## DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA642: Real Analysis -1
Instructor: Rajesh Srivastava
Time duration: 1.5 hours

Quiz - I
February 20, 2023
Maximum Marks: 10
N.B. Answer without proper justification will attract zero mark.

1. (a) Does it imply for any sequence $\left(x_{n}\right)$ in $\mathbb{R}$ satisfies $0 \leq \inf x_{n} \sup x_{n}<\infty$ that $x_{n}$ has a convergent subsequence?
(b) Let $E$ be the set of end points of the deleted open intervals in the construction of the Cantor set $C$. If $g$ is a uniformly continuous function on $E$. How many uniformly continuous functions $f$ on $C$ exist with $f=g$ on $E$ ?
2. Let $f:(a, b) \rightarrow(c, d)$ be a monotone decreasing function. If $f$ is surjective, then show that $f$ is continuous.
3. Let $d$ be a metric on $\mathbb{R}$. Suppose $\varphi:[0, \infty) \rightarrow[0, \infty)$ be a monotone increasing function which vanishes only at zero. If $\varphi$ is concave, then show that $\varphi \circ d$ is a metric on $\mathbb{R}$.
4. Find a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, which is convex and satisfies $f(\alpha x)=|\alpha| f(x)$ for every $(\alpha, x) \in \mathbb{R} \times \mathbb{R}^{n}$, but $f$ is not a norm on $\mathbb{R}^{n}$.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=\left\{\begin{array}{cl}\frac{\sin x^{2}}{x} & \text { if } x \neq 0 ; \\ 0 & \text { otherwise. }\end{array}\right.$ Find non-negative constants $A$ and $B$ such that $f(x) \leq A|x|+B$ for every $x$ in $\mathbb{R}$. Is it possible to find smallest $A$ and $B$ ?
