MA550: Measure Theory

(Assignment 5: L^{p}-spaces and product measures)
January - April, 2024

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) $L^{\infty}(X, S, \mu)$ contains an almost non-zero function for every measure space (X, S, μ).
(b) If $f:(X, S, \mu) \rightarrow \mathbb{R}$ is bounded almost everywhere, then f is measurable.
(c) If for $1 \leq p<\infty, L^{\infty}(X, S, \mu) \subset L^{p}(X, S, \mu)$, then μ is a finite measure.
(d) For $f \in L^{\infty}(X, S, \mu)$, it is necessary that $\mu\left\{x \in X:|f(x)|=\|f\|_{\infty}\right\}=0$.
(e) Let $\mathcal{S}(\mathbb{R})$ be the space of all continuous functions on \mathbb{R} such that $|x|^{\alpha} f(x)$ is bounded, for any $\alpha \in \mathbb{N}$. Then $\mathcal{S}(\mathbb{R})$ is dense $L^{2}(\mathbb{R})$.
(f) Let (X, S, μ) be a σ - finite measure space with $\mu(\{x\})=0$ for all $x \in X$. Is it possible that $(\mu \times \mu)(\{(x, y) \in X \times X: x=y\})>0$?
(g) Let $F(x, y)=f(x) f(y)$, where $f \in L^{1}(\mathbb{R})$ and $g \in L^{\infty}(\mathbb{R})$. Does it imply that F is finite a.e. $m \times m$?
(h) The set $\left\{(x, y) \in \mathbb{R}^{2}: y=\sin \frac{1}{x}\right\}$ belongs to $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.
2. For $1 \leq p<\infty$ and $f \in L^{p}(X, S, \mu)$ and $\alpha>0$ show that $\mu\{x \in X:|f(x)| \geq \alpha\} \leq\left(\frac{\|f\|_{p}}{\alpha}\right)^{p}$. Further, for $1<p<\infty$, show that $\sum_{n=1}^{\infty} \mu\{x \in X:|f(x)| \geq n\}$ is convergent.
3. Let $1 \leq p<\infty$ and $f \in L^{+}(X, S, \mu) \cap L^{p}(X, S, \mu)$. Define $f_{n}(x)=\min \{n, f(x)\}$. Then show that f_{n} increases to f point wise a.e. and $\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right|^{p} d \mu=0$.
4. Suppose $f_{n} \rightarrow f$ in $L^{p}(\mathbb{R})$ for $1 \leq p<\infty$. Let $g_{n} \in L^{\infty}(\mathbb{R})$ and $\left\|g_{n}\right\| \leq 1$. If g_{n} converges to g uniformly a.e., then $f_{n} g_{n} \rightarrow f g$ in $L^{p}(\mathbb{R})$.
5. Suppose $f_{n} \in L^{p}(X, S, \mu)$, for $1 \leq p<\infty$, with $\left\|f_{n}\right\|_{p} \leq 1$ and $f_{n} \rightarrow f$ point-wise a.e. Show that $f \in L^{p}(X, S, \mu)$ and $\|f\|_{p} \leq 1$.
6. Let (X, S, μ) be a σ - finite measure space. Suppose for each $\epsilon>0$ there exists some $p>1$ such that $\|f\|_{p}<\epsilon$ for every $f \in L^{p}(X, S, \mu)$. Show that $\mu=0$.
7. Let (X, S, μ) be a measure space and $0<p<1$. Then for $f, g \in L^{+} \cap L^{p}(X, S, \mu)$ show that $\|f+g\|_{p} \geq\|f\|_{p}+\|g\|_{p}$.
8. Let $\left\{E_{n}\right\}$ be sequence of disjoint measurable sets. Show that $\sum_{n=1}^{\infty} \alpha_{i} \chi_{E_{i}} \in L^{p}(X, S, \mu)$ if and only if $\sum_{n=1}^{\infty}\left|\alpha_{i}\right|^{p} \mu\left(E_{i}\right)<\infty$.
9. Let f and g be disjointly supported functions in $L^{p}(X, S, \mu)$. Prove that $\|f+g\|_{p}^{p}=\|f\|_{p}^{p}+\|g\|_{p}^{p}$.
10. Let $1 \leq p<\infty f \in L^{p}(\mathbb{R}, M, m)$. Then show that $\|f(x+h)-f(x)\|_{p} \rightarrow 0$ as $|h| \rightarrow 0$.
11. For $1<p<\infty$, prove that $L^{1}(\mathbb{R}, M, m) \cap L^{p}(\mathbb{R}, M, m)$ is a proper dense subspace of $L^{p}(\mathbb{R}, M, m)$.
12. Let $1 \leq p, q \leq \infty$ and $p^{-1}+q^{-1}=r^{-1}$. If $f \in L^{p}(X, S, \mu)$ and $g \in L^{q}(X, S, \mu)$, then prove that $f g \in L^{1}(X, S, \mu)$ and $\|f g\|_{r} \leq\|f\|_{p}\|g\|_{q}$. (A generalized Holder's inequality.)
13. Let $1 \leq p<q<r \leq \infty$. Then prove that $L^{q}(X, S, \mu) \subset L^{p}(X, S, \mu)+L^{r}(X, S, \mu)$.
14. Let $1 \leq p<q<r \leq \infty$. Show that $L^{p}(X, S, \mu) \cap L^{r}(X, S, \mu) \subset L^{q}(X, S, \mu)$ and $\|f\|_{q} \leq\|f\|_{p}^{\lambda}\|f\|_{r}^{1-\lambda}$, where $\lambda \in(0,1)$ is given by $q^{-1}=\lambda p^{-1}+(1-\lambda) r^{-1}$.
15. Let $1 \leq p<\infty$ and $p^{-1}+q^{-1}=1$. For $f \in L^{p}(X, S, \mu)$, prove that

$$
\|f\|_{p}=\sup \left\{\left|\int_{X} f g d \mu\right|: g \in L^{q}(X, S, \mu) \text { and }\|g\|_{q}=1\right\} .
$$

16. Let (X, S, μ) be a σ-finite measure space. Then show that $\|f\|_{\infty}=\sup _{\|g\|_{1}=1}\left|\int_{X} f g d \mu\right|$.
17. Let \mathcal{A} be the monotone class generated by all closed sets in \mathbb{R}. If E and F are closed subsets \mathbb{R}, then show that $E+F$ belongs to \mathcal{A}.
18. Let P be a polynomial on \mathbb{R}^{2}. Show that $S=\left\{(x, y) \in \mathbb{R}^{2}: P(x, y)=1\right\} \in M(\mathbb{R}) \otimes M(\mathbb{R})$. Compute $m \times m(S)$.
19. Let $f:\left(\mathbb{R}^{2}, M \otimes M, m \times m\right) \rightarrow \overline{\mathbb{R}}$ be a measurable function. If either of f^{+}or f^{-}belongs to $L^{1}\left(\mathbb{R}^{2}, M \otimes M, m \times m\right)$, then show that $\int_{\mathbb{R}} \int_{\mathbb{R}} f d m d m=\int_{\mathbb{R}^{2}} f d(m \times m)$.
20. Let $f:(X, S, \mu) \rightarrow \mathbb{R}$ be measurable. Show that $G_{f}=\{(x, y) \in X \times \mathbb{R}, y=f(x)\} \in S \otimes \mathcal{B}(\mathbb{R})$. If $(X, S, \mu)=(\mathbb{R}, M, m)$, then show that $m \times m\left(G_{f}\right)=0$.
21. Let (X, S, μ) be a σ-finite measure space. Let $f:(X, S, \mu) \rightarrow[0, \infty]$ be measurable. Show that $A_{f}=\{(x, y) \in X \times[0, \infty], y \leq f(x)\} \in S \otimes \mathcal{B}(\mathbb{R})$ and $\mu \times m\left(A_{f}\right)=\int_{X} f(x) d \mu(x)$.
22. Let (X, S, μ) be a finite measure space and $f: X \rightarrow[1, \infty]$ be a measurable function. Compute $\mu \times m\{(x, y) \in X \times \mathbb{R}: y<f(x)\}$.
23. Show that $\mathbb{D}=\left\{(x, y) \in \mathbb{R}^{2}: y \geq x^{2}\right.$ and $\left.y \leq 1\right\} \in M(\mathbb{R}) \otimes M(\mathbb{R})$. Find $m \times m(\mathbb{D})$.
24. Let $f \in L^{1}(X, S, \mu)$ and $g \in L^{1}(Y, T, \nu)$. Define $\varphi(x, y)=f(x) g(y)$. Show that φ is measurable and $\varphi \in L^{1}(X \times Y, S \otimes T, \mu \times \nu)$.
25. Let $E, F \in M(\mathbb{R})$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\chi_{E}(x) \chi_{F}(x-y)$. Then show that f is $M(\mathbb{R}) \otimes M(\mathbb{R})$-measurable and $\int_{\mathbb{R}^{2}} f d(m \times m)=m(E) m(F)$.
26. For $E, F \in M(\mathbb{R})$, define $h(y)=\int_{\mathbb{R}} \chi_{E}(x) \chi_{F}(x-y) d x$. Show that h is a Borel measurable function on \mathbb{R}.
27. Let $X=Y=[0,1], S=T=\mathcal{B}[0,1]$ and $\mu=\nu=m$. Define $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ by

$$
f(x, y)=\left\{\begin{array}{cl}
1 & \text { if } x \in \mathbb{Q} \\
2 y & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} .
\end{array}\right.
$$

Compute $\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x$ and $\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y$. Whether $f \in L^{1}(m \times m)$?
28. Let $f(x, y)=e^{-x y} \sin x$ and $D=[0, \infty) \times[1, \infty)$. Show that $f \chi_{D} \in L^{1}\left(\mathbb{R}^{2}, M \otimes M, m \times m\right)$ and $\int_{0}^{\infty} \int_{1}^{\infty} f(x, y) d y d x=\int_{1}^{\infty} \int_{0}^{\infty} f(x, y) d x d y$.
29. Let $f(x, y)=e^{-x y}-2 e^{-2 x y}$ and $D=[0,1] \times[1, \infty)$. Show that $f \chi_{D} \notin L^{1}\left(\mathbb{R}^{2}, M \otimes M, m \times m\right)$.
30. Let $f \in L^{1}(0, a)$ and define $g(x)=\int_{x}^{a} \frac{f(t)}{t} d t$. Then show that $g \in L^{1}(0, a)$ and compute $\int_{0}^{a} g(x) d x$.
31. For $f \in L^{1}(\mathbb{R}, M, m)$, define $F(x)=\int_{0}^{x} f(t) d t$. Show that $F \in L^{1}([0,1], M, m)$ and deduce that $\|F\|_{1} \leq\|f\|_{1}$.
32. Let $f \in L^{1}(\mathbb{R}, M, m)$. If $\varphi(x, y)=\frac{f(x+y)}{1+y^{2}}$, then show that φ is $M \otimes M$-measurable, and $\varphi \in L^{1}\left(\mathbb{R}^{2}, M \otimes M, m \times m\right)$.
33. Let $T: L^{1}(\mathbb{R}) \rightarrow L^{1}(\mathbb{R})$ be defined by $T(f)(x)=\int_{\mathbb{R}} \frac{f(x+y)}{1+y^{2}} d y$. Show that T is bounded and satisfies $\|T\|=\pi$.
34. Define a linear functional on $L^{1}(\mathbb{R}, M, m)$ by $T(f)=\int_{\mathbb{R}} \frac{f(x)}{1+|x|}$. Show that T is bounded and verifies $\|T\|=1$.

