DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA642: Real Analysis -1 Instructor: Rajesh Srivastava Time duration: Three hours EndSem May 7, 2023 Maximum Marks: 50

1

3

N.B. Answer without proper justification will attract zero mark.

- 1. (a) If X is a finite metric space, does it imply that C(X), the space of continuous functions on X, is a finite dimensional normed linear space? 1
 - (b) Let $f: (X, d) \to \mathbb{R}$ be such that $G_f = \{(x, f(x)) : x \in X\}$ is connected. Does it imply X is connected?
 - (c) Whether $\{x = (x_1, x_2, \ldots) \in l^2 : |x_n| \le \frac{1}{n}\}$ is totally bounded in l^2 ?
 - (d) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be such that $f(tx) = t^2 f(x)$ for every t > 0 and $x \in \mathbb{R}^n$. Does it imply that f is differentiable at 0?
 - (e) If every countable closed set in a metric space (X, d) is complete, does it imply X is complete? 1
- 2. Let $A : \mathbb{R}^2 \to \mathbb{R}^2$ be given by A(x, y) = (2x + y, x + y). Find the norm of A. 3
- 3. Let A be a connected subset of a metric space X, and let B be an open and closed set in X such that $A \cap B \neq \emptyset$. Show that $A \subset B$.
- 4. Let $f: [1, \infty) \to \mathbb{R}$ be continuous and $\lim_{x \to \infty} f(x) = 0$. For every $\epsilon > 0$, show that there exists a polynomial p satisfying $|f(x) p(1/x)| < \epsilon$ for all $x \ge 1$.
- 5. Show that the complement of any countable set E in \mathbb{R}^2 is path connected.
- 6. Let $f : [a, b] \to \mathbb{R}$ be satisfying intermediate value property, and $f^{-1}(\{y\})$ is closed for every $y \in \mathbb{R}$. Show that f is continuous.
- 7. Let $A \in GL_n(\mathbb{C})$. Show that the set $E = \left\{ B \in L_n(\mathbb{C}) : \|B A\| < \frac{1}{2\|A^{-1}\|} \right\}$ is open in $GL_n(\mathbb{C})$. And hence reduce that E is path connected in $L_n(\mathbb{C})$.
- 8. Show that a subset A of a metric space X is closed if and only if $A \cap K$ is compact for every compact set K in X. 3
- 9. Let $f_n \in C[0,1]$ be satisfying $||f_n||_{\infty} \leq 1$. Let $F_n(x) = \int_0^x f_n(t) dt$. Show that F_n has a convergent subsequence.

- 10. Give an example of sequence of function $f_n \in C[0, 1]$, which decreases point wise to f but not uniformly. 3
- 11. Let $f : \mathbb{R} \to \mathbb{R}^n$ be a differentiable function with $||f'(x)|| \le 1$. Show that f satisfies $||f(x) f(y)|| \le |x y|$ for every $x, y \in \mathbb{R}$. (Hint: use one dimensional MVT.)
- 12. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be continuously differentiable. Find an appropriate condition such that f(x, (f(x, y)) = 0 can be solved for x in some neighborhood of (0, 0). 3
- 13. Let $f : \mathbb{R} \to \mathbb{R}$ be continuously differentiable and $f'(0) \neq 0$. Show that F(x, y) = (x yf(y), f(y)) is locally invertible in some neighborhood of (0, 0). Does there exists some f for which F is globally invertible? 4
- 14. A map $f : (X, d) \to \mathbb{R}$ is called lower semi-continuous (LSC) if $\{x \in X : f(x) > \alpha\}$ is open for every $\alpha \in \mathbb{R}$. If f is LSC, show that for every $x \in X$, and every sequence $x_n \to x$, implies $f(x) \leq \lim_{n \to \infty} \inf f(x_n)$.

END