DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA642: Real Analysis -1 MidSem Instructor: Rajesh Srivastava February 27, 2023 Time duration: Two hours Maximum Marks: 30

N.B. Answer without proper justification will attract zero mark.

- 1. (a) If O is a bounded open set in \mathbb{R} , does it imply that O must be the finite union of bounded open intervals?
 - (b) If A is a bounded set in $(C[0,1], \|\cdot\|_1)$, does it imply that A is necessarily a bounded subset in $(C[0,1], \|\cdot\|_2)$?
 - (c) If $f: \mathbb{R} \to \mathbb{R}$ is a function continuous, bounded and monotone function, does it imply that $\lim_{x \to \pm \infty} f(x)$ are finite?
 - (d) If $f: \mathbb{R} \to \mathbb{R}$ is a continuous and there exists A > 0 such that $f(x) \leq A|x|$ holds true for each $x \in \mathbb{R}$, does it imply that f is uniformly continuous on \mathbb{R} ?
- 2. Show that $\{(x_n) \in l^2 : |x_n| < \frac{1}{n} \text{ for all } n \in \mathbb{N}\}$ is a convex set with empty interior. $\boxed{\mathbf{3}}$
- 3. For $f \in C[0,1]$, define $||f|| = \sup_{0 \le t \le 1} |t^2 f(t)|$. Show that $(C[0,1], ||\cdot||)$ is not a complete normed liner space.
- 4. Let $\varphi_n(t) = 1 + t + \frac{t^2}{2!} + \dots + \frac{t^n}{n!}$. Show that φ_n is uniformly convergent on each bounded open interval. Does φ_n converge uniformly on \mathbb{R} ?
- 5. Let $C(\mathbb{R})$ denote the space of all continuous function on \mathbb{R} . Let $p(f) = \sum_{n=1}^{\infty} \frac{1}{2^n} p_n(f)$, where $p_n(f) = \sup_{|t| \le n} |f(t)|$. Find an infinite dimensional subspace M of $C(\mathbb{R})$ which satisfies (i) P is norm on M, and (ii) (M, p) is complete.
- 6. Suppose $x \in l^p$ for some $p \ge 1$. Show that $\lim_{p \to \infty} \inf ||x||_p \ge ||x||_\infty$. Prove/disprove that $\lim_{p \to \infty} ||x||_p = ||x||_\infty$.
- 7. Let $f:[0,1] \to \mathbb{R}$ be defined by $f(x) = \sum_{n=0}^{n_x} 2^{-n}$ if x < 1, where $n_x = \left[\frac{1}{1-x}\right]$ and f(1) = 3. Show that f is increasing and discontinuous on $\{1 \frac{1}{k} : k \in \mathbb{N}\}$.
- 8. Find a neighborhood of x = 0 in which initial value problem $y' = \frac{x}{1+y^2}$ with y(0) = 0 has a unique solution.