REPRESENTATIONS OF FINITE GROUPS

A report submitted for the fulfilment of

MA499, Project-II

by

Tathagat Lokhande (Roll No. 120123024)
to the

DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI GUWAHATI - 781039, INDIA

May 9, 2016

CERTIFICATE

This is to certify that the work contained in this project report entitled "Representations of finite groups" submitted by Tathagat Lokhande (Roll No.: 120123024) to the Department of Mathematics, Indian Institute of Technology, Guwahati, towards the requirement of the course MA498, Project-II has been carried out by him under my supervision.

Guwahati - 781039
May 9, 2016

Dr. Rajesh Kr. Srivastava
(Project supervisor)

ABSTRACT

The aim of this project is to study the representations of a finite group. The idea is to know an expansion of a function defined on a group G in terms of elementary function on the group G. These elementary functions are obtained on the basis of the fact that how the group G act on a vector space V. These elementary functions are orthogonal to themselves. Essentially, when a finite group acts on a vector space V, it acts only on a finite subspace of V. The minimal subspace which is stable under the action of G is called irreducible representation of G. Each irreducible representation of G gives rise to an elementary function on G. Therefore, it is natural to study only irreducible representations. Schur's lemma is the main source of getting all irreducible representations of G.

Contents

1 Introduction 1
1.1 Representation of a finite group 1
2 Character theory 7
2.1 Character of a representation 7
2.2 Decomposition of regular representation 10
3 Haar measure on topological group 12
3.1 Topological groups 12
3.2 Radon measures 16
Bibliography 18

Chapter 1

Introduction

In this chapter, we will set up a few basic notations, definitions and some preliminary results for study the representations of a finite group.

1.1 Representation of a finite group

We will first illustrate the idea of representing a group by matrices through finite group. Let $G=\left\{1, \omega, \omega^{2}\right\}$ and $V=\mathbb{C}$. Can the group G act on the linear space V ? Consider $1 \mapsto 1 . z=z, \omega \mapsto \omega . z=\omega z$ and $\omega^{2} \mapsto \omega^{2} . z=\omega^{2} z$. Then the map $\pi: G \rightarrow G L(\mathbb{C}) \cong \mathbb{C}^{*}$ is a group homomorphism. That is, $\pi(g h)=\pi(g) . \pi(h)$.

Let G be a group which act on a linear space V. That is, $G . V \subseteq V$. A homorphism $\pi: G \rightarrow G L(V)$ such that $\pi(g h)=\pi(g) \pi(h)$ is called a representation of group G.
(a) Since, $\pi(e)=\pi(e . e)=\pi(e) . \pi(e)$, it implies that $\pi(e)(I-\pi(e))=0$. Hence, $\lambda-\lambda^{2}=0$. If $\lambda=0$, then $\pi=0$, which is a contradiction. Hence $\pi(e)=I$.
(b) $\pi\left(s^{-1}\right)=[\pi(s)]^{-1}$ for all $s \in G$.

Remark 1.1.1. Using the forthcoming schur's lemma, it is enough to consider finite vector space for any worthwhile representation of a finite group. If G is finite group and V is a finite dimensional space then for homomorphism $\pi: G \rightarrow G L(V)$, the degree of $\pi=$ dimension of V.

Example 1.1.2. Let π be an 1-d representation of finite group G of order k. Then $\pi: G \rightarrow G L(\mathbb{C}) \cong \mathbb{C}^{*}$. That is, $\pi\left(g^{k}\right)=\pi(e)=|\pi(g)|=1, \forall g \in G$. This implies that G can have at most k many 1-dim representations.

Definition 1.1.3. A subspace $W \subseteq V$ is called stable (or invariant) under π if $\pi(G) W \subset W$. Eventually, this is a process that enable to cut the size of representation space only to acted vectors in V.

Definition 1.1.4. Let W be an invariant space for representation (π, G). Then $\left(\pi_{W}, G\right)$ is called a sub-representation of (π, G) if $\pi_{W}(g h)=\pi_{W}(g) \pi_{W}(h)$, where $\pi_{W}(g)=\left.\pi(g)\right|_{W}$.

Theorem 1.1.5. (Maschke's theorem) Let $\pi: G \rightarrow G L(V)$ be a representation of a finite group G and W be an π-invariant subspace of V. Then, there exists a π-invariant subspace $W_{0} \subseteq V$ such that $V=W \oplus W_{0}$.

Proof. Let W^{\prime} be a complementary subspace of W in V and $P: V \rightarrow W$ be a projection. Define $P_{0}=\frac{1}{k} \sum_{t \in G} \pi(t) p \pi^{-1}(t)$. Then for $x \in V$, we have $P_{0} x=\frac{1}{k} \sum_{t \in G} \pi(t) p \pi^{-1}(t) x \in W$. Thus, $P_{0} x$ is a projection of V onto W. That is, P_{0} is a projection of V onto W corresponding to some complement W_{0} of W. Now, we have

$$
\begin{aligned}
\pi(s) P_{0} \pi^{-1}(t) & =\frac{1}{k} \sum_{t \in G} \pi(s) \pi(t) p \pi^{-1}(t) \pi^{-1}(s) \\
& =\frac{1}{k} \sum_{t \in G} \pi(s t) p \pi^{-1}(s t) \\
& =P_{0} .
\end{aligned}
$$

If $x \in W_{0}$, then $P_{0} x=0$, which in turn implies that $P_{0}(\pi(s) x)=\pi(s) P_{0} x=$ $\pi(s)(0)=0$. Hence, $\pi(s) x \in W_{0}, \forall s \in G$. Thus, W_{0} is a π-invariant subspace of V and $W \oplus W_{0}=V$. Notice that the linear complement W_{0} is not unique.

Definition 1.1.6. A representation $\pi: G \rightarrow G L(V)$ is called irreducible if the π-invariant subspace of V are $\{0\}$ and V. Let $\pi: G \rightarrow G L\left(V_{n}\right)$ and $\pi^{\prime}: G \rightarrow G L\left(V_{m}^{\prime}\right)$ be two representation of g. Then,

$$
\left(\pi \oplus \pi^{\prime}\right)(g)=\pi(g) \oplus \pi^{\prime}(g) \text { and }\left(\pi \oplus \pi^{\prime}\right)(g)\left(V+V^{\prime}\right)=\left(\pi(g)(V), \pi(g)\left(V^{\prime}\right)\right) .
$$

That is, $\left(\pi \oplus \pi^{\prime}\right)(g)=\left[\begin{array}{cc}\pi(g) & 0 \\ 0 & \pi^{\prime}(g)\end{array}\right]$. Thus $g \mapsto\left[\begin{array}{cc}\pi(g) & 0 \\ 0 & \pi^{\prime}(g)\end{array}\right]$.

Now, question that whether a representation be the direct sum of irreducible representations? Suppose G is a finite group, then we will see that any finite dimension representation of G can be decomposed as the finite direct sum of irreducible representations of G.

Definition 1.1.7. A representation is said to be completely reducible if it is the direct sum of irreducible representations.

Theorem 1.1.8. Let G be a finite group. Then every finite dimension representation of G is the direct sum of irreducible representations.

Proof. Let $\pi: G \rightarrow G L(V)$ be a finite dimensional representation of G. If $V=0$, then π is trivially irreducible. Suppose $\operatorname{dim} V \geq 1$. Since every one dimension representation is irreducible, therefore, we can assume that the result is true for $\operatorname{dim} V=n-1$. By Maschke's theorem, $V=V_{1} \oplus V_{2}$, where $\pi(G)\left(V_{i}\right) \subseteq V_{i}$ and therefore, $\operatorname{dim} V_{i} \leq n-1$, for $i=1,2$. Hence, $V=V_{1} \oplus V_{2}$.

Example 1.1.9. Let $G=\mathbb{Z}$ and $V=\left\{\left(a_{1}, a_{2}, \ldots\right): a_{i} \in \mathbb{R}\right\}$ be the sequence space. Define, $\pi(n)\left(a_{1}, a_{2}, \ldots\right)=\left(0,0, \ldots, 0, a_{1}, a_{2}, \ldots\right)$. Then π has no invariant subspace. Hence Maschke's theorem fails in this case.

Example 1.1.10. Let $G=\mathbb{R}$ and $V=\mathbb{R}^{2}$. Define $\pi: G \rightarrow G L\left(\mathbb{R}^{2}\right)$ by

$$
\pi(a)=\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right]
$$

Then, invariant subspaces of V are 0 and span $\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Thus π is not completely reducible.

Definition 1.1.11. Let $\pi_{i}: G \rightarrow G L\left(V_{i}\right), i=1,2$ be two representations of G and $T: V_{1} \rightarrow V_{2}$ be a linear map such that $T \circ \pi_{1}(g)=\pi_{2}(g) \circ T, \forall g \in G$. Then, T is said to be intertwining map. The set of all intertwining map is denoted by $\operatorname{Hom}_{G}\left(\pi_{1}, \pi_{2}\right)$. Suppose π_{1} and $\pi_{2} \in \hat{G}$ (set of all irreducible representations up to an isomorphism), then any $T \in \operatorname{Hom}_{G}\left(\pi_{1}, \pi_{2}\right)$ is either 0 or isomorphism.

Lemma 1.1.12. (Schur's lemma) Let $\pi_{1}, \pi_{2} \in \hat{G}$ and $T \in \operatorname{Hom}_{G}\left(\pi_{1}, \pi_{2}\right)$. Then,
(a) $T=0$ or T is an isomorphism, and
(b) if $\pi_{1} \circ T=T \circ \pi_{1}, \forall t \in G$. Then, $T=\lambda I$ for some $\lambda \in \mathbb{C}$.

Proof. Suppose $T \neq 0$, then write $W_{i}=\left\{x \in V_{i}: T x=0\right\}, i=1,2$. For $x \in W_{1}, T \circ \pi_{1}(t) x=\pi_{2}(t) \circ T x=0$ this means $\pi_{1}(t) x \in W_{i}, \forall x \in W_{i}, t \in G$ this implies $\pi_{1}(G) W_{1} \subseteq W_{1}$. Since π_{1} is irreducible either $W_{1}=0$ or V_{1} and $\operatorname{ker} T=\{0\}$ or V_{1}.

For the proof of second part, let λ be an eigenvector of T and denote $T^{\prime}=T-\lambda I$. Then $\operatorname{ker} T^{\prime} \neq\{0\}$. It is easy to see that $T^{\prime} \circ \pi_{1}(t)=\pi_{2}(t) \circ T^{\prime}$. Thus, from (1), it follows that $T^{\prime}=0$, making $T=\lambda I$.

Corollary 1.1.13. Any irreducible representation of an abelian group G (need not be finite) is 1-dimensional.

Proof. Let G be a abelian group. Then, it follows that $\pi(g h)=\pi(h g)$ and hence $\pi(g) \pi(h)=\pi(h) \pi(g)$. For fixed h, we have $\pi(h) \in \operatorname{Hom}_{G}(\pi, \pi)$. Theofore, by Schur's lemma, we obtain $\pi(h)=\lambda I$. That is, π leaves invariant every 1-dimensional subspace of V. Since, π is irreducible, it implies that $\operatorname{dim} V=1$.

Theorem 1.1.14. Let G be a finite group. Then every irreducible representation of G is 1-dimensional if and only if G is abelian.

Proof. Suppose all irreducible representations of G is 1-dimensional. Consider the left regular representation $L: G \rightarrow G L(V)$, where $V=\mathbb{C}([G])$ is the linear space whose basis element are the members of G. Since $L(g)(h)=g h$, by Maschke's theorem, it follows that L is completely reducible and that $V=\bigoplus_{i=1}^{m} V_{i}$, where $V_{i}^{\prime} s$ are irreducible. By hypothesis, $\operatorname{dim} V_{i}=1$, therefore, $L(g)$ is a diagonal matrix for all $g \in G$. That is, every element of G is represented by a diagonal matrix. Hence, $L(G) \cong G$ which will imply that group G is abelian. Converse part is followed by the above corollary.

$$
\text { For } f, g: G \rightarrow \mathbb{C} \text {, define }\langle f, g\rangle:=\frac{1}{k} \sum_{t \in G} f(t) g\left(t^{-1}\right) \text {. }
$$

Theorem 1.1.15. Let $\pi_{1}, \pi_{2} \in \hat{G}$ with $\operatorname{dim} V_{i}=n_{i}, i=1,2$. Let $\pi_{1}(t)=$ $\left[a_{i j}(t)\right]$ and $\pi_{2}(t)=\left[b_{i j}(t)\right]$. Then,
(a) $\left\langle a_{i l}, b_{m j}\right\rangle=0, \forall i, j, m, l$ and
(b) $\left\langle a_{i l}, a_{m j}\right\rangle=\frac{1}{n} \delta_{i j} \delta_{l m}$.

Proof. For $T: V_{1} \rightarrow V_{2}$ to be a linear map, define an averaging linear map on V_{1} by

$$
T_{0}=\frac{1}{k} \sum \pi_{1}(t) T \circ \pi_{2}\left(t^{-1}\right) .
$$

Then, $T_{0} \in \operatorname{Hom}_{G}\left(\pi_{1}, \pi_{2}\right)$. By schur's lemma, we get $T_{0}=0$. That is,

$$
\frac{1}{k} \sum_{t \in G} \sum_{l, m} a_{i l}(t) x_{l m} b_{m j}\left(t^{-1}\right)=0
$$

where $T=\left(x_{l m}\right)$. Since T is arbitrary, we get

$$
\frac{1}{k} \sum_{t \in G} a_{i l}(t) b_{m j}\left(t^{-1}\right)=0
$$

That is, $\left\langle a_{i l}, b_{m j}\right\rangle=0$.
Now, for a linear map $T_{1}: V_{1} \rightarrow V_{2}$, we define $T_{0}=\frac{1}{k} \sum_{t \in G} \pi_{1}(t) T \pi_{1}\left(t^{-1}\right)$. Then, $T_{0} \in \operatorname{Hom}_{G}\left(\pi_{1}, \pi_{1}\right)$. By Schur's lemma, $T_{0}=\lambda I$, for some $\lambda \in \mathbb{C}$, where $\lambda=\frac{1}{n_{1}} \operatorname{tr}\left(T_{0}\right)=\frac{1}{n_{1}} \operatorname{tr}(T)$. Thus, $\lambda=\frac{1}{n_{1}} \sum_{l} x_{l l}=\frac{1}{n_{1}} \sum_{l m} x_{l m} \delta_{l m}$. Observe that, the $(i j)^{t h}$ entry of the matrix T_{0} satisfies

$$
\frac{1}{k} \sum_{t \in G} a_{i l}(t) x_{l m} a_{m j}\left(t^{-1}\right)=\lambda \delta_{i j}=\frac{1}{n_{1}} \sum_{l m} x_{l m} \delta_{l m} \delta_{i j}
$$

Since T is arbitrary by comparing the coefficients of $x_{l m}$, we set

$$
\frac{1}{k} \sum_{t \in G} a_{i l}(t) a_{m j}\left(t^{-1}\right)=\frac{1}{n_{1}} \sum_{l m} \delta_{l m} \delta_{i j} .
$$

That is, $\left\langle a_{i l}, a_{m j}\right\rangle=\frac{1}{n_{1}} \sum_{l m} \delta_{l m} \delta_{i j}$.

Chapter 2

Character theory

In this Chapter, we will construct a set of scalar valued functions from the irreducible representations of a finite group G. These functions play the role of building blocks to get an orthonormal expansion of a function on G.

2.1 Character of a representation

Let (π, V) be a representation of a group G.
Definition 2.1.1. A function $\chi_{\pi}: G \rightarrow \mathbb{C}$ that satisfies $\chi_{\pi}(g h)=\chi_{\pi}(g) \chi_{\pi}(h)$, whenever $g, h \in G$ is called the character of representation π.

Proposition 2.1.2. For finite group G, let $\chi_{\pi}(g)=\operatorname{tr}(\pi(g))$. Then
(a) $\chi_{\pi}(1)=n$,
(b) $\chi_{\pi}\left(t^{-1}\right)=\overline{\chi(t)}$, for all $t \in G$,
(c) $\chi_{\pi}\left(t s t^{-1}\right)=\chi_{\pi}(s)$, for all $s, t \in G$,
(d) $\chi_{\pi_{1} \oplus \pi_{2}}=\chi_{\pi_{1}}+\chi_{\pi_{2}}$.

Proof. We have $\chi_{\pi}(e)=\operatorname{tr}(\pi(e))=\operatorname{tr}(I)=n=\operatorname{dim} V$.
Since G is finite of order k, therefore, $g^{m}=e$, for some $m \in \mathbb{N}$ with $m \leq k$. Hence $(\pi(g))^{k}=I$. This in turn implies that $\lambda^{k}=1$ and hence $|\lambda|=1$. Thus

$$
\operatorname{tr}\left(\pi\left(t^{-1}\right)\right)=\sum_{i=1}^{k} \lambda_{i}^{-1}=\sum_{i=1}^{k} \overline{\lambda_{i}}=\overline{\operatorname{tr}(\pi(t))}
$$

We know that $\operatorname{tr}(S T)=\operatorname{tr}(T S)$, therefore, $\operatorname{tr}\left(S T S^{-1}\right)=\operatorname{tr}(T)$. This implies that $\operatorname{tr}\left(\pi(t) \pi(s) \pi\left(t^{-1}\right)\right)=\operatorname{tr}(\pi(s))$. That is, $\operatorname{tr}\left(\pi\left(t s t^{-1}\right)\right)=\operatorname{tr}(\pi(s))$. Hence $\chi_{\pi}\left(t s t^{-1}\right)=\chi_{\pi}(s)$.

Finally, since we know that $\left(\pi_{1} \oplus \pi_{2}\right)(g)=\pi_{1}(g) \oplus \pi_{2}(g)$, therefore, it is easily followed that $\chi_{\pi_{1} \oplus \pi_{2}}=\chi_{\pi_{1}}+\chi_{\pi_{2}}$.

Now, for $\phi, \psi: G \rightarrow \mathbb{C}$, we define an inner product by $(\phi, \psi)=\frac{1}{k} \sum_{t \in G} \phi(t) \overline{\psi(t)}$ and $\check{\phi}(t)=\overline{\phi\left(t^{-1}\right)}$. Then $\left.\check{\chi_{\pi}}(t)=\overline{\chi_{\pi}\left(t^{-1}\right.}\right)=\chi_{\pi}(t)$. Thus, we can write

$$
(\phi, \chi)=\frac{1}{k} \sum_{t \in G} \phi(t) \overline{\chi(t)}=\frac{1}{k} \sum_{t \in G} \phi(t) \psi\left(t^{-1}\right)=\langle\phi, \chi\rangle .
$$

Theorem 2.1.3. If χ_{π} is the character of representation π of group G then,
(a) $\left(\chi_{\pi}, \chi_{\pi}\right)=1$.
(b) $\left(\chi_{\pi_{1}}, \chi_{\pi_{2}}\right)=0$, whenever $\pi_{1}, \pi_{2} \in \hat{G}$.

Proof. In view of Theorem 1.1.15, we have

$$
\left(\chi_{\pi}, \chi_{\pi}\right)=\sum_{i} \sum_{j}\left\langle a_{i i}, a_{j j}\right\rangle=\sum_{i} \sum_{j} \frac{\delta_{i j}}{n}=1 .
$$

Also, we have

$$
\left(\chi_{\pi_{1}}, \chi_{\pi_{2}}\right)=\sum_{i} \sum_{j}\left\langle a_{i j}, a_{j i}\right\rangle=0 .
$$

The character corresponding to irreducible representations are called irreducible characters or simple characters and they form an orthonormal basis.

Theorem 2.1.4. Let ϕ be the character of a representation π of a finite group G. If $\pi^{\prime} \in \hat{G}$, then the multiplicity of irreducible representation that appear in the representation π is $\left\langle\phi, \chi_{\pi^{\prime}}\right\rangle$.

Proof. Since $\phi=\chi_{\pi}=\sum_{i=1}^{m} \chi_{\hat{\pi}_{i}}$, we get $\left\langle\phi, \chi_{\pi^{\prime}}\right\rangle=\sum_{i}\left\langle\chi_{\hat{\pi}_{i}}, \chi_{\pi^{\prime}}\right\rangle$. That is, the number of irreducible representation that appear in π.

Corollary 2.1.5. The number of irreducible representation of G is independent of the choice of a decomposition of π.

Proof. Let $\left\{\hat{\pi}_{i}: i=1,2, \ldots, m\right\}$ be a irreducible representation of a finite group G and $\left\{\chi_{j}: j=1,2, \ldots, m\right\}$ be their irreducible characters, then π can be decomposed as $\pi=\bigoplus_{i=1}^{m} m_{i} \hat{\pi}_{i}$.
Corollary 2.1.6. Let (π, V) and $\left(\pi^{\prime}, V^{\prime}\right)$ be two representation of finite group G and χ and χ^{\prime} be their characters then $\pi \cong \pi^{\prime}$ if and only if $\chi=\chi^{\prime}$.

Proof. If $\pi \cong \pi^{\prime}$. Then there exists $T \in \operatorname{Hom}_{G}\left(V, V^{\prime}\right)$ with $\pi^{\prime}(g) \circ T=$ $T \circ \pi(g)$. That is, $\pi^{\prime}(g)=T \circ \pi(g) T^{-1}$. Then by computing trace of both the sides, we get $\operatorname{tr}\left(\pi^{\prime}(g)\right)=\operatorname{tr}\left(T \circ \pi(g) T^{-1}\right)$. This implies $\operatorname{tr}\left(\pi^{\prime}(g)\right)=\operatorname{tr}(\pi(g))$. Hence $\chi^{\prime}(g)=\chi(g), \forall g \in G$. Conversely suppose $\chi^{\prime}=\chi$, then $\pi=\sum_{i=1}^{m} m_{i} \hat{\pi}_{i}$ and $\pi^{\prime}=\sum_{i=1}^{m} n_{i} \hat{\pi}_{i}$. Then by comparing characters of π and $\hat{\pi}$ we get

$$
\sum_{i=1}^{m}\left(m_{i}-n_{i}\right) \hat{\chi}_{i}=0
$$

Since $\left\{\hat{\chi}_{i}\right\}_{i=1}^{m}$ forms an orthonormal set, therefore, it follows that $m_{i}=n_{i}$. Thus we infer that $\pi \cong \pi^{\prime}$.

Theorem 2.1.7. (Irreducibility criteria) Let χ_{π} be the character of a representation π of finite group G. Then $\left\langle\chi_{\pi}, \chi_{\pi}\right\rangle$ is a positive integer and $\left\langle\chi_{\pi}, \chi_{\pi}\right\rangle=1$ if and only if $\pi \in \hat{G}$.

Proof. Since, we know that $\pi=\bigoplus_{i=1}^{m} m_{i} \hat{\pi}_{i}$, where $\hat{\pi}_{i} \in \hat{G}$. It follows that $\chi=\sum_{i=1}^{m} m_{i} \chi_{i}$, where χ_{i} is the character of π_{i}. Hence $\langle\chi, \chi\rangle=\sum_{i=1}^{m} m_{i}^{2}>0$. Now, $\langle\chi, \chi\rangle=1$ if one of the $m_{i}^{\prime} s=1$ and rest other $m_{i}=0$. That is, $\langle\chi, \chi\rangle=1$ if and only if π is irreducible.

2.2 Decomposition of regular representation

Let G be a finite group and $V=\mathbb{C}(G)$ be the vector space with element of G as the basis. Define $L: G \rightarrow G L(V)$ such that $L(t)(s)=t s$. If χ_{L} is the character of L, then $\chi_{L}(e)=\operatorname{tr}(I)=k=o(G)$. If $s \neq e$, then we get $s t \neq t, \forall t \in G$ and $[L(s)]=\left[a_{i j}(s)\right]$, where $a_{i j}(s)=\left\langle s e_{j}, e_{i}\right\rangle, e_{j}, e_{i} \in G$. Then $a_{i j}(s)=\left\langle(s) e_{j}, e_{i}\right\rangle=\langle s t, s\rangle=0$.

Theorem 2.2.1. If L is the left regular representation of finite group G, then
(a) $\chi_{L}(e)=k$ and
(b) $\chi_{L}(s)=0$, if $s \neq e$.

Corollary 2.2.2. Every $\pi \in \hat{G}$ is contained in the regular representation L with multiplicity equals to $\operatorname{dim} \pi$.

Proof. Multiplicity of $\pi=\left\langle\chi_{L}, \chi_{\pi}\right\rangle=\frac{1}{k} \sum_{t \in G} \chi_{L}\left(t^{-1}\right) \chi_{\pi}(t)=\frac{1}{k} k \chi_{\pi}(e)=\operatorname{dim} \pi$.

If $L=\bigoplus_{i=1}^{m} \pi_{i}$, where $\pi_{i} \in \hat{G},<\chi_{L}, \chi_{i}>=n_{i}$ and $n_{i}=\operatorname{dim} V_{i}$. Then in view of Theorem 2.2.1, we get $\chi_{L}(s)=\sum_{i=1}^{m} n_{i} \chi_{i}(s)$. Hence $\sum_{i=1}^{m} n_{i}^{2}=\chi_{L}(e)=k$.

If $s \neq e$, then $\sum_{i=1}^{m} n_{i} \chi_{i}(s)=\chi_{L}(s)=0$. Thus, we conclude that a necessary and sufficient condition for $L=\bigoplus_{i=1}^{m} \pi_{i}$ is that $\sum_{i=1}^{m} n_{i}^{2}=k$.
Proposition 2.2.3. Let $f: G \rightarrow \mathbb{C}$ be a class function and for $\pi \in \hat{G}$, define $\pi_{f}=\sum_{t \in G} f(t) \pi(t)$. Then $\pi_{f}=\frac{k}{n}\left(f, \chi^{*}\right) I=\frac{1}{n} \sum_{t \in G} f(t) \chi(t)$.
Proof. We have $\pi\left(s^{-1}\right) \pi_{f} \pi(s)=\sum_{t \in G} f(t) \pi\left(s^{-1}\right) \pi(t) \pi(s)=\sum_{t \in G} f(t) \pi\left(s t s^{-1}\right) \pi_{f}$. By Schur's lemma, $\pi_{f}=\lambda I$, and hence $n \lambda=\sum_{t \in G} f(t) \chi_{\pi}(t)$. We conclude that $\lambda=\frac{1}{n} \sum_{t \in G} f(t) \chi_{\pi}(t)=\left(f, \chi_{\pi}^{*}\right)$.

Let \mathcal{H} be the space of all class function of G then, $\left\{\chi_{\pi_{i}}: \pi_{i} \in \hat{G}\right\} \subset \mathcal{H}$.
Theorem 2.2.4. The set $\left\{\chi_{\pi}: \pi \in \hat{G}.\right\}$ forms an orthonormal basis for the space \mathcal{H} of all the class functions on G.

Proof. Let $f \in H$ such that $f \perp \chi_{i} *$. Write $\pi_{f}=\frac{k}{n}\left(f, \chi_{\pi} *\right)$, if $\pi \in \hat{G}$. Since G is a finite group, therefore, it follows that $\pi=\bigoplus_{i=1}^{m} n_{i} \pi_{i}$ and hence $\pi(f)=\sum_{i=1}^{m} \frac{k}{n_{i}}\left(f, \chi_{\pi} *\right) n_{i}=0$. Let L be the left regular representation of G. Then $L=\bigoplus_{i=1}^{m} n_{i} \pi_{i}$ and $L_{f}=0$. That is, $L_{f}(e)=\sum_{t \in G} f(t) L_{t}(e)=\sum_{t \in G} f(t) t=0$. Since $V=\mathbb{C}(G)$, we infer that $f(t)=0, \forall t \in G$. Hence, $f=0$. This complete the proof.

Chapter 3

Haar measure on topological

group

3.1 Topological groups

In this Chapter, we study the question that how one can impose a topology structure on group which is compatible with the group law. Further, we see the existence of a measure which invariant under group action.

Definition 3.1.1. A group G is called a topological group if for $x, y \in G$, $(x, y) \rightarrow x y$ and $x \rightarrow x^{-1}$ are continuous.

Example 3.1.2. $G L(n, \mathbb{R}) \subset L(n, \mathbb{R})$ is topological group. Since the map det $: L(n, \mathbb{R}) \rightarrow \mathbb{R} \backslash\{0\}$ is continuous and $f^{-1}(\mathbb{R} \backslash\{0\})=G L(n, \mathbb{R})$ is open, therefore, the topology of $G L(n, \mathbb{R})$ can be obtained from topology of $L(n, \mathbb{R}) \cong \mathbb{R}^{n^{2}}$.

Definition 3.1.3. A topological group is called homogeneous if for $x, y \in G$, there exists isomorphism $f: G \rightarrow G$ such that $f(x)=y$.

For for any two sets $A, B \subseteq G$, define $A B=\{s t:(s, t) \in A \times B\}$ and $A^{-1}=\left\{s^{-1}: s \in A\right\}$. A set $A \subset G$ is called symmetric if $A^{-1}=A$. Notice that if $A \cap B=\emptyset$ if and only if $e \notin A B^{-1}$ or $A^{-1} B$.

Proposition 3.1.4. Let G be a topological group.
(a) If O is open, then so is $x O$ and O^{-1} for $x \in G$.
(b) For a neighborhood N of e, there exists a symmetric neighborhood V of e such that $V V \subset N$.
(c) If H is subgroup of G, then \bar{H} is also a subgroup of G.
(d) Every open subgroup of G is closed.
(e) If A and B are compact sets in G, then $A B$ is also compact.

Proof. (a) As $(x, y) \rightarrow x y$ and $x \rightarrow x^{-1}$ are homeomorphism, hence $x O$ and x^{-1} are open and $A O=\bigcup_{a \in A} a O$ is also open.
(b) Since $\phi:(x, y) \rightarrow x y$ is continuous at e. Therefore, there exists open sets V_{1} and V_{2} such that $V_{1} V_{2} \subset N$. Since $\phi^{-1}(O)=V_{1} \times V_{2}$, then $\phi\left(V_{1} \times V_{2}\right) \subset O$. That is, $V_{1} V_{2} \subset O \subset N$.
(c) If $x, y \in \bar{H}$, then there exist nets $\left\{x_{\alpha}\right\}$ and $\left\{y_{\beta}\right\}$ in H such that $x_{\alpha} \rightarrow x$ and $y_{\beta} \rightarrow y$. Therefore, it follows that $x_{\alpha} y_{\beta} \rightarrow x y$ and $x_{\alpha}^{-1} \rightarrow x^{-1}$. Since \bar{H} is closed, it implies that $x y, x^{-1} \in \bar{H}$.
(d) Let H be open and $G \backslash H=\bigcup x H$. Let $x \in G \backslash H$. If $x h \in H$, then $x h h^{-1} \in H$. Since $H \leq G$, it implies that $x \in H$, which is a contradiction. Thus, $x H \in G \backslash H, \forall x \notin H$. As $G \backslash H=\bigcup x H$ and $G \backslash H$ is open. Thus H is closed.
(e) $A \times B \mapsto A B$ under $(x, y) \rightarrow x y$ this means that $A B$ is compact.

Lemma 3.1.5. If F is closed and K is compact such that $F \cap K=\emptyset$. Then there exists an open neighborhood V of e such that $F \cap V K=\emptyset$.

Proof. Let $x \in K$, then $x \in G \backslash F$ and $G \backslash F$ is open and thus $(G \backslash F) x^{-1}$ is an open neighborhood of e. Thus there exists an open neighborhood V_{x} of e such that $V_{x} V_{x} \in(G \backslash F) x^{-1}$. Now, $K \subset \bigcup_{x \in K} V_{x} x$ implies $K \subset \bigcup_{i=1}^{n} V_{i} x_{i}$. Let $V=\bigcap_{i=1}^{n} V_{i}$. Then for $x \in K$, it follows thar $V x \subset V_{x_{i}} V_{x_{i}} x_{i} \subset G \backslash F$. Hence, $F \cap V x=\emptyset, \forall x \in K$. So, $F \cap V K=\emptyset$.

Proposition 3.1.6. If F is closed and K is compact in a topological group G. Then FK is closed.

Proof. The case $F K=G$ is trivial. Now, let $y \in G \backslash F K$. Then $F \cap y K^{-1}=\emptyset$. Since $x \in F \cap y K^{-1}$ this implies $x=y K^{-1}$. So, $y=x K$. By previous lemma, there exists an open neighborhood V of e such that $F \cap V y K^{-1}=\emptyset$ that is $F K \cap V y=\emptyset$. So, we can say that $V y \subset G \backslash F K$. Thus $G \backslash F K$ is open and hence $F K$ is closed.

For a subgroup H of topological group G, we write $G \backslash H=\{x H: x \in G\}$. Then the canonical quotient map $q: G \rightarrow G \backslash H$ is continuous in the sense that $V \subset G \backslash H$ is open iff $q^{-1}(V)$ is open in G. Moreover, q sends an open set to open set. Let V be open in G, then $q^{-1}(q(V))=V H$ (Open in $\left.G\right)$. So, $q(V)$ is open in $G \backslash H$. Hence q is an open map.

Proposition 3.1.7. Let H be a subgroup of topological group G. Then,
(a) If H is closed, $G \backslash H$ is T_{2}.
(b) If G is locally compact, then $G \backslash H$ is also locally compact.
(c) If H is a normal subgroup of G, then $G \backslash H$ is a topological group.

Proof. (a) Let $\bar{x}=q(x)$ and $\bar{y}=q(y)$ are distinct in $G \backslash H$. Since H is closed $x H x^{-1}$ is closed and $e \notin H y^{-1}$. Therefore, there exists a symmetric neighborhood V of e such that $V V \cap x H y^{-1}=\emptyset$. Since $V=V^{-1}$ and $H=H H$, since H is a subgroup. that means $e \notin V x H(V y)^{-1}=V x H(V y H)^{-1}$. Hence, $V x H \cap V y H=\emptyset$. Thus $q(V x)$ and $q(V y)$ are distinct open sets.
(b) If V is a compact neighborhood of e, then $q(V x)$ is a compact neighborhood of $q(x)$ in $G \backslash H$.
(c) If $x, y \in G$ and V is neighborhood of $q(x y)$ in $G \backslash H$, then by continuity of $(x, y) \rightarrow x y$ there exists neighborhood V and W of x and y in G such that $V W \subset q^{-1}(V)$. Thus $q(V)$ and $q(W)$ are neighborhood of $q(x)$ and $q(y)$ such that $q(V) q(W) \subset V$. So multiplication in $G \backslash H$ is continuous. Similarly inversion is continuous.

Proposition 3.1.8. Every locally compact group G has a subgroup H_{0} which is open, closed and σ-complete.

Proof. Let V be a symmetric compact neighborhood of e and let V_{n} be the n copies of V. Denotes $H_{0}=\bigcup_{n=1}^{\infty} V_{n}$. Then H_{0} is a subgroup of G generated by V. Now, H_{0} is open, because V_{n+1} is in the neighborhood of V_{n} and hence it is closed too. Since each V_{n} is compact, H_{0} is σ-compact.

Lemma 3.1.9. The quotient map $q: G \rightarrow G \backslash H$ is open.
Proof. $q^{-1}(q(V))=V(H)$ is open since $q(V)$ is open iff $q^{-1}(q(V))$ is open in G. Now, $q(V)=\{v H: v \in V\}$ and $q(V) \subset q^{-1}(q(V)) . q^{-1}(q(V))=\{x \in G:$ $q(x) \in q(V)\}=\{x \in G: x H=v H$, for some $v \in H\}$. Let $y \notin q(V)$ that is $y \neq v H, \forall v \in V$ implies $y \notin q^{-1}(q(V))$.

Example 3.1.10. Let $G=S O(n)$ and $H=S O(n-1)$, then $G \backslash H$ is not a group, however H is closed in $G . G \backslash H \cong S^{n-1}=\left\{g e_{n}: g \in G\right\}$ and $\phi: G \backslash H \rightarrow S^{n-1}$ such that $\phi(g H)=g e_{n}$ is topological isomorphism.

Let $f: G \rightarrow \mathbb{C}$ be a function on topological group G. The left and the right translations are defined by $L_{y} f(x)=f\left(y^{-1} x\right)$ and $R_{y} f(x)=f(x y)$. Notice that $L_{y_{1}} \circ L_{y_{2}}=L_{y_{1} y_{2}}$ and $R_{y_{1}} \circ R_{y_{2}}=R_{y_{1} y_{2}}$. Hence the maps L, R : $G \rightarrow U\left(L^{2}(G)\right)$ are group homomorphisms.

Proposition 3.1.11. If $f \in C_{c}(G)$, then f is left uniformly continuous.
Proof. Let $f \in C_{c}(G)$ and $\epsilon>0$, Let $K=\operatorname{supp}(f)$. Then $\forall x \in K$, there exists a neighborhood V_{0} of e such that $|f(x y)-f(x)|<\frac{1}{2} \epsilon, \forall y \in V_{x}$ and there exists a symmetric neighborhood V_{x} of e such that $V_{x} V_{x}=U_{x}$. Now $K \subset V_{x} V_{x}, x \in K$ so their exists $x_{1}, x_{2}, \ldots, x_{n} \in K$ such that $K \subset \bigcup_{i=1}^{n} x_{i} V_{x_{i}}$. Let $V=\bigcap_{i=1}^{n} V_{x_{i}}$. We obtain that $\left\|R_{y} f-f\right\|_{\infty}<\epsilon, \forall y \in V$. If $x \in K$, then there exists j such that $x_{j}^{-1} x \in V x_{j}$, then $|f(x y)-f(x)| \leq\left|f(x y)-f\left(x_{j}\right)\right|+$ $\left|f\left(x_{j}\right)-f(x)\right|<\epsilon / 2+\epsilon / 2=\epsilon$. Similarly, if $x y \in K$, then $|f(x y)-f(x)|<\epsilon$. Now if x and $x y \notin K$, then $f(x)=f(x y)=0$.

3.2 Radon measures

Let X be a non-empty locally compact Hausdorff space. A measure μ on a Borel σ - algebra \mathcal{B} generated by the open subsets of X is called a Radon measure if
(a) $\mu(K)<\infty$, for all compact set K in X,
(b) $\mu(B)=\inf \{\mu(O): O \supset B, O$ is open $\}$, whenever $B \in \mathcal{B}$,
(c) $\mu(B)=\sup \{\mu(K): K \subset B, K$ is compact $\}$, whenever $B \in \mathcal{B}$.

Example 3.2.1. (a) The Borel measure on \mathbb{R}^{n} is a Radon measure on \mathbb{R}^{n}.
(b) $\frac{d \theta}{d \pi}$ is a radon measure on S^{1}.

Let $\mathcal{B}(G)$ be the Borel σ - algebra generated by all open subsets of a topological group G.

Definition 3.2.2. A Left (or Right) Haar measure on a locally compact Hausdorff space topological group G is a non-zero radon measure μ on G such that $\mu(x B)=\mu(B)($ or $\mu(B x)=\mu(B))$ for all $E \in \mathcal{B}(G), \forall x \in G$.

Note if $\mu(G)=1$, then μ is called the normalized Haar measure on G.
Example 3.2.3. Let $O(G)=n$, for $E \subset G$ and $\mu(E)=\frac{1}{n} \#(E)$, then μ is a normalized Haar measure on G.

Proposition 3.2.4. Let μ be a radon measure on locally compact group G and $\tilde{\mu}(B)=\mu\left(B^{-1}\right)$. Then
(a) μ is a left haar measure if and only if $\tilde{\mu}$ is a right haar measure.
(b) μ is left haar measure if and only if $\int L_{y} f d u=\int f d u$, whenever $f \in$ $C_{c}^{+}(G)$ and $y \in G$.

Proof. (a) It is easy to verify.
(b) Suppose $\mu(y E)=\mu(E), \forall y \in G, \forall E \in B$. Therefore $f=\chi_{A}$ and $\int \chi_{y E} d \mu=\int \chi_{E} d \mu$. For $f \in C_{c}^{+}(G)$ and $\epsilon>0$ there exists a simple function ϕ such that $|\phi-f|<\epsilon . \int L_{y} f d y=\int f d y, \forall f \in C_{c}(G)$. Hence by the uniqueness in the Riesz representation theorem, it follows that μ will be equal to μ_{y}.

Bibliography

[1] G. B. Folland. A course in abstract Harmonic analysis. 2nd Edition. CRC Press, Boca Raton, 1995., 1995.
[2] J .P. Serre. Linear representations of finite groups. Second Edition. Vol. 42. Springer-Verlag, New York-Heidelberg, 1977., 1977.
[3] B. Simon. Representations of Finite and Compact Groups. 10th Edition. American Mathematical Society, 2009., 2009.

