DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA747: Measure Theory Instructor: Rajesh Srivastava Time duration: Three hours End Semester Exam May 3, 2016 Maximum Marks: 35

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Let $f_n \in L^1([0,1], M, m)$ be such that $||f_n||_1 \to 0$. Does it imply that $\sum_{n=1}^{\infty} f_n$ converges in $L^1([0,1], M, m)$?
 - (b) Whether $L^1 \cap L^{\infty}(X, S, \mu)$ is a proper dense subspace of $L^1(X, S, \mu)$ for any non-trivial measure space (X, S, μ) ?
 - (c) Let (X, S, μ) be a finite measure space. Does there exists a measurable function f on X such that $||f||_p = 1$, for all p > 0?
 - (d) If $1 \le p < \infty$. Is it necessary that $L^{\infty}(X, S, \mu) \subset L^{p}(X, S, \mu)$ if and only if μ is a finite measure?
- 2. By using the fact that $E \in M(\mathbb{R})$ if there exists a F_{σ} set F such that $m(E \setminus F) = 0$. Show that every Lebesgue measurable function on \mathbb{R} agrees to a Borel measurable function on \mathbb{R} almost everywhere.
- 3. Let $f \in L^1([0,\infty), M, m)$ be continuous. Prove that the function F defined by $F(x) = \int_{[0,x)} f \, dm$ is differentiable and F' = f.
- 4. For φ : $(\mathbb{R}, M, m) \to \mathbb{R}$ is continuous, define a measure $\nu(B) = m \{\varphi^{-1}(B)\}, \forall B \in \mathcal{B}(\mathbb{R}).$ If $g \in L^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \nu)$, then show that $\int_B g \, d\nu = \int_{\varphi^{-1}(B)} g \circ \varphi \, d\mu.$ 5
- 5. Let f be a simple function on a σ -finite measure space (X, S, μ) such that $||f||_p \leq \frac{1}{2^p}$, for all $p \in (0, \infty)$. If $\mu(X) < \infty$, then prove that f = 0 a.e. Conversely, if any simple function φ satisfies $||\varphi||_p \leq \frac{1}{2}$, for all $p \geq 1$. Then show that $\mu(X) = 0$.
- 6. Let (X, S, μ) be a finite measure space. If $f \in L^{\infty}(X, S, \mu)$, then show that $\lim_{p \to \infty} \left[\mu \left\{ x \in X : |f(x)| > 1 \frac{1}{p} \right\} \right]^{1/p} \le \|f\|_{\infty}.$
- 7. Let $f : (\mathbb{R}^2, M \otimes M, m \times m) \to \overline{\mathbb{R}}$ be a measurable function. If either of f^+ or f^- belongs to $L^1(\mathbb{R}^2, M \otimes M, m \times m)$, then show that $\int_{\mathbb{R}} \int_{\mathbb{R}} f \, dm \, dm = \int_{\mathbb{R}^2} f \, d(m \times m)$. 2
- 8. Let $E = \{(x, y) : x^2 + y^2 \le 1 \text{ and } x + y \ge 1\}$. Show that E is $M \otimes M$ measurable and find the product measure of E. 2+2
- 9. Let $f \in L^1(\mathbb{R}, M, m)$. If $\varphi(x, y) = \frac{f(x+y)}{1+y^2}$, then show that φ is $M \otimes M$ measurable and $\varphi \in L^1(\mathbb{R}^2, M \otimes M, m \times m)$. **2+2**