MA550: Measure Theory

(Assignment 5: L^p -spaces and product measures) January - April, 2024

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) $L^{\infty}(X, S, \mu)$ contains an almost non-zero function for every measure space (X, S, μ) .
 - (b) If $f: (X, S, \mu) \to \mathbb{R}$ is bounded almost everywhere, then f is measurable.
 - (c) If for $1 \le p < \infty$, $L^{\infty}(X, S, \mu) \subset L^{p}(X, S, \mu)$, then μ is a finite measure.
 - (d) For $f \in L^{\infty}(X, S, \mu)$, it is necessary that $\mu\{x \in X : |f(x)| = ||f||_{\infty}\} = 0$.
 - (e) Let $\mathcal{S}(\mathbb{R})$ be the space of all continuous functions on \mathbb{R} such that $|x|^{\alpha} f(x)$ is bounded, for any $\alpha \in \mathbb{N}$. Then $\mathcal{S}(\mathbb{R})$ is dense $L^2(\mathbb{R})$.
 - (f) Let (X, S, μ) be a σ -finite measure space with $\mu(\{x\}) = 0$ for all $x \in X$. Is it possible that $(\mu \times \mu)(\{(x, y) \in X \times X : x = y\}) > 0$?
 - (g) Let F(x,y) = f(x)f(y), where $f \in L^1(\mathbb{R})$ and $g \in L^{\infty}(\mathbb{R})$. Does it imply that F is finite a.e. $m \times m$?
 - (h) The set $\{(x, y) \in \mathbb{R}^2 : y = \sin \frac{1}{x}\}$ belongs to $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.
- 2. For $1 \le p < \infty$ and $f \in L^p(X, S, \mu)$ and $\alpha > 0$ show that $\mu \{x \in X : |f(x)| \ge \alpha\} \le \left(\frac{\|f\|_p}{\alpha}\right)^p$. Further, for $1 , show that <math>\sum_{n=1}^{\infty} \mu\{x \in X : |f(x)| \ge n\}$ is convergent.
- 3. Let $1 \le p < \infty$ and $f \in L^+(X, S, \mu) \cap L^p(X, S, \mu)$. Define $f_n(x) = \min\{n, f(x)\}$. Then show that f_n increases to f point wise a.e. and $\lim_{n \to \infty} \int_{Y} |f_n f|^p d\mu = 0$.
- 4. Suppose $f_n \to f$ in $L^p(\mathbb{R})$ for $1 \le p < \infty$. Let $g_n \in L^\infty(\mathbb{R})$ and $||g_n|| \le 1$. If g_n converges to g uniformly a.e., then $f_n g_n \to fg$ in $L^p(\mathbb{R})$.
- 5. Suppose $f_n \in L^p(X, S, \mu)$, for $1 \le p < \infty$, with $||f_n||_p \le 1$ and $f_n \to f$ point-wise a.e. Show that $f \in L^p(X, S, \mu)$ and $||f||_p \le 1$.
- 6. Let (X, S, μ) be a σ -finite measure space. Suppose for each $\epsilon > 0$ there exists some p > 1 such that $||f||_p < \epsilon$ for every $f \in L^p(X, S, \mu)$. Show that $\mu = 0$.
- 7. Let (X, S, μ) be a measure space and $0 . Then for <math>f, g \in L^+ \cap L^p(X, S, \mu)$ show that $\|f + g\|_p \ge \|f\|_p + \|g\|_p$.

8. Let $\{E_n\}$ be sequence of disjoint measurable sets. Show that $\sum_{n=1}^{\infty} \alpha_i \chi_{E_i} \in L^p(X, S, \mu)$ if and only if $\sum_{n=1}^{\infty} |\alpha_i|^p \mu(E_i) < \infty$.

- 9. Let f and g be disjointly supported functions in $L^p(X, S, \mu)$. Prove that $||f+g||_p^p = ||f||_p^p + ||g||_p^p$.
- 10. Let $1 \le p < \infty$ $f \in L^p(\mathbb{R}, M, m)$. Then show that $||f(x+h) f(x)||_p \to 0$ as $|h| \to 0$.
- 11. For $1 , prove that <math>L^1(\mathbb{R}, M, m) \cap L^p(\mathbb{R}, M, m)$ is a proper dense subspace of $L^p(\mathbb{R}, M, m)$.
- 12. Let $1 \le p, q \le \infty$ and $p^{-1} + q^{-1} = r^{-1}$. If $f \in L^p(X, S, \mu)$ and $g \in L^q(X, S, \mu)$, then prove that $fg \in L^1(X, S, \mu)$ and $\|fg\|_r \le \|f\|_p \|g\|_q$. (A generalized Holder's inequality.)
- 13. Let $1 \le p < q < r \le \infty$. Then prove that $L^q(X, S, \mu) \subset L^p(X, S, \mu) + L^r(X, S, \mu)$.

- 14. Let $1 \leq p < q < r \leq \infty$. Show that $L^p(X, S, \mu) \cap L^r(X, S, \mu) \subset L^q(X, S, \mu)$ and $\|f\|_q \leq \|f\|_p^{\lambda} \|f\|_r^{1-\lambda}$, where $\lambda \in (0, 1)$ is given by $q^{-1} = \lambda p^{-1} + (1 \lambda)r^{-1}$.
- 15. Let $1 \leq p < \infty$ and $p^{-1} + q^{-1} = 1$. For $f \in L^p(X, S, \mu)$, prove that

$$||f||_p = \sup\left\{ \left| \int_X fgd\mu \right| : g \in L^q(X, S, \mu) \text{ and } ||g||_q = 1 \right\}.$$

16. Let (X, S, μ) be a σ -finite measure space. Then show that $||f||_{\infty} = \sup_{||g||_1=1} \left| \int_X fg d\mu \right|$.

- 17. Let \mathcal{A} be the monotone class generated by all closed sets in \mathbb{R} . If E and F are closed subsets \mathbb{R} , then show that E + F belongs to \mathcal{A} .
- 18. Let P be a polynomial on \mathbb{R}^2 . Show that $S = \{(x, y) \in \mathbb{R}^2 : P(x, y) = 1\} \in M(\mathbb{R}) \otimes M(\mathbb{R})$. Compute $m \times m(S)$.
- 19. Let $f : (\mathbb{R}^2, M \otimes M, m \times m) \to \overline{\mathbb{R}}$ be a measurable function. If either of f^+ or f^- belongs to $L^1(\mathbb{R}^2, M \otimes M, m \times m)$, then show that $\int_{\mathbb{R}} \int_{\mathbb{R}} f \, dm \, dm = \int_{\mathbb{R}^2} f \, d(m \times m)$.
- 20. Let $f: (X, S, \mu) \to \mathbb{R}$ be measurable. Show that $G_f = \{(x, y) \in X \times \mathbb{R}, y = f(x)\} \in S \otimes \mathcal{B}(\mathbb{R})$. If $(X, S, \mu) = (\mathbb{R}, M, m)$, then show that $m \times m(G_f) = 0$.
- 21. Let (X, S, μ) be a σ -finite measure space. Let $f : (X, S, \mu) \to [0, \infty]$ be measurable. Show that $A_f = \{(x, y) \in X \times [0, \infty], y \leq f(x)\} \in S \otimes \mathcal{B}(\mathbb{R})$ and $\mu \times m(A_f) = \int_X f(x) d\mu(x)$.
- 22. Let (X, S, μ) be a finite measure space and $f : X \to [1, \infty]$ be a measurable function. Compute $\mu \times m\{(x, y) \in X \times \mathbb{R} : y < f(x)\}$.
- 23. Show that $\mathbb{D} = \{(x, y) \in \mathbb{R}^2 : y \ge x^2 \text{ and } y \le 1\} \in M(\mathbb{R}) \otimes M(\mathbb{R}).$ Find $m \times m(\mathbb{D})$.
- 24. Let $f \in L^1(X, S, \mu)$ and $g \in L^1(Y, T, \nu)$. Define $\varphi(x, y) = f(x)g(y)$. Show that φ is measurable and $\varphi \in L^1(X \times Y, S \otimes T, \mu \times \nu)$.
- 25. Let $E, F \in M(\mathbb{R})$ and $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = \chi_E(x)\chi_F(x y)$. Then show that f is $M(\mathbb{R}) \otimes M(\mathbb{R})$ -measurable and $\int_{\mathbb{R}^2} f d(m \times m) = m(E)m(F)$.
- 26. For $E, F \in M(\mathbb{R})$, define $h(y) = \int_{\mathbb{R}} \chi_E(x)\chi_F(x-y)dx$. Show that h is a Borel measurable function on \mathbb{R} .
- 27. Let $X = Y = [0, 1], S = T = \mathcal{B}[0, 1]$ and $\mu = \nu = m$. Define $f : [0, 1] \times [0, 1] \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 2y & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Compute $\int_{0}^{1} \int_{0}^{1} f(x,y) dy dx$ and $\int_{0}^{1} \int_{0}^{1} f(x,y) dx dy$. Whether $f \in L^{1}(m \times m)$?

28. Let $f(x,y) = e^{-xy} \sin x$ and $D = [0,\infty) \times [1,\infty)$. Show that $f\chi_D \in L^1(\mathbb{R}^2, M \otimes M, m \times m)$ and $\int_0^{\infty} \int_1^{\infty} f(x,y) dy dx = \int_1^{\infty} \int_0^{\infty} f(x,y) dx dy.$

29. Let $f(x,y) = e^{-xy} - 2e^{-2xy}$ and $D = [0,1] \times [1,\infty)$. Show that $f\chi_D \notin L^1(\mathbb{R}^2, M \otimes M, m \times m)$.

- 30. Let $f \in L^1(0,a)$ and define $g(x) = \int_x^a \frac{f(t)}{t} dt$. Then show that $g \in L^1(0,a)$ and compute $\int_0^a g(x) dx$.
- 31. For $f \in L^1(\mathbb{R}, M, m)$, define $F(x) = \int_0^x f(t)dt$. Show that $F \in L^1([0, 1], M, m)$ and deduce that $\|F\|_1 \le \|f\|_1$.

- 32. Let $f \in L^1(\mathbb{R}, M, m)$. If $\varphi(x, y) = \frac{f(x+y)}{1+y^2}$, then show that φ is $M \otimes M$ -measurable, and $\varphi \in L^1(\mathbb{R}^2, M \otimes M, m \times m)$.
- 33. Let $T : L^1(\mathbb{R}) \to L^1(\mathbb{R})$ be defined by $T(f)(x) = \int_{\mathbb{R}} \frac{f(x+y)}{1+y^2} dy$. Show that T is bounded and satisfies $||T|| = \pi$.
- 34. Define a linear functional on $L^1(\mathbb{R}, M, m)$ by $T(f) = \int_{\mathbb{R}} \frac{f(x)}{1+|x|}$. Show that T is bounded and verifies ||T|| = 1.