DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA747: Measure Theory Instructor: Rajesh Srivastava Time duration: 2.0 hours Quiz II April 20, 2016 Maximum Marks: 14

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Let $f_n(t) = t^n$. Does $\int_B f_n dm \to 0$ for every Borel set B in [0, 1]? 1
 - (b) Does there exist $f \in L^1(\mathbb{R}, M, m)$ such that f is unbounded over a set of positive measure? 1
 - (c) If $L^+(X, S, \mu)$ consists of only simple functions, then what is the cardinality of σ -algebra S?
- 2. Let $f, g, fg \in L^1(X, S, \mu)$. Show that the set function $\lambda : S \to [0, \infty]$ defined by $\lambda(E) = \int_E f^+ d\mu$ is a measure on (X, S) and $\int_X g \, d\lambda = \int_X f^+ g d\mu$. **1+3**
- 3. Let $f \in L^1(X, S, \mu)$ be arbitrary and let $E_n = \{x \in X : |f(x)| \ge n\}$. If $0 , then show that <math>\lim_{n \to \infty} n^p \mu(E_n) = 0$. Does the conclusion hold if p > 1?
- 4. Let $f_n(t) = t e^{-n|t|} \chi_{[n,n+1)}(t)$. Show that $\lim_{n \to \infty} \int_{\mathbb{R}} f_n dm$ exists and is equal to zero. 3

END