MA549: Topology

Assignment 4: Connected spaces July - November, 2023

- 1. State TRUE or FALSE with justification for each of the following statements.
 - (a) It is possible that \mathbb{R}^2 can be written as countable union of connected paths.
 - (b) The cardinality of set of all the polynomials on \mathbb{R} such that complement of their zero set are connected is countable.
 - (c) There exists a non-empty open and connected set $A \subset \mathbb{R}^n$ such that every real valued function on A is continuous.
 - (d) If a metric space X is path connected, then there exists a continuous function $f : [0, 1] \to X$ which is onto.
 - (e) There exists a discontinuous function $f : \mathbb{R} \to \mathbb{R}$ such that the graph G_f is connected in \mathbb{R}^2 but $\operatorname{int}(\overline{G}_f)$ is non-empty in \mathbb{R}^2 .
 - (f) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^3 \in \mathbb{R} \setminus \mathbb{Q}\}$ is a disconnected subset of \mathbb{R}^2 (with the usual topology).
 - (g) If a topological space X has only finitely many components, then each component of X must be open in X.
 - (h) If τ_l denotes the lower limit topology on \mathbb{R} , then the topological space (\mathbb{R}, τ_l) is totally disconnected.
 - (i) \mathbb{R} with the cofinite topology is a locally connected space.
- 2. Show that a topological space X is connected iff for every $x, y \in X$ with $x \neq y$, there exists a connected subspace of X containing both x and y.
- 3. Prove that a topological space X is connected iff every nonempty proper subset of X has a nonempty boundary.
- 4. Let C be a connected subspace of a topological space X and let $A \subset X$ such that $C \cap A \neq \emptyset$ and $C \cap (X \setminus A) \neq \emptyset$. Prove that $C \cap \partial A \neq \emptyset$.
- 5. Consider the topology τ on \mathbb{R} having $\{(a, b) : a, b \in \mathbb{R}, a < b\} \cup \{(a, b) \cap \mathbb{Q} : a, b \in \mathbb{R}, a < b\}$ as a basis. Show that the topological space (\mathbb{R}, τ) is connected.
- 6. Show that $\tau = \{G \subset \mathbb{R} : \mathbb{R} \setminus G \text{ is a compact set in } (\mathbb{R}, \tau_u)\} \cup \{\emptyset\}$ is a topology on \mathbb{R} , where τ_u is the usual topology on \mathbb{R} . Examine whether the topological space (\mathbb{R}, τ) is (a) compact (b) connected.
- 7. Let A and B be nonempty closed (or, open) subsets of a topological space such that both $A \cup B$ and $A \cap B$ are connected. Show that A and B are also connected.
- 8. If A and B are connected subsets of a topological space such that $A \cap \overline{B} \neq \emptyset$, then prove that $A \cup B$ is connected.
- 9. If X, Y are connected spaces and if $A \subsetneq X$, $B \subsetneq Y$, then show that $(X \times Y) \setminus (A \times B)$ is connected.

- 10. Let $\{A_n\}_{n=1}^{\infty}$ be a sequence of connected subspaces of a topological space X such that $A_n \cap A_{n+1} \neq \emptyset$ for all $n \in \mathbb{N}$. Show that $\bigcup_{n=1}^{\infty} A_n$ is connected.
- 11. If $\{A\} \cup \{A_{\alpha} : \alpha \in \Lambda\}$ is a class of connected subsets of a topological space such that $A \cap A_{\alpha} \neq \emptyset$ for all $\alpha \in \Lambda$, then show that $A \cup \left(\bigcup_{\alpha \in \Lambda} A_{\alpha}\right)$ is connected.
- 12. Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be a class of connected subsets of a topological space such that $A_{\alpha} \cap A_{\beta} \neq \emptyset$ for all $\alpha, \beta \in \Lambda$ with $\alpha \neq \beta$. Prove that $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is connected.
- 13. Let $\{A_n\}_{n=1}^{\infty}$ be a decreasing sequence of nonempty compact connected sets in a Hausdorff space. Prove that $\bigcap_{n=1}^{\infty} A_n$ is nonempty, compact and connected.
- 14. Let X be a connected space and let there exist a non-constant continuous map from X to \mathbb{R} (with the usual topology). Show that X is uncountable.
- 15. Prove that every connected T_3 -space containing at least two points must be uncountable.
- 16. Let X be a connected space and let τ_l be the lower limit topology on \mathbb{R} . Prove that every continuous map from X to (\mathbb{R}, τ_l) is a constant map. (Hence, in particular, every continuous map from (\mathbb{R}, τ_u) to (\mathbb{R}, τ_l) is a constant map, where τ_u denotes the usual topology on \mathbb{R} .)
- 17. For each $m, n \in \mathbb{N}$, let $B_{m,n} = \{mk + n : k \in \mathbb{Z}\} \cap \mathbb{N}$. Show that
 - (a) $\{B_{m,n}: m, n \in \mathbb{N}, \text{ g.c.d.}(m,n) = 1\}$ is a basis for some topology τ on \mathbb{N} .
 - (b) for each prime $p \in \mathbb{N}$, $\{pk : k \in \mathbb{N}\}$ is a closed set in (\mathbb{N}, τ) and hence deduce that there exist infinitely many prime numbers.
 - (c) (\mathbb{N}, τ) is connected, Hausdorff but not compact.
 - (d) if P is the set of all primes, then $P^0 = \emptyset$.
- 18. Consider \mathbb{R}^2 with the usual topology. If A is a countable subset of \mathbb{R}^2 , then show that $\mathbb{R}^2 \setminus A$ is path connected.
- 19. Prove that every open connected subspace of \mathbb{R}^2 (with the usual topology) is path connected.