MA549: Topology

(Assignment 1: Topological spaces and basis) July - November, 2023

- 1. List all possible topologies on the set $\{a, b\}$ and also on the set $\{a, b, c\}$.
- 2. Let X be a set with exactly 4 elements. Does there exist a topology τ on X such that there are precisely 14 open sets in the topological space (X, τ) ? Justify.
- 3. Examine whether τ is a topology on X, where
 - (a) $X = \mathbb{R}$ and $\tau = \{(a, \infty) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}.$
 - (b) $X = \mathbb{R}$ and $\tau = \{[a, \infty) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}.$
 - (c) $X = \mathbb{R}$ and $\tau = \{(a, \infty) : a \in \mathbb{Q}\} \cup \{\emptyset, \mathbb{R}\}.$
 - (d) $X = \mathbb{R}$ and $\tau = \{[-a, a) : a \in \mathbb{R}, a > 0\} \cup \{\emptyset, \mathbb{R}\}.$
 - (e) $X = \mathbb{N}$ and $\tau = \{\{n, n+1, n+2, ...\} : n \in \mathbb{N}\} \cup \{\emptyset\}.$
 - (f) $X = \mathbb{R}$ and $\tau = \{G \subset \mathbb{R} : \mathbb{Q} \not\subset G\} \cup \{\mathbb{R}\}.$
 - (g) $X = \mathbb{R}$ and $\tau = \{G \subset \mathbb{R} : G \subset \mathbb{Q} \text{ or } \mathbb{Q} \subset G\}.$ (h) X = [0, 1] and $\tau = \{G \subset [0, 1] : GG \subset G\}.$
 - (For each $A \subset [0, 1]$, define $AA = \{xy : x, y \in A\}$.)
 - (i) X is an infinite set and $\tau = \{G \subset X : X \setminus G \text{ is infinite or } \emptyset\}.$
 - (j) X is a nonempty set, $x_0 \in X$ and $\tau = \{G \subset X : X \setminus G \text{ is finite or } x_0 \in X \setminus G\}.$
 - (k) X is an uncountable set and $\tau = \{G \subset X : G \text{ is countable or } X \setminus G \text{ is countable} \}.$
- 4. Let $\tau = \{G_k : k \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}^2\}$, where for each $k \in \mathbb{R}$, $G_k = \{(x, y) \in \mathbb{R}^2 : x > y + k\}$. Prove that τ is a topology on \mathbb{R}^2 . Is τ a topology on \mathbb{R}^2 if ' $k \in \mathbb{R}$ ' is replaced by (a) ' $k \in \mathbb{N}$ '? (b) ' $k \in \mathbb{Q}$ '? Justify.
- 5. Let X, Y be nonempty sets and let $f: X \to Y$.
 - (a) If \mathfrak{J}' is a topology on Y, then show that $\mathfrak{J} = \{f^{-1}(H) : H \in \mathfrak{J}'\}$ is a topology on X.
 - (b) If τ is a topology on X and if f is one-one and onto, then show that $\tau' = \{f(G) : G \in \tau\}$ is a topology on Y.

Show also that both the conditions one-one and onto on f is, in general, necessary.

6. Let \mathcal{X} be the class of all (proper) prime ideals of a commutative ring R with unity and for each $E \subset R$, let $\mathcal{V}(E) = \{P \in \mathcal{X} : E \subset P\}$. Prove that $\tau = \{\mathcal{X} \setminus \mathcal{V}(E) : E \subset R\}$ is a topology on \mathcal{X} .

(τ is called the Zariski topology on \mathcal{X} and the topological space (\mathcal{X}, τ) is called the prime spectrum of R, denoted by $\operatorname{Spec}(R)$.)

- 7. Let τ_f and τ_c denote respectively the cofinite and the cocountable topologies on a nonempty set X. Find a necessary and sufficient condition on X such that $\tau_f = \tau_c$.
- 8. Let (X, τ) be a topological space in which every singleton subset of X is open. Prove that τ is the discrete topology on X.
- 9. Let τ be a topology on an infinite set X such that every infinite subset of X is open in (X, τ) . Show that τ is the discrete topology on X.

- 10. Let τ be a topology on an infinite set X such that every infinite subset of X is closed in (X, τ) . Prove that τ is the discrete topology on X.
- 11. Let τ and τ' be topologies on \mathbb{R} such that every countable subset of \mathbb{R} is open in (\mathbb{R}, τ) and every uncountable subset of \mathbb{R} is open in (\mathbb{R}, τ') . Determine (with justication) which of the following is true.
 - (a) τ is strictly finer than τ' .
 - (b) τ' is strictly finer than τ .
 - (c) τ and τ' are not comparable.
 - (d) $\tau = \tau'$.
- 12. Prove that on a finite set with exactly n elements there are at most $2^{(2^n-2)}$ distinct topologies. (The problem of determining the exact number of topologies on a finite set is still open. However, in some particular cases the results are known. For example, if k(n) denotes the number of distinct topologies on a set with exactly n elements, then it is already known that k(4) = 355, k(5) = 6942, k(6) = 209527, k(7) = 9535241.)
- 13. Prove that uncountably many distinct topologies can be defined on any infinite set.
- 14. Let X be a nonempty set and let $\lambda > 0$. Consider the metric d on X defined by $d(x, y) = \begin{cases} \lambda & \text{if } x \neq y, \\ 0 & \text{if } x = y \ (x, y \in X). \end{cases}$ Find the topology on X induced by d.
- 15. Let d be a metric on a nonempty set X and let $\lambda > 0$. Consider the metrics d_1 , d_2 and d_3 on X defined by $d_1(x, y) = \lambda d(x, y)$, $d_2(x, y) = \min\{1, d(x, y)\}$ and $d_3(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ for all $x, y \in X$. Prove that d, d_1 , d_2 and d_3 induce the same topology on X.
- 16. Let d be a metric on a nonempty set X and let τ_d be the topology on X induced by d. Prove that every finite subset of X is closed in (X, τ_d) . Without using this fact, show also that every finite subset of \mathbb{R} is closed in \mathbb{R} with the usual topology.
- 17. Let X be a topological space. If A is an open subset of X and B is a closed subset of X, then prove that $A \setminus B$ is an open subset of X and $B \setminus A$ is a closed subset of X.
- 18. Let \mathcal{X} be the class of all (proper) prime ideals of a commutative ring R with unity. Consider the Zariski topology $\tau = {\mathcal{X} \setminus \mathcal{V}(E) : E \subset R}$ on \mathcal{X} , where $\mathcal{V}(E) = {P \in \mathcal{X} : E \subset P}$ for each $E \subset R$. If $P \in \mathcal{X}$, then show that $\{P\}$ is a closed set in the topological space (\mathcal{X}, τ) iff P is a maximal ideal of R.
- 19. Let $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be a class of closed subsets of a topological space X. Assume that for each $x \in X$, there exists an open subset G_x of X containing x such that $\{\alpha \in \Lambda : G_x \cap A_\alpha \neq \emptyset\}$ is a finite set. Show that $\bigcup_{\alpha \in \Lambda} A_\alpha$ is closed in X.
- 20. Let G be a nonempty open subset of \mathbb{R} (with the usual topology) such that $x y \in G$ for all $x, y \in G$. Show that $G = \mathbb{R}$.

(Thus \mathbb{R} is the only open subgroup of the additive group \mathbb{R} with the usual topology.)

- 21. Let F be a nonempty closed subset of \mathbb{R} (with the usual topology) such that $x y \in F$ for all $x, y \in F$. Show that either $F = \mathbb{R}$ or $F = \alpha \mathbb{Z}$ for some $\alpha \in \mathbb{R}$. (This provides the class of all closed subgroups of the additive group \mathbb{R} with the usual topology.)
- 22. Prove that every subgroup of the group $(\mathbb{R}, +)$ is either cyclic (and hence closed in (\mathbb{R}, τ_u)) or dense in (\mathbb{R}, τ_u) .
- 23. Consider the topology $\tau = \{G \subset \mathbb{R} : \mathbb{R} \setminus G \text{ is finite or } 2 \notin G\}$ on \mathbb{R} . If τ_u is the usual topology on \mathbb{R} , examine whether $\tau \cup \tau_u$ is a topology on \mathbb{R} .
- 24. State TRUE or FALSE with justification for each of the following statements.(a) There exists a topological space with exactly 100 (distinct) open sets.
 - (b) If $\{\tau_n\}_{n=1}^{\infty}$ is an ascending chain of topologies on a nonempty set X, then $\bigcup_{n=1}^{\infty} \tau_n$ must be a topology on X.
- 25. Let τ_u be the usual topology on \mathbb{R} . Show that $\tau_u|_{\mathbb{N}}$ is the discrete topology on \mathbb{N} but that $\tau_u|_{\mathbb{Q}}$ is not the discrete topology on \mathbb{Q} .
- 26. Consider \mathbb{R} with the usual topology. Find the relative topology on $\{\frac{1}{n} : n \in \mathbb{N}\}$.
- 27. Is it possible to define a topology τ on \mathbb{R} such that τ is not the discrete topology on \mathbb{R} and the relative topology on [0, 1] induced by τ is the discrete topology on [0, 1]?
- 28. Let τ_l denote the lower limit topology on \mathbb{R} . Examine whether the set $\{x \in \mathbb{Q} : x^2 > 5\}$ is closed in the topological space $(\mathbb{Q}, \tau_l|_{\mathbb{Q}})$.
- 29. Let (X, τ) be a topological space and let $A \neq \emptyset \subset X$. Prove that $\tau' = \{G \cup (H \cap A) : G, H \in \tau\}$ is a topology on X such that A is open in the topological space (X, τ') and $\tau|_A = \tau'|_A$.
- 30. Let (X, τ) be a topological space such that for each nonempty finite subset A of X (or, for each subset A of X containing exactly two elements), $\tau|_A$ is the indiscrete topology on A. Is it necessary that τ is the indiscrete topology on X?
- 31. Let F be a closed subspace of a topological space X and let G be an open set in F. If H is an open set in X containing G, then prove that $G \cup (H \setminus F)$ is open in X.
- 32. Let Y and Z be subspaces of a topological space X and let $A \subset Y \cap Z$. If A is open in both Y and Z, then show that A is open in $Y \cup Z$.
- 33. Let Y be a nonempty subset of a topological space X and let Z be a nonempty open subset of $X \setminus Y$. If $A \subset Z$ such that A is open in $Y \cup Z$, then show that A is open in X.
- 34. Let X be a topological space and $A \subset X$. Show that A is closed in X iff for every $x \in \overline{A}$, there exists an open set G in X containing x such that $G \cap A$ is closed in G.
- 35. Let X be a topological space and $A \subset X$. If for each $a \in A$, there exists an open set G in X containing a such that $G \cap A$ is closed in G, then show that there exist an open set V in X and a closed set F in X such that $A = V \cap F$.

- 36. Consider the subspace $(X, \tau_u|_X)$ of the topological space (\mathbb{R}, τ_u) , where $X = \{m+n\pi : m, n \in \mathbb{Z}\}$ and τ_u is the usual topology on \mathbb{R} . Examine whether $\{0\}$ is an open set in $(X, \tau_u|_X)$.
- 37. Let (X, d) be a metric space and let $Y \neq \emptyset \subset X$. If ρ is the metric on Y induced by d (*i.e.* $\rho = d|_{Y \times Y}$), τ_d is the topology on X induced by d and τ_{ρ} is the topology on Y induced by ρ , then show that $\tau_{\rho} = \tau_d|_Y$.
- 38. Consider \mathbb{R} with the usual topology and let $x \in \mathbb{R}$. Find the closure of the set $\{x + r : r \in \mathbb{Q}\}$.
- 39. Consider \mathbb{R} with the lower limit topology. Does there exist a subset A of \mathbb{R} such that $\overline{A} = [0, 1) \cup (1, 2)$? Justify.
- 40. Let X be a topological space and let $A, B \subset X$. Prove that $\overline{A} \setminus \overline{B} \subset \overline{A \setminus B}$, and also that the inclusion can be strict.
- 41. Let τ, τ' be topologies on a nonempty set X. Prove that $\tau \subset \tau'$ iff $\overline{A}^{\tau} \supset \overline{A}^{\tau'}$ for all $A \subset X$. (Hence $\tau = \tau'$ iff $\overline{A}^{\tau} = \overline{A}^{\tau'}$ for all $A \subset X$. However, even if $\tau \subsetneq \tau'$, it can happen that $\overline{A}^{\tau} = \overline{A}^{\tau'}$ for some $A \subset X$.)
- 42. If G is an open set in a topological space X, then show that $\overline{G} = \overline{X \setminus \overline{X \setminus \overline{G}}}$.
- 43. Let A be a subset of a topological space X. Show that $\overline{A} \setminus A$ is closed in X iff there exist a closed set F in X and an open set G in X such that $A = F \cap G$.
- 44. Let G be an open set in a topological space X and let $A \subset X$. Prove that $G \cap A = \emptyset$ iff $G \cap \overline{A} = \emptyset$. Hence, or otherwise, show that if U and V are disjoint open sets in X, then $(\overline{U})^0 \cap (\overline{V})^0 = \emptyset$.
- 45. Prove that a subset G of a topological space X is open in X iff $\overline{G \cap \overline{A}} = \overline{G \cap A}$ for all $A \subset X$.
- 46. Let Y be a closed subspace of a topological space X. Let $A \subset X$ and let H be an open set in Y such that $A \cap Y \subset H$. Prove that $A \cap \overline{Y \setminus H}^X = \emptyset$.
- 47. Let A, B be subsets of a topological space. Show that $(A \setminus B)^0 \subset A^0 \setminus B^0$ and also show that the equality need not occur in the above inclusion.
- 48. Prove that a subset F of a topological space X is closed in X iff $(F \cup A^0)^0 = (F \cup A)^0$ for all $A \subset X$.
- 49. Let Y be a subspace of a topological space X and let $A \subset Y$. Show that $\operatorname{Int}_Y(A) \supset Y \cap \operatorname{Int}_X(A)$ and $\operatorname{Int}_X(A) = \operatorname{Int}_Y(A) \cap \operatorname{Int}_X(Y)$, although in general, $\operatorname{Int}_Y(A) \neq Y \cap \operatorname{Int}_X(A)$.
- 50. For every subset A of a topological space X, show that $(X \setminus A)^0 = X \setminus \overline{A}$. (Other similar 'commutative' relations are true for closure, interior and complement. For example, $X \setminus A^0 = \overline{X \setminus A}$.)
- 51. Let A, B be subsets of a topological space. Prove that $\overline{A} \cap B^0 = \overline{A \cap B} \cap B^0$.

- 52. Let G be an open subset of a topological space. Prove that $G \subset (\overline{G})^0$, and that the inclusion can be strict. Prove, however, that $\overline{G} = \overline{(\overline{G})^0}$.
- 53. If F is a closed set in a topological space, then show that $(\overline{F^0})^0 = F^0$.
- 54. If A is a subset of a topological space, then show that $\overline{A^0} = \overline{(\overline{A^0})^0}$.
- 55. Let A be an open set in a topological space X and let $B \subset X$. Show that $(\overline{A \cap B})^0 = (\overline{A})^0 \cap (\overline{B})^0$.
- 56. If $\tau = \{\{n, n+1, ...\} : n \in \mathbb{N}\} \cup \{\emptyset\}$, then in the topological space (\mathbb{N}, τ) , find $\{4, 13, 28, 37\}'$ and also find all the subsets A of \mathbb{N} for which $A' = \mathbb{N}$.
- 57. If $\tau = \{(a, \infty) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$, then in the topological space (\mathbb{R}, τ) , determine [4, 10)' and \mathbb{Z}' .
- 58. If $\tau = \{G \subset \mathbb{R} : 2 \in G\} \cup \{\emptyset\}$, then determine (with justification) (2,4)' and [2,4]' in the topological space (\mathbb{R}, τ) .
- 59. Let A be a subset of a topological space X such that each subset of A is closed in X. Show that A has no limit point in X.
- 60. If $\tau = \{G \subset \mathbb{R} : \mathbb{R} \setminus G \text{ is finite or } 0 \in \mathbb{R} \setminus G\}$, then determine (with justification) \mathbb{Q}^0 , $\mathbb{R} \setminus \mathbb{Q}$, [0,1]' and $\partial \mathbb{Q}$ in the topological space (\mathbb{R}, τ) .
- 61. Let A be a subset of a topological space. Prove that $\partial A^0 \subset \partial A$ and $\partial \overline{A} \subset \partial A$ and that both these inclusions can be strict.
- 62. Let A be a subset of a topological space. Show that $(A \cap \partial A)^0 = \emptyset$. Is it necessary that $(\partial A)^0 = \emptyset$?
- 63. Consider \mathbb{R} with the usual topology. Does there exist a set $A \subset \mathbb{R}$ such that $\partial A = [0, 1]$? Justify.
- 64. Let A, B be subsets of a topological space X. Prove that $\partial(A \cup B) \subset \partial A \cup \partial B$, and that this inclusion can be strict. Show, however, that if $\overline{A} \cap \overline{B} = \emptyset$, then $\partial(A \cup B) = \partial A \cup \partial B$.
- 65. Let A, B be subsets of a topological space such that $\partial A \cap \partial B = \emptyset$. Prove that $(A \cup B)^0 = A^0 \cup B^0$.
- 66. State TRUE or FALSE with justification for each of the following statements.
 - (a) Every uncountable subset of \mathbb{R} (with the usual topology) has a limit point in \mathbb{R} .
 - (b) If every singleton subset of a topological space X is dense in X, then X must be an indiscrete space.
 - (c) If no proper subset of a topological space X is dense in X, then X must be a discrete space.
 - (d) A nonempty open set in a topological space X cannot be nowhere dense in X.
- 67. Let A be a nonempty subset of a topological space X. Show that A is dense in the subspace \overline{A}^X .
- 68. Let Y be a subspace of a topological space X. If $D \subset Y$ is dense in Y, then prove that D is dense in the subspace \overline{Y}^X .

(Hence, if Y is a dense subspace of a topological space X and if $D \subset Y$ is dense in Y, then D

is dense in X.)

- 69. Let D be a dense set in a topological space X and let $Y \neq \emptyset \subset X$. Show that $D \cap Y$ need not be dense in Y, but if moreover Y is open in X, then $\overline{D \cap Y}^X = \overline{Y}^X$ and hence deduce that $D \cap Y$ is dense in Y.
- 70. Let D_1 and D_2 be dense sets in a topological space X. Show that $D_1 \cap D_2$ need not be dense in X, but if moreover D_1 or D_2 is open in X, then $D_1 \cap D_2$ is dense in X.
- 71. Let F be a closed subset of a topological space X. Prove that F is nowhere dense in X iff $X \setminus F$ is dense in X. Is this result true for an arbitrary subset F of X? Justify.
- 72. Prove that a subset A of a topological space X is nowhere dense in X iff $A \subset X \setminus \overline{A}$.
- 73. Let A be a subset of a topological space X. Prove that the following statements are equivalent.(a) A is nowhere dense in X.
 - (b) $(X \setminus A)^0$ is dense in X.
 - (c) $A \subset \partial \overline{A}$.
- 74. Let Y be a nonempty open set in a topological space X and let $A \subset Y$. If A is nowhere dense in the subspace Y, then show that A is nowhere dense in X.
- 75. Prove that for each $1 \leq m < n$, $A = \{(x_1, ..., x_n) \in \mathbb{R}^n : x_{m+1} = x_{m+2} = \cdots = x_n = 0\}$ is nowhere dense in \mathbb{R}^n with the usual topology.
- 76. Show that for a set A in a topological space X, ∂A need not be nowhere dense in X, but that ∂A is nowhere dense in X if A is either open or closed in X.
- 77. Prove that in a topological space X, every closed nowhere dense set is the boundary of some open set in X.
- 78. Prove that every finite union of nowhere dense sets in a topological space X is nowhere dense in X. Give examples to show that an infinite union of nowhere dense sets in a topological space X can/need not be nowhere dense in X.
- 79. Let X be a topological space and let $x \in X$. If x has a finite local basis in X, then show that x has a local basis in X consisting of precisely one member.
- 80. Let \mathcal{B} be a class of subsets of a nonempty set X. Show that \mathcal{B} is a basis for the discrete topology on X iff $\mathcal{B} \supset \{\{x\} : x \in X\}$.
- 81. Show that $\{(a, b) : a, b \in \mathbb{Q}, a < b\}$ is a basis for the usual topology on \mathbb{R} .
- 82. Show that $\{[a,b) : a, b \in \mathbb{Q}, a < b\}$ is a basis for a topology τ on \mathbb{R} which is strictly coarser than the lower limit topology on \mathbb{R} but strictly finer than the usual topology on \mathbb{R} . Determine the closures of $(0, \sqrt{2})$ and $(\sqrt{2}, 3)$ in the topological space (\mathbb{R}, τ) .
- 83. Examine whether each of the following classes is a basis for some topology on \mathbb{R} . (a) $\{[a,b]: a \in \mathbb{Q}, b \in \mathbb{R} \setminus \mathbb{Q}, a < b\}$

- (b) $\{[a,b]: a, b \in \mathbb{R}, a < b\}$ (c) $\{[a,b]: a, b \in \mathbb{Q}, a < b\}$
- 84. Let τ_u and τ_c denote respectively the usual topology and the cocountable topology on \mathbb{R} . Examine whether $\tau_u \cup \tau_c$ is a basis for some topology on \mathbb{R} .
- 85. Let X be any nonempty set. Prove that $S = \{X \setminus \{x\} : x \in X\}$ is a subbasis for the cofinite topology τ_f on X. Is S a basis for τ_f on X? Is S a basis for some topology on X? Justify.
- 86. For each $(a, b, c) \in \mathbb{R}^3$ with $a^2 + b^2 \neq 0$, let $E(a, b, c) = \{(x, y) \in \mathbb{R}^2 : ax + by + c = 0\}$ and let τ be the topology on \mathbb{R}^2 generated by the class $\{E(a, b, c) : a, b, c \in \mathbb{R}, a^2 + b^2 \neq 0\}$. Examine whether $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ is an open set in the topological space (\mathbb{R}^2, τ) .
- 87. Let τ be the topology on \mathbb{R} having $S = \{\mathbb{R} \setminus \{x\} : x \in \mathbb{R}\} \cup \{\{x\} : x(\neq 2) \in \mathbb{R}\}$ as a subbasis. If A is an infinite subset of \mathbb{R} , then show that $A' \neq \emptyset$ in the topological space (\mathbb{R}, τ) .
- 88. Let $K = \{\frac{1}{n} : n \in \mathbb{N}\}$ and let $\mathcal{B} = \{(a, b) : a, b \in \mathbb{R}, a < b\} \cup \{(a, b) \setminus K : a, b \in \mathbb{R}, a < b\}$. Show that \mathcal{B} is a basis for some topology on \mathbb{R} . (This topology is called the *K*-topology on \mathbb{R} .) Prove that the *K*-topology on \mathbb{R} is strictly finer than the usual topology on \mathbb{R} but that it is not comparable with the lower limit topology on \mathbb{R} .
- 89. Let \mathcal{B} be a basis for a topology τ on a nonempty set X. Prove that a set $D \subset X$ is dense in X iff $D \cap B \neq \emptyset$ for every $B(\neq \emptyset) \in \mathcal{B}$. Does this remain true if \mathcal{B} is merely a subbasis for τ on X? Justify.
- 90. Let τ be the topology on \mathbb{R} having $\{[a,b) : a, b \in \mathbb{R}, a < b\} \cup \{(a,b] : a, b \in \mathbb{R}, a < b\}$ as a subbasis. Examine whether \mathbb{Q} is a dense set in the topological space (\mathbb{R}, τ) .
- 91. Let $\{\tau_{\alpha}\}_{\alpha \in \Lambda}$ be a family of topologies on a nonempty set X. Show that there is a unique smallest topology on X containing all τ_{α} ($\alpha \in \Lambda$) and a unique largest topology on X contained in all τ_{α} ($\alpha \in \Lambda$).
- 92. Consider the topologies $\tau_1 = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{b, c\}, X\}$ on the set $X = \{a, b, c\}$. Find the smallest topology on X containing both τ_1 and τ_2 and the largest topology on X contained in both τ_1 and τ_2 .
- 93. State TRUE or FALSE with justification for each of the following statements.
 - (a) If τ is the topology on \mathbb{R} having $\{(a, b) : a, b \in \mathbb{R}, a < b\} \cup \{(a, b) \setminus K : a, b \in \mathbb{R}, a < b\}$ as a basis, where $K = \{\frac{1}{n} : n \in \mathbb{N}\}$, and if τ_u is the usual topology on \mathbb{R} , then the relative topology on $A = \{x \in \mathbb{R} : x > 0\}$ induced by τ is strictly finer than the relative topology on A induced by τ_u .
 - (b) If a topology τ on \mathbb{R} is strictly finer than both the lower limit topology and the cocountable topology on \mathbb{R} , then τ must be the discrete topology on \mathbb{R} .
 - (c) If \mathcal{B} and \mathcal{B}' are bases for topologies τ and τ' respectively on a nonempty set X, then $\{B \cap B' : B \in \mathcal{B}, B' \in \mathcal{B}'\}$ must be a basis for some topology on X.
 - (d) If τ and τ' are topologies on a nonempty set X, then $\tau \cup \tau'$ must be a basis for some topology on X.
- 94. It is known that if \mathbb{R} is equipped with either the indiscrete topology or the cofinite topology, then the sequence $(\frac{1}{n})_{n=1}^{\infty}$ converges to 1. Mention (with justification) another topology on \mathbb{R}

with respect to which the sequence $(\frac{1}{n})_{n=1}^{\infty}$ converges to 1.

- 95. Consider X = (0, 1] with the relative topology τ induced by the usual topology on \mathbb{R} . Show that the sequence $(\frac{1}{n})_{n=1}^{\infty}$ in X does not converge in the topological space (X, τ) .
- 96. If $\tau = \{(a, \infty) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$, then in the topological space (\mathbb{R}, τ) , prove that the sequence (a) $(n)_{n=1}^{\infty}$ converges to every point of \mathbb{R} .
 - (b) $(-n)_{n=1}^{\infty}$ does not converge.
 - (c) $((-1)^n)_{n=1}^{\infty}$ converges to x iff $x \in (-\infty, -1]$.
- 97. If $\tau = \{G \subset \mathbb{R} : 0 \in G\} \cup \{\emptyset\}$, then determine (with justification) all the convergent sequences and all their limits in the topological space (\mathbb{R}, τ) .
- 98. State TRUE or FALSE with justification for each of the following statements. (a) The sequence $\left(\frac{(-1)^n}{n}\right)_{n=1}^{\infty}$ converges in \mathbb{R} with the lower limit topology.

 - (b) There exists a topology τ on \mathbb{R} such that the sequence (1, 2, 3, ...) converges to the unique limit 0 in (\mathbb{R}, τ) .
 - (c) If (X, τ) is a topological space such that every sequence in X converges to every point of X in (X, τ) , then τ must be the indiscrete topology on X.