multiplicity equals to dimπ.

Proof. Multiplicity of π = 〈χL, χπ〉 = 1
k

∑
t∈G

χL(t−1)χπ(t) = 1
k
kχπ(e) = dim π.

If L =
m⊕
i=1

πi, where πi ∈ Ĝ, < χL, χi >= ni and ni = dim Vi. Then in

view of Theorem 2.2.1, we get χL(s) =
m∑
i=1

niχi(s). Hence
m∑
i=1

n2
i = χL(e) = k.
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If s 6= e, then
m∑
i=1

niχi(s) = χL(s) = 0. Thus, we conclude that a necessary

and sufficient condition for L =
m⊕
i=1

πi is that
m∑
i=1

n2
i = k.

Proposition 2.2.3. Let f : G→ C be a class function and for π ∈ Ĝ, define

πf =
∑
t∈G

f(t)π(t). Then πf = k
n
(f, χ∗)I = 1

n

∑
t∈G

f(t)χ(t).

Proof. We have π(s−1)πfπ(s) =
∑
t∈G

f(t)π(s−1)π(t)π(s) =
∑
t∈G

f(t)π(sts−1)πf .

By Schur’s lemma, πf = λI, and hence nλ =
∑
t∈G

f(t)χπ(t). We conclude that

λ = 1
n

∑
t∈G

f(t)χπ(t) = (f, χ∗π).

Let H be the space of all class function of G then, {χπi : πi ∈ Ĝ} ⊂ H.

Theorem 2.2.4. The set {χπ : π ∈ Ĝ.} forms an orthonormal basis for the

space H of all the class functions on G.

Proof. Let f ∈ H such that f ⊥ χi ∗ . Write πf = k
n
(f, χπ∗), if π ∈ Ĝ.

Since G is a finite group, therefore, it follows that π =
m⊕
i=1

niπi and hence

π(f) =
m∑
i=1

k
ni

(f, χπ∗)ni = 0. Let L be the left regular representation of G.

Then L =
m⊕
i=1

niπi and Lf = 0. That is, Lf (e) =
∑
t∈G

f(t)Lt(e) =
∑
t∈G

f(t)t = 0.

Since V = C(G), we infer that f(t) = 0, ∀ t ∈ G. Hence, f = 0. This complete

the proof.
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Chapter 3

Haar measure on topological

group

3.1 Topological groups

In this Chapter, we study the question that how one can impose a topology

structure on group which is compatible with the group law. Further, we see

the existence of a measure which invariant under group action.

Definition 3.1.1. A group G is called a topological group if for x, y ∈ G,

(x, y)→ xy and x→ x−1 are continuous.

Example 3.1.2. GL(n,R) ⊂ L(n,R) is topological group. Since the map

det : L(n,R) → R r {0} is continuous and f−1(R r {0}) = GL(n,R) is

open, therefore, the topology of GL(n,R) can be obtained from topology of

L(n,R) ∼= Rn2
.

Definition 3.1.3. A topological group is called homogeneous if for x, y ∈ G,

there exists isomorphism f : G→ G such that f(x) = y.

12



For for any two sets A, B ⊆ G, define AB = {st : (s, t) ∈ A × B} and

A−1 = {s−1 : s ∈ A}. A set A ⊂ G is called symmetric if A−1 = A. Notice

that if A ∩B = ∅ if and only if e /∈ AB−1 or A−1B.

Proposition 3.1.4. Let G be a topological group.

(a) If O is open, then so is xO and O−1 for x ∈ G.

(b) For a neighborhood N of e, there exists a symmetric neighborhood V of

e such that V V ⊂ N.

(c) If H is subgroup of G, then H̄ is also a subgroup of G.

(d) Every open subgroup of G is closed.

(e) If A and B are compact sets in G, then AB is also compact.

Proof. (a) As (x, y)→ xy and x→ x−1 are homeomorphism, hence xO and

x−1 are open and AO =
⋃
a∈A

aO is also open.

(b) Since φ : (x, y) → xy is continuous at e. Therefore, there exists open

sets V1 and V2 such that V1V2 ⊂ N. Since φ−1(O) = V1 × V2, then

φ(V1 × V2) ⊂ O. That is, V1V2 ⊂ O ⊂ N .

(c) If x, y ∈ H̄, then there exist nets {xα} and {yβ} in H such that xα → x

and yβ → y. Therefore, it follows that xαyβ → xy and x−1α → x−1. Since

H̄ is closed, it implies that xy, x−1 ∈ H̄.

(d) Let H be open and G\H =
⋃
xH. Let x ∈ G\H. If xh ∈ H, then

xhh−1 ∈ H. Since H ≤ G, it implies that x ∈ H, which is a contradiction.

Thus, xH ∈ G\H, ∀x /∈ H. As G\H =
⋃
xH and G\H is open. Thus

H is closed.

13



(e) A×B 7→ AB under (x, y)→ xy this means that AB is compact.

Lemma 3.1.5. If F is closed and K is compact such that F ∩K = ∅. Then

there exists an open neighborhood V of e such that F ∩ V K = ∅.

Proof. Let x ∈ K, then x ∈ Gr F and Gr F is open and thus (Gr F )x−1

is an open neighborhood of e. Thus there exists an open neighborhood Vx of

e such that VxVx ∈ (GrF )x−1. Now, K ⊂
⋃
x∈K

Vxx implies K ⊂
n⋃
i=1

Vixi. Let

V =
n⋂
i=1

Vi. Then for x ∈ K, it follows thar V x ⊂ VxiVxixi ⊂ G r F. Hence,

F ∩ V x = ∅,∀x ∈ K. So, F ∩ V K = ∅.

Proposition 3.1.6. If F is closed and K is compact in a topological group

G. Then FK is closed.

Proof. The case FK = G is trivial. Now, let y ∈ GrFK. Then F∩yK−1 = ∅.

Since x ∈ F ∩ yK−1 this implies x = yK−1. So, y = xK. By previous lemma,

there exists an open neighborhood V of e such that F ∩ V yK−1 = ∅ that is

FK ∩ V y = ∅. So, we can say that V y ⊂ G r FK. Thus G r FK is open

and hence FK is closed.

For a subgroupH of topological groupG, we writeGrH = {xH : x ∈ G}.

Then the canonical quotient map q : G→ GrH is continuous in the sense

that V ⊂ GrH is open iff q−1(V ) is open in G. Moreover, q sends an open

set to open set. Let V be open in G, then q−1(q(V )) = V H(Open in G). So,

q(V ) is open in GrH. Hence q is an open map.

Proposition 3.1.7. Let H be a subgroup of topological group G. Then,

(a) If H is closed, GrH is T2.

(b) If G is locally compact, then GrH is also locally compact.
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(c) If H is a normal subgroup of G, then GrH is a topological group.

Proof. (a) Let x̄ = q(x) and ȳ = q(y) are distinct in GrH. Since H is closed

xHx−1 is closed and e /∈ Hy−1. Therefore, there exists a symmetric neigh-

borhood V of e such that V V ∩xHy−1 = ∅. Since V = V −1 and H = HH,

since H is a subgroup. that means e /∈ V xH(V y)−1 = V xH(V yH)−1.

Hence, V xH ∩ V yH = ∅. Thus q(V x) and q(V y) are distinct open sets.

(b) If V is a compact neighborhood of e, then q(V x) is a compact neighbor-

hood of q(x) in GrH.

(c) If x, y ∈ G and V is neighborhood of q(xy) in GrH, then by continuity

of (x, y)→ xy there exists neighborhood V and W of x and y in G such

that VW ⊂ q−1(V ). Thus q(V ) and q(W ) are neighborhood of q(x) and

q(y) such that q(V )q(W ) ⊂ V. So multiplication in GrH is continuous.

Similarly inversion is continuous.

Proposition 3.1.8. Every locally compact group G has a subgroup H0 which

is open, closed and σ-complete.

Proof. Let V be a symmetric compact neighborhood of e and let Vn be the

n copies of V. Denotes H0 =
∞⋃
n=1

Vn. Then H0 is a subgroup of G generated

by V. Now, H0 is open, because Vn+1 is in the neighborhood of Vn and hence

it is closed too. Since each Vn is compact, H0 is σ-compact.

Lemma 3.1.9. The quotient map q : G→ GrH is open.

Proof. q−1(q(V )) = V (H) is open since q(V ) is open iff q−1(q(V )) is open in

G. Now, q(V ) = {vH : v ∈ V } and q(V ) ⊂ q−1(q(V )). q−1(q(V )) = {x ∈ G :

q(x) ∈ q(V )} = {x ∈ G : xH = vH, for some v ∈ H}. Let y /∈ q(V ) that is

y 6= vH,∀ v ∈ V implies y /∈ q−1(q(V )).
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Example 3.1.10. Let G = SO(n) and H = SO(n− 1), then GrH is not

a group, however H is closed in G. G r H ∼= Sn−1 = {gen : g ∈ G} and

φ : GrH → Sn−1 such that φ(gH) = gen is topological isomorphism.

Let f : G → C be a function on topological group G. The left and the

right translations are defined by Lyf(x) = f(y−1x) and Ryf(x) = f(xy).

Notice that Ly1 ◦ Ly2 = Ly1y2 and Ry1 ◦ Ry2 = Ry1y2 . Hence the maps L,R :

G→ U(L2(G)) are group homomorphisms.

Proposition 3.1.11. If f ∈ Cc(G), then f is left uniformly continuous.

Proof. Let f ∈ Cc(G) and ε > 0, Let K = supp(f). Then ∀x ∈ K, there

exists a neighborhood V0 of e such that |f(xy) − f(x)| < 1
2
ε,∀ y ∈ Vx and

there exists a symmetric neighborhood Vx of e such that VxVx = Ux. Now

K ⊂ VxVx, x ∈ K so their exists x1, x2, . . . , xn ∈ K such that K ⊂
n⋃
i=1

xiVxi .

Let V =
n⋂
i=1

Vxi . We obtain that ||Ryf − f ||∞ < ε, ∀ y ∈ V. If x ∈ K, then

there exists j such that x−1j x ∈ V xj, then |f(xy)− f(x)| ≤ |f(xy)− f(xj)|+

|f(xj)− f(x)| < ε/2 + ε/2 = ε. Similarly, if xy ∈ K, then |f(xy)− f(x)| < ε.

Now if x and xy /∈ K, then f(x) = f(xy) = 0.

3.2 Radon measures

Let X be a non-empty locally compact Hausdorff space. A measure µ on

a Borel σ- algebra B generated by the open subsets of X is called a Radon

measure if

(a) µ(K) <∞, for all compact set K in X,

(b) µ(B) = inf{µ(O) : O ⊃ B, O is open }, whenever B ∈ B,

(c) µ(B) = sup{µ(K) : K ⊂ B, K is compact }, whenever B ∈ B.
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Example 3.2.1. (a) The Borel measure on Rn is a Radon measure on Rn.

(b) dθ
dπ

is a radon measure on S1.

Let B(G) be the Borel σ- algebra generated by all open subsets of a

topological group G.

Definition 3.2.2. A Left (or Right) Haar measure on a locally compact

Hausdorff space topological group G is a non-zero radon measure µ on G

such that µ(xB) = µ(B) (or µ(Bx) = µ(B)) for all E ∈ B(G), ∀x ∈ G.

Note if µ(G) = 1, then µ is called the normalized Haar measure on G.

Example 3.2.3. Let O(G) = n, for E ⊂ G and µ(E) = 1
n
#(E), then µ is a

normalized Haar measure on G.

Proposition 3.2.4. Let µ be a radon measure on locally compact group G

and µ̃(B) = µ(B−1). Then

(a) µ is a left haar measure if and only if µ̃ is a right haar measure.

(b) µ is left haar measure if and only if
∫
Lyfdu =

∫
fdu, whenever f ∈

C+
c (G) and y ∈ G.

Proof. (a) It is easy to verify.

(b) Suppose µ(yE) = µ(E), ∀ y ∈ G,∀E ∈ B. Therefore f = χA and∫
χyEdµ =

∫
χEdµ. For f ∈ C+

c (G) and ε > 0 there exists a simple

function φ such that |φ − f | < ε.
∫
Lyfdy =

∫
fdy,∀ f ∈ Cc(G). Hence

by the uniqueness in the Riesz representation theorem, it follows that µ

will be equal to µy.
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