MA550: Measure Theory

(Assignment 3: Measurable functions)

January - April, 2024

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) If $f : \mathbb{R} \to \mathbb{R}$ is continuous *m*-a.e. on \mathbb{R} , then there must exist a continuous function $g : \mathbb{R} \to \mathbb{R}$ such that f = g *m*-a.e. on \mathbb{R} .
 - (b) If $f : \mathbb{R} \to \mathbb{R}$ is continuous and if $g : \mathbb{R} \to \mathbb{R}$ is such that f = g *m*-a.e. on \mathbb{R} , then *g* must be continuous *m*-a.e. on \mathbb{R} .
 - (c) If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are continuous such that f = g *m*-a.e. on \mathbb{R} , then it is necessary that f(x) = g(x) for all $x \in \mathbb{R}$.
 - (d) An almost everywhere vanishing Lebesgue measurable function need not be continuous.
 - (e) There exists a continuous function $f : \mathbb{R} \to \mathbb{R}$ such that $f = \chi_{[0,1]}$ *m*-a.e. on \mathbb{R} .
 - (f) Let $f(x) = \frac{1}{x}$ if $x \neq 0$ and f(0) = 1. Then f is Borel measurable on \mathbb{R} .
 - (g) For $n \in \mathbb{N}$, define $f_n = \chi_{(n,n+1)}$. Does there exist a measurable set E in \mathbb{R} with $m(E) = \infty$ such that f_n converges to 0 uniformly on E?
 - (h) Let $f, g : \mathbb{R} \to [0, \infty)$ be Lebesgue measurable such that $m\{x \in \mathbb{R} : f g \neq 0\} = 0$. Does it imply that $\max\{f, g\} = f + g$?
 - (i) Let $\operatorname{supp} h = \{x \in \mathbb{R} : h(x) \neq 0\}$. Suppose $f, g : \mathbb{R} \to [0, \infty)$ are such that $\operatorname{supp} f \cap \operatorname{supp} g = \emptyset$. Does it imply that $\max\{f, g\} = f + g$?
- 2. If (X, \mathcal{A}) is a measurable space and $A \subset X$, then show that $\chi_A : X \to \mathbb{R}$ is \mathcal{A} -measurable iff A is \mathcal{A} -measurable.
- 3. If (X, \mathcal{A}) is a measurable space, then show that $f : X \to [-\infty, +\infty]$ is \mathcal{A} -measurable iff $\{x \in X : f(x) > r\} \in \mathcal{A}$ for each $r \in \mathbb{Q}$.
- 4. Let D be a dense subset of \mathbb{R} . Show that $f : \mathbb{R} \to \overline{\mathbb{R}}$ is a Lebesgue measurable function if and only if $\{x \in \mathbb{R} : f(x) > r\}$ is a Lebesgue measurable set for each $r \in D$.
- 5. Let $f : \mathbb{R} \to [0, \infty]$ be such that $m^*(\{x \in \mathbb{R} : f(x) \ge 2^n\}) < \frac{1}{2^n}$, whenever $n \in \mathbb{N}$. Show that $\{x \in \mathbb{R} : f(x) = \infty\}$ is Lebesgue measurable.
- 6. Let f_n , f be real valued measurable functions on \mathbb{R} . Let $E = \{x \in \mathbb{R} : \lim f_n(x) = f(x)\}$. Show that E is Lebesgue measurable.
- 7. Let (X, \mathcal{A}) be a measurable space and let $f : X \to \mathbb{R}$ be \mathcal{A} -measurable. For each $x \in X$, let $g(x) = \begin{cases} f(x) & \text{if } |f(x)| \le 5, \\ 0 & \text{if } |f(x)| > 5. \end{cases}$ Show that $g : X \to \mathbb{R}$ is \mathcal{A} -measurable.
- 8. Let (X, \mathcal{A}) be a measurable space and let $f : X \to \mathbb{R}$ be \mathcal{A} -measurable. For each $x \in X$, let $g(x) = \begin{cases} 0 & \text{if } f(x) \in \mathbb{Q}, \\ 1 & \text{if } f(x) \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$ Show that $g : X \to \mathbb{R}$ is \mathcal{A} -measurable.
- 9. Let (X, \mathcal{A}) be a measurable space and let $f : X \to \mathbb{R}$ be \mathcal{A} -measurable. For each $x \in X$, let $g(x) = \begin{cases} -2 & \text{if } f(x) < -2, \\ f(x) & \text{if } -2 \leq f(x) \leq 3, \\ 3 & \text{if } f(x) > 3. \end{cases}$ Show that $g : X \to \mathbb{R}$ is \mathcal{A} -measurable.
- 10. Let $f:[0, 1] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } 0 < x \le 1, \\ 0 & \text{if } x = 0. \end{cases}$ Find the Lebesgue measure of the set $\{x \in \mathbb{R} : f(x) \ge 0\}$.
- 11. Let (X, \mathcal{A}) be a measurable space and let $f : X \to \mathbb{R}$ be \mathcal{A} -measurable. If $g : \mathbb{R} \to \mathbb{R}$ is continuous, then show that $g \circ f$ is \mathcal{A} -measurable.

- 12. Let (X, \mathcal{A}) be a measurable space and let $f : X \to \mathbb{R}$, $g : X \to \mathbb{R}$ be \mathcal{A} -measurable. If G is an open subset of \mathbb{R}^2 , then show that $\{x \in X : (f(x), g(x)) \in G\}$ is \mathcal{A} -measurable.
- 13. If $f : \mathbb{R} \to \mathbb{R}$ is continuous *m*-a.e. on \mathbb{R} , then show that *f* is Lebesgue measurable.
- 14. If $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function, then show that $f' : \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable.
- 15. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be such that f(x, .) and f(., y) are continuous then f is Lebesgue measurable.
- 16. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be such that f(x, .) is measurable and f(., y) is continuous. Show that f is Lebesgue measurable.
- 17. Let $f, g: (X, \mathcal{A}) \to \mathbb{R}$. Define $\varphi(x) = (f(x), g(x))$. Then show that f and g are \mathcal{A} -measurable if and only if φ is \mathcal{A} -measurable.
- 18. Let (X, \mathcal{A}, μ) be a measure space with $\mu(X) < \infty$ and let $f : X \to \mathbb{R}$ be measurable. Let $A_n = \{x \in X : |f(x)| > n\}$. Show that A_n is \mathcal{A} -measurable and $\lim \mu(A_n) = 0$.
- 19. Let $f: X \to \overline{\mathbb{R}}$ be an almost finite measurable function on a finite measure space (X, S, μ) . Let $A_n = \{x \in X : |f(x)| > n\}$. Show that $\lim \mu(A_n) = 0$.
- 20. Let $f : [a, b] \to \mathbb{R}$ be Lebesgue measurable. Let $N = \{x \in [a, b] : f(x) = 0\}$. Show that $g = \chi_N + \frac{1}{f}\chi_{N^c}$ is Lebesgue measurable.
- 21. Let $f : \mathbb{R} \to \mathbb{R}$. Suppose for each $\epsilon > 0$ there exists an open set O such that $m(O) < \epsilon$ and f is constant on $\mathbb{R} \setminus O$. Show that f is Lebesgue measurable.
- 22. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous one-one and onto map. Then show that f sends Borel sets onto Borel sets.

23. Let \mathbb{Q} denotes set of rationals. Let $f, g : \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x, y) = \begin{cases} 1 & \text{if } x + y \in \mathbb{Q}, \\ 0 & \text{otherwise.} \end{cases}$ and $g(x, y) = \begin{cases} 1 & \text{if } \frac{x}{y} \in \mathbb{Q}, \\ 0 & \text{otherwise.} \end{cases}$ Show that f and g are Lebesgue measurable.

- 24. Let $f : \mathbb{R} \to \mathbb{R}$ be Lebesgue measurable. Show that $\{x \in \mathbb{R} : f \text{ is continuous at } x \}$ is Lebesgue measurable.
- 25. Let C be the Cantor's ternary set. Define $f: [0,1] \to \mathbb{R}$ by $f(x) = \begin{cases} \frac{1}{x} & \text{if } x \in C \setminus \{0\}, \\ 0 & \text{otherwise.} \end{cases}$ Show that f is Lebesgue measurable. By letting C has a non-Borel measurable subset, construct a Lebesgue measurable function which is not Borel measurable.
- 26. Let $f : [a, b] \to \mathbb{R}$ be a continuous function and E be Lebesgue measurable $E \subset [a, b]$. Show that m(E) = 0, implies m(f(E)) = 0 if and only if for every Lebesgue measurable subset $A \subset [a, b]$ the set f(A) is Lebesgue measurable.
- 27. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \sup\{|x+y|: y \in [0,1]\}$. Show that f is Borel measurable.
- 28. Let $f: (X, S, \mu) \to \mathbb{R}$ be measurable and $\mathcal{B}(\mathbb{R})$ denotes the Borel sigma algebra on \mathbb{R} . Define a set function $\mu_f: \mathcal{B}(\mathbb{R}) \to [0, \infty]$ by $\mu_f(B) = \mu(f^{-1}(B))$. Show that μ_f is a measure on $\mathcal{B}(\mathbb{R})$.

- 29. If $f : \mathbb{R} \to \mathbb{R}$ is a bounded continuous function, then show that the function g defined by $g(x) = \inf\{|f(t)|: x < t < x + 1\}$ is Lebesgue measurable. Does the conclusion hold if f is bounded Lebesgure measurable function?
- 30. Let $E \subset \mathbb{R}$ with $m(E) < \infty$. Let $f_n : E \to \overline{\mathbb{R}}$ be sequence of Lebesgue measurable functions such that for each $x \in X$, there exists $M_x > 0$ with $|f_n(x)| \le M_x < \infty$, $\forall n \in \mathbb{N}$. Then for each $\epsilon > 0$, there exists a compact set $K \subset E$ such that f_n is uniformly bounded on K, where $m(E \smallsetminus K) < \epsilon$.
- 31. Let (X, S, μ) be a finite measure space and $f: X \to \overline{\mathbb{R}}$ be an almost finite S-measurable function. show that for each $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $\mu\{x \in X : |f(x)| > n_0\} < \epsilon$.
- 32. Let $f : (\mathbb{R}, M, m) \to [0, \infty]$ be such that for each $\epsilon > 0$ there exists a Lebesgue measurable set $E \subset \mathbb{R}$ with $m(E) < \epsilon$ and f is continuous on $\mathbb{R} \setminus E$. Show that f is a Lebesgue mesurable function.
- 33. Let $E \subset \mathbb{R}$ be Lebesgue measurable and $m(E) = \infty$. Define a function $f : \mathbb{R} \to \overline{\mathbb{R}}$ by $f(x) = m(E \cap (-\infty, x))$. Show that f is a Borel measurable function.
- 34. Let $g: [0,1] \to [0,2]$ be a bijection with m(g(C)) = 1, where C is the Cantor set. Construct a Lebesgue measurable function f on [0,1] such that $f \circ g^{-1}$ is not Lebesgue measurable.