DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA642: Real Analysis -1 Instructor: Rajesh Srivastava Time duration: 1.5 hours Quiz - I February 20, 2023 Maximum Marks: 10

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Does it imply for any sequence (x_n) in \mathbb{R} satisfies $0 \le \inf x_n \sup x_n < \infty$ that x_n has a convergent subsequence?
 - (b) Let E be the set of end points of the deleted open intervals in the construction of the Cantor set C. If g is a uniformly continuous function on E. How many uniformly continuous functions f on C exist with f = g on E?
- 2. Let $f: (a,b) \to (c,d)$ be a monotone decreasing function. If f is surjective, then show that f is continuous.
- 3. Let d be a metric on \mathbb{R} . Suppose $\varphi : [0, \infty) \to [0, \infty)$ be a monotone increasing function which vanishes only at zero. If φ is concave, then show that $\varphi \circ d$ is a metric on \mathbb{R} .
- 4. Find a function $f : \mathbb{R}^n \to \mathbb{R}$, which is convex and satisfies $f(\alpha x) = |\alpha| f(x)$ for every $(\alpha, x) \in \mathbb{R} \times \mathbb{R}^n$, but f is not a norm on \mathbb{R}^n .
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = \begin{cases} \frac{\sin x^2}{x} & \text{if } x \neq 0; \\ 0 & \text{otherwise.} \end{cases}$ Find non-negative constants A and B such that $f(x) \leq A|x| + B$ for every x in \mathbb{R} . Is it possible to find smallest A and B?

END