DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA550: Measure Theory Instructor: Rajesh Srivastava Time duration: Two hours MidSem March 1, 2024 Maximum Marks: 30

1

1

3

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Whether an infinite σ -algebra on \mathbb{Z} is countable?
 - (b) What is cardinality of the class of all G_{δ} sets in \mathbb{R} ?
 - (c) Does there exist a decreasing sequence (E_n) of Lebesgue measurable sets in \mathbb{R} such that $\lim m(E_n) = m(\cap E_n)$?
 - (d) Let E be subset of \mathbb{R} and let f be function on \mathbb{R} such that f = 1 on E and 0 elsewhere. If $\{x \in \mathbb{R} : f(x) > a\} \in M(\mathbb{R})$ for all $a \in \mathbb{R}$, does it imply that $E \in M(\mathbb{R})$?
- 2. Let $A \in M(\mathbb{R})$ and $m^*(A \triangle B) = 0$. Show that $B \in M(\mathbb{R})$ and m(A) = m(B).
- 3. Let E be subset of \mathbb{R} . Show that $m^*(\sin(E)) \leq m^*(E)$.
- 4. Let Let $E \in M(\mathbb{R})$ and $m(E) < \infty$. Show that for each $\epsilon > 0$ there exists a compact set K such that $m(E \triangle K) < \epsilon$.
- 5. Let *E* and *F* be two disjoint compact subsets of \mathbb{R} . Show that $m^*(E \cup F) = m^*(E) + m^*(F)$. (Without using measurability of compact sets.)
- 6. Let $E \in M(\mathbb{R})$ and m(E) = 2. Show that there exists a compact subset K of E such that m(K) = 1.
- 7. Let $E \in M(\mathbb{R})$ be such that $m(E \cap (0,2)) > \frac{3}{2}$. Show that for each $x \in (-1,1)$, $(E \cap (0,2)) \cap ((E \cap (0,2)) + x) \neq \emptyset$. Further, deduce that $(-1,1) \subset E E = \{x y : x, y \in E\}$.
- 8. Let S be a σ -algebra on a non-empty set X, and $\mu : S \to [0, \infty]$ be finitely additive with $\mu(\emptyset) = 0$. If for every decreasing sequence (E_n) of S having $\cap E_n = \emptyset$ implies $\lim \mu(E_n) = 0$, show that μ is a measure.

END