DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA747: Measure Theory Instructor: Rajesh Srivastava Time duration: Two hours Mid Semester Exam March 2, 2016 Maximum Marks: 30

1

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Let $E = \bigcap_{x \in C} (x + [0, 1])$, where C is the Cantor set. Whether E is a Lebesgue measurable set?
 - (b) Let $E \in \mathcal{M}(\mathbb{R})$ and $m(E) < \infty$. Is it possible that $m(E \cap (n, n+1)) \ge \frac{1}{2}$ for all $n \in \mathbb{Z}$?
 - (c) Does there exist an F_{σ} -set in $[0, \infty)$ which is not a G_{δ} -set?
- 2. For $A \times B \in \mathbb{R}^2$, define $A B = \{x y : (x, y) \in A \times B\}$. If $m^*(A B) > 0$. Show that there exists $(x, y) \in A \times B$ such that $x y \in \mathbb{R} \setminus \mathbb{Q}$.
- 3. If $E \subset \mathbb{R}$ is Lebesgue measurable, then show that $F = \bigcup_{x \in E} [x 1, x + 1]$ is Lebesgue measurable.
- 4. Let (X, S, μ) be complete measure space. Let $f : (X, S, \mu) :\to \mathbb{R}$. If for each $\epsilon > 0$ there exists a set $E \in S$ such that $\mu(E) < \epsilon$ and f is constant on $X \setminus E$, then show that f is measurable. 3
- 5. Let (X, S, μ) be σ -finite measure space. Define an outer measure $\mu^* : P(X) \to [0, \infty]$ by $\mu^*(A) = \inf\{\mu(E) : A \subset E \text{ and } E \in S\}$. Show that $A \in \mathcal{M}_{\mu^*}$ if and only if for each $\epsilon > 0$ there exists $E \in S$ with $A \subset E$ such that $\mu^*(E \smallsetminus A) < \epsilon$. 3
- 6. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \sup\{|x+y|: y \in [0,1]\}$. Show that f is Borel measurable.
- 7. Let $f : (X, S) \to \mathbb{R}$ be measurable and $g : \mathbb{R} \to \mathbb{R}$ be Borel measurable. Show that the function $g \circ f$ is measurable. Does the above conclusion hold if g is Lebesgue measurable? 1+1
- 8. Let $f: (X, S, \mu) \to \mathbb{R}$ be measurable and $\mathcal{B}(\mathbb{R})$ denotes the Borel sigma algebra on \mathbb{R} . Define a set function $\mu_f: \mathcal{B}(\mathbb{R}) \to [0, \infty]$ by $\mu_f(B) = \mu(f^{-1}(B))$. Show that μ_f is a measure on $\mathcal{B}(\mathbb{R})$.
- 9. Let $E \subset \mathbb{R}$ is Lebesgue measurable be such that $m(E) = \alpha$. Show that there exists a Lebesgue measurable set $A \subset E$ such that $m(A) = \frac{\alpha}{2}$.
- 10. If $f : \mathbb{R} \to \mathbb{R}$ is a bounded continuous function, then show that the function g defined by $g(x) = \inf\{|f(t)|: x < t < x + 1\}$ is Lebesgue measurable. Does the conclusion hold if f is bounded Lebesgure measurable? 3+1