DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA642: Real Analysis -1
Instructor: Rajesh Srivastava
Time duration: Three hours
EndSem
May 7, 2023
Maximum Marks: 50
N.B. Answer without proper justification will attract zero mark.

1. (a) If X is a finite metric space, does it imply that $C(X)$, the space of continuous functions on X, is a finite dimensional normed linear space?
(b) Let $f:(X, d) \rightarrow \mathbb{R}$ be such that $G_{f}=\{(x, f(x)): x \in X\}$ is connected. Does it imply X is connected?
(c) Whether $\left\{x=\left(x_{1}, x_{2}, \ldots\right) \in l^{2}:\left|x_{n}\right| \leq \frac{1}{n}\right\}$ is totally bounded in l^{2} ?
(d) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be such that $f(t x)=t^{2} f(x)$ for every $t>0$ and $x \in \mathbb{R}^{n}$. Does it imply that f is differentiable at 0 ?
(e) If every countable closed set in a metric space (X, d) is complete, does it imply X is complete?
2. Let $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $A(x, y)=(2 x+y, x+y)$. Find the norm of A.
3. Let A be a connected subset of a metric space X, and let B be an open and closed set in X such that $A \cap B \neq \emptyset$. Show that $A \subset B$.
4. Let $f:[1, \infty) \rightarrow \mathbb{R}$ be continuous and $\lim _{x \rightarrow \infty} f(x)=0$. For every $\epsilon>0$, show that there exists a polynomial p satisfying $|f(x)-p(1 / x)|<\epsilon$ for all $x \geq 1$.
5. Show that the complement of any countable set E in \mathbb{R}^{2} is path connected.
6. Let $f:[a, b] \rightarrow \mathbb{R}$ be satisfying intermediate value property, and $f^{-1}(\{y\})$ is closed for every $y \in \mathbb{R}$. Show that f is continuous.
7. Let $A \in G L_{n}(\mathbb{C})$. Show that the set $E=\left\{B \in L_{n}(\mathbb{C}):\|B-A\|<\frac{1}{2\left\|A^{-1}\right\|}\right\}$ is open in $G L_{n}(\mathbb{C})$. And hence reduce that E is path connected in $L_{n}(\mathbb{C})$.
8. Show that a subset A of a metric space X is closed if and only if $A \cap K$ is compact for every compact set K in X.
9. Let $f_{n} \in C[0,1]$ be satisfying $\left\|f_{n}\right\|_{\infty} \leq 1$. Let $F_{n}(x)=\int_{0}^{x} f_{n}(t) d t$. Show that F_{n} has a convergent subsequence.
10. Give an example of sequence of function $f_{n} \in C[0,1]$, which decreases point wise to f but not uniformly.
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a differentiable function with $\left\|f^{\prime}(x)\right\| \leq 1$. Show that f satisfies $\|f(x)-f(y)\| \leq|x-y|$ for every $x, y \in \mathbb{R}$. (Hint: use one dimensional MVT.)
12. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuously differentiable. Find an appropriate condition such that $f(x,(f(x, y))=0$ can be solved for x in some neighborhood of $(0,0)$.
13. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuously differentiable and $f^{\prime}(0) \neq 0$. Show that $F(x, y)=$ $(x-y f(y), f(y))$ is locally invertible in some neighborhood of $(0,0)$. Does there exists some f for which F is globally invertible?
14. A map $f:(X, d) \rightarrow \mathbb{R}$ is called lower semi-continuous (LSC) if $\{x \in X: f(x)>\alpha\}$ is open for every $\alpha \in \mathbb{R}$. If f is LSC, show that for every $x \in X$, and every sequence $x_{n} \rightarrow x$, implies $f(x) \leq \lim _{n \rightarrow \infty} \inf f\left(x_{n}\right)$.

END

