DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA747: Measure Theory Instructor: Rajesh Srivastava Time duration: 1.5 hours Quiz I February 23, 2016 Maximum Marks: 10

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Does there exist an unbounded set $A \subset \mathbb{R}$ such that $m^*(A) = 0$ but $m(\overline{A}) = 1$, where \overline{A} denotes the usual closure of the set A?
 - (b) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be linear map. Does it imply that the image of an F_{σ} -set in \mathbb{R}^2 is an F_{σ} -set ?
- 2. Show that $E \subset \mathbb{R}$ is Lebesgue measurable if and only if for each $\epsilon > 0$ there exist close set F and open set O such that $F \subseteq E \subseteq O$ and $m(O \setminus F) < \epsilon$.
- 3. Let $E \in M(\mathbb{R})$ with $m(E) < \infty$. For O to be a finite union of open intervals, show that $f(x) = m(E \cap (O + x))$ is a uniformly continuous function on \mathbb{R} .
- 4. Let $E \in M(\mathbb{R})$ and m(E) > 0. Show that for each $n \in \mathbb{N}$, there exists an open interval I such that $(n+1)m(E \cap I) \ge m(I)$.
- 5. Let $E = \mathbb{N} \times \{0\}$ and let $O_n = \left\{x \in \mathbb{R}^2 : d(x, E) < \frac{1}{n}\right\}$. Show that $\lim_{n \to \infty} m(O_n) = \infty$ and $m\left(\bigcap_{n=1}^{\infty} O_n\right) = 0.$ 2

END