DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA550: Measure Theory Instructor: Rajesh Srivastava Time duration: 1.5 hours Quiz - II April 16, 2024 Maximum Marks: 10

 $\mathbf{2}$

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Let $f : (X, S, \mu) \to [0, \infty]$ be such that $\mu \{x \in X : f(x) > n\} < \sin \frac{1}{n}$ for all $n \ge 1$. Does it imply that $\{x \in X : f(x) = \infty\}$ is a measurable set? 1
 - (b) Does there exist a sequence of Lebesgue measurable functions f_n on $[0, \pi]$ to \mathbb{R} such that $\int_{[0,\pi]} f_n dm \to 0$, but $\lim_{[0,\pi]} \int_{[0,\pi]} |f_n| dm > 0$? **1**
- 2. Let $f : \mathbb{R} \to [0, \infty]$ be such that for each $\epsilon > 0$, there exists a closed set F such that $m(F) < \epsilon$ and f is continuous on $\mathbb{R} \setminus F$. Show that f is Lebesgue measurable. 2
- 3. Let μ_n be sequence of measures on (X, S), and write $\mu(E) = \sum_{n=1}^{\infty} \mu_n(E)$ for each $E \in S$. If $f: X \to [0, \infty]$ is such that $\int_X f d\mu_n \leq \frac{1}{n^2}$ for each $n \in \mathbb{N}$, then show that $f \in L^1(\mu)$.
- 4. Let $f, f_n : \mathbb{R} \to \overline{\mathbb{R}}$ be such that $f_n \to f$ point wise and $\inf_{n \ge 1} \int_{\mathbb{R}} |f_n| dm \le L < \infty$. Show that $f \in L^1(m)$.
- 5. Evaluate the Lebesgue integral $\lim_{n \to \infty} \int_{[0,\infty)} \frac{me^{-x}}{n+x} dm$.

END