MA550: Measure Theory

(Assignment 3: Measurable functions)
January - April, 2024

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous m-a.e. on \mathbb{R}, then there must exist a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f=g m$-a.e. on \mathbb{R}.
(b) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and if $g: \mathbb{R} \rightarrow \mathbb{R}$ is such that $f=g m$-a.e. on \mathbb{R}, then g must be continuous m-a.e. on \mathbb{R}.
(c) If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous such that $f=g m$-a.e. on \mathbb{R}, then it is necessary that $f(x)=g(x)$ for all $x \in \mathbb{R}$.
(d) An almost everywhere vanishing Lebesgue measurable function need not be continuous.
(e) There exists a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f=\chi_{[0,1]} m$-a.e. on \mathbb{R}.
(f) Let $f(x)=\frac{1}{x}$ if $x \neq 0$ and $f(0)=1$. Then f is Borel measurable on \mathbb{R}.
(g) For $n \in \mathbb{N}$, define $f_{n}=\chi_{(n, n+1)}$. Does there exist a measurable set E in \mathbb{R} with $m(E)=\infty$ such that f_{n} converges to 0 uniformly on E ?
(h) Let $f, g: \mathbb{R} \rightarrow[0, \infty)$ be Lebesgue measurable such that $m\{x \in \mathbb{R}: f g \neq 0\}=0$. Does it imply that $\max \{f, g\}=f+g$?
(i) Let supp $h=\{x \in \mathbb{R}: h(x) \neq 0\}$. Suppose $f, g: \mathbb{R} \rightarrow[0, \infty)$ are such that $\operatorname{supp} f \cap \operatorname{supp} g=$ \emptyset. Does it imply that $\max \{f, g\}=f+g$?
2. If (X, \mathcal{A}) is a measurable space and $A \subset X$, then show that $\chi_{A}: X \rightarrow \mathbb{R}$ is \mathcal{A}-measurable iff A is \mathcal{A}-measurable.
3. If (X, \mathcal{A}) is a measurable space, then show that $f: X \rightarrow[-\infty,+\infty]$ is \mathcal{A}-measurable iff $\{x \in X: f(x)>r\} \in \mathcal{A}$ for each $r \in \mathbb{Q}$.
4. Let D be a dense subset of \mathbb{R}. Show that $f: \mathbb{R} \rightarrow \overline{\mathbb{R}}$ is a Lebesgue measurable function if and only if $\{x \in \mathbb{R}: f(x)>r\}$ is a Lebesgue measurable set for each $r \in D$.
5. Let $f: \mathbb{R} \rightarrow[0, \infty]$ be such that $m^{*}\left(\left\{x \in \mathbb{R}: f(x) \geq 2^{n}\right\}\right)<\frac{1}{2^{n}}$, whenever $n \in \mathbb{N}$. Show that $\{x \in \mathbb{R}: f(x)=\infty\}$ is Lebesgue measurable.
6. Let f_{n}, f be real valued measurable functions on \mathbb{R}. Let $E=\left\{x \in \mathbb{R}: \lim f_{n}(x)=f(x)\right\}$. Show that E is Lebesgue measurable.
7. Let (X, \mathcal{A}) be a measurable space and let $f: X \rightarrow \mathbb{R}$ be \mathcal{A}-measurable. For each $x \in X$, let $g(x)=\left\{\begin{array}{cc}f(x) & \text { if }|f(x)| \leq 5, \\ 0 & \text { if }|f(x)|>5 .\end{array}\right.$ Show that $g: X \rightarrow \mathbb{R}$ is \mathcal{A}-measurable.
8. Let (X, \mathcal{A}) be a measurable space and let $f: X \rightarrow \mathbb{R}$ be \mathcal{A}-measurable. For each $x \in X$, let $g(x)=\left\{\begin{array}{ll}0 & \text { if } f(x) \in \mathbb{Q}, \\ 1 & \text { if } f(x) \in \mathbb{R} \backslash \mathbb{Q} .\end{array}\right.$ Show that $g: X \rightarrow \mathbb{R}$ is \mathcal{A}-measurable.
9. Let (X, \mathcal{A}) be a measurable space and let $f: X \rightarrow \mathbb{R}$ be \mathcal{A}-measurable. For each $x \in X$, let $g(x)=\left\{\begin{array}{cl}-2 & \text { if } f(x)<-2, \\ f(x) & \text { if }-2 \leq f(x) \leq 3, \\ 3 & \text { if } f(x)>3 .\end{array}\right.$ Show that $g: X \rightarrow \mathbb{R}$ is \mathcal{A}-measurable.
10. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by $f(x)= \begin{cases}x \sin \frac{1}{x} & \text { if } 0<x \leq 1, \\ 0 & \text { if } x=0 .\end{cases}$ Find the Lebesgue measure of the set $\{x \in \mathbb{R}: f(x) \geq 0\}$.
11. Let (X, \mathcal{A}) be a measurable space and let $f: X \rightarrow \mathbb{R}$ be \mathcal{A}-measurable. If $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then show that $g \circ f$ is \mathcal{A}-measurable.
12. Let (X, \mathcal{A}) be a measurable space and let $f: X \rightarrow \mathbb{R}, g: X \rightarrow \mathbb{R}$ be \mathcal{A}-measurable. If G is an open subset of \mathbb{R}^{2}, then show that $\{x \in X:(f(x), g(x)) \in G\}$ is \mathcal{A}-measurable.
13. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous m-a.e. on \mathbb{R}, then show that f is Lebesgue measurable.
14. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function, then show that $f^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$ is Lebesgue measurable.
15. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that $f(x,$.$) and f(., y)$ are continuous then f is Lebesgue measurable.
16. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that $f(x,$.$) is measurable and f(., y)$ is continuous. Show that f is Lebesgue measurable.
17. Let $f, g:(X, \mathcal{A}) \rightarrow \mathbb{R}$. Define $\varphi(x)=(f(x), g(x))$. Then show that f and g are \mathcal{A}-measurable if and only if φ is \mathcal{A}-measurable.
18. Let (X, \mathcal{A}, μ) be a measure space with $\mu(X)<\infty$ and let $f: X \rightarrow \mathbb{R}$ be measurable. Let $A_{n}=\{x \in X:|f(x)|>n\}$. Show that A_{n} is \mathcal{A}-measurable and $\lim \mu\left(A_{n}\right)=0$.
19. Let $f: X \rightarrow \overline{\mathbb{R}}$ be an almost finite measurable function on a finite measure space (X, S, μ). Let $A_{n}=\{x \in X:|f(x)|>n\}$. Show that $\lim \mu\left(A_{n}\right)=0$.
20. Let $f:[a, b] \rightarrow \mathbb{R}$ be Lebesgue measurable. Let $N=\{x \in[a, b]: f(x)=0\}$. Show that $g=\chi_{N}+\frac{1}{f} \chi_{N^{c}}$ is Lebesgue measurable.
21. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Suppose for each $\epsilon>0$ there exists an open set O such that $m(O)<\epsilon$ and f is constant on $\mathbb{R} \backslash O$. Show that f is Lebesgue measurable.
22. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous one-one and onto map. Then show that f sends Borel sets onto Borel sets.
23. Let \mathbb{Q} denotes set of rationals. Let $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)= \begin{cases}1 & \text { if } x+y \in \mathbb{Q} \text {, } \\ 0 & \text { otherwise. }\end{cases}$ and $g(x, y)= \begin{cases}1 & \text { if } \frac{x}{y} \in \mathbb{Q}, \\ 0 & \text { otherwise } .\end{cases}$ Show that f and g are Lebesgue measurable.
24. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be Lebesgue measurable. Show that $\{x \in \mathbb{R}: f$ is continuous at x$\}$ is Lebesgue measurable.
25. Let C be the Cantor's ternary set. Define $f:[0,1] \rightarrow \mathbb{R}$ by $f(x)= \begin{cases}\frac{1}{x} & \text { if } x \in C \backslash\{0\}, \\ 0 & \text { otherwise. }\end{cases}$ Show that f is Lebesgue measurable. By letting C has a non-Borel measurable subset, construct a Lebesgue measurable function which is not Borel measurable.
26. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function and E be Lebesgue measurable $E \subset[a, b]$. Show that $m(E)=0$, implies $m(f(E))=0$ if and only if for every Lebesgue measurable subset $A \subset[a, b]$ the set $f(A)$ is Lebesgue measurable.
27. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\sup \{|x+y|: y \in[0,1]\}$. Show that f is Borel measurable.
28. Let $f:(X, S, \mu) \rightarrow \mathbb{R}$ be measurable and $\mathcal{B}(\mathbb{R})$ denotes the Borel sigma algebra on \mathbb{R}. Define a set function $\mu_{f}: \mathcal{B}(\mathbb{R}) \rightarrow[0, \infty]$ by $\mu_{f}(B)=\mu\left(f^{-1}(B)\right)$. Show that μ_{f} is a measure on $\mathcal{B}(\mathbb{R})$.
29. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a bounded continuous function, then show that the function g defined by $g(x)=\inf \{|f(t)|: x<t<x+1\}$ is Lebesgue measurable. Does the conclusion hold if f is bounded Lebesgure measurable function?
30. Let $E \subset \mathbb{R}$ with $m(E)<\infty$. Let $f_{n}: E \rightarrow \overline{\mathbb{R}}$ be sequence of Lebesgue measurable functions such that for each $x \in X$, there exists $M_{x}>0$ with $\left|f_{n}(x)\right| \leq M_{x}<\infty, \forall n \in \mathbb{N}$. Then for each $\epsilon>0$, there exists a compact set $K \subset E$ such that f_{n} is uniformly bounded on K, where $m(E \backslash K)<\epsilon$.
31. Let (X, S, μ) be a finite measure space and $f: X \rightarrow \overline{\mathbb{R}}$ be an almost finite S-measurable function. show that for each $\epsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that $\mu\left\{x \in X:|f(x)|>n_{0}\right\}<\epsilon$.
32. Let $f:(\mathbb{R}, M, m) \rightarrow[0, \infty]$ be such that for each $\epsilon>0$ there exists a Lebesgue measurable set $E \subset \mathbb{R}$ with $m(E)<\epsilon$ and f is continuous on $\mathbb{R} \backslash E$. Show that f is a Lebesgue mesurable function.
33. Let $E \subset \mathbb{R}$ be Lebesgue measurable and $m(E)=\infty$. Define a function $f: \mathbb{R} \rightarrow \overline{\mathbb{R}}$ by $f(x)=m(E \cap(-\infty, x))$. Show that f is a Borel measurable function.
34. Let $g:[0,1] \rightarrow[0,2]$ be a bijection with $m(g(C))=1$, where C is the Cantor set. Construct a Lebesgue measurable function f on $[0,1]$ such that $f \circ g^{-1}$ is not Lebesgue measurable.
