DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA642: Real Analysis -1
Instructor: Rajesh Srivastava
Time duration: Two hours

MidSem
February 27, 2023
Maximum Marks: 30
N.B. Answer without proper justification will attract zero mark.

1. (a) If O is a bounded open set in \mathbb{R}, does it imply that O must be the finite union of bounded open intervals?
(b) If A is a bounded set in $\left(C[0,1],\|\cdot\|_{1}\right)$, does it imply that A is necessarily a bounded subset in $\left(C[0,1],\|\cdot\|_{2}\right)$?
(c) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function continuous, bounded and monotone function, does it imply that $\lim _{x \rightarrow \pm \infty} f(x)$ are finite?
(d) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous and there exists $A>0$ such that $f(x) \leq A|x|$ holds true for each $x \in \mathbb{R}$, does it imply that f is uniformly continuous on \mathbb{R} ?
2. Show that $\left\{\left(x_{n}\right) \in l^{2}:\left|x_{n}\right|<\frac{1}{n}\right.$ for all $\left.n \in \mathbb{N}\right\}$ is a convex set with empty interior. 3
3. For $f \in C[0,1]$, define $\|f\|=\sup _{0 \leq t \leq 1}\left|t^{2} f(t)\right|$. Show that $(C[0,1],\|\cdot\|)$ is not a complete normed liner space.
4. Let $\varphi_{n}(t)=1+t+\frac{t^{2}}{2!}+\cdots+\frac{t^{n}}{n!}$. Show that φ_{n} is uniformly convergent on each bounded open interval. Does φ_{n} converge uniformly on \mathbb{R} ?
5. Let $C(\mathbb{R})$ denote the space of all continuous function on \mathbb{R}. Let $p(f)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} p_{n}(f)$, where $p_{n}(f)=\sup _{|t| \leq n}|f(t)|$. Find an infinite dimensional subspace M of $C(\mathbb{R})$ which satisfies (i) P is norm on M, and (ii) (M, p) is complete.
6. Suppose $x \in l^{p}$ for some $p \geq 1$. Show that $\lim _{p \rightarrow \infty} \inf \|x\|_{p} \geq\|x\|_{\infty}$. Prove/disprove that $\lim _{p \rightarrow \infty}\|x\|_{p}=\|x\|_{\infty}$.
7. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by $f(x)=\sum_{n=0}^{n_{x}} 2^{-n}$ if $x<1$, where $n_{x}=\left[\frac{1}{1-x}\right]$ and $f(1)=3$. Show that f is increasing and discontinuous on $\left\{1-\frac{1}{k}: k \in \mathbb{N}\right\}$.
8. Find a neighborhood of $x=0$ in which initial value problem $y^{\prime}=\frac{x}{1+y^{2}}$ with $y(0)=0$ has a unique solution.
