DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA549: Topology MidSem Instructor: Rajesh Srivastava September 20, 2023 Time duration: 02 hours Maximum Marks: 30

N.B. Answer without proper justification will attract zero mark.

- 1. (a) If (X, τ_X) and (Y, τ_Y) are second countable topological spaces. Does it imply that the product topology on $X \times Y$ is also second countable?
 - (b) Let τ_o be the discrete topology on a nonempty set X. Does there exists a subbasis \mathcal{S} of τ_o such that $\sharp(\mathcal{S}) < \sharp(X)$?
 - (c) Let A be subset of a topological space X. Suppose that the boundary of A is a finite set. What conclusion can be drawn about the cardinality of the set X? $\boxed{1}$
 - (d) Is it possible to find a non-trivial subbasis (that is not equal to a basis) for every topological space?
 - (e) Let τ_l be the lower limit topology on \mathbb{R} . Let $f:(\mathbb{R},\tau_l)\to(\mathbb{R},\tau_u)$ be the map defined by f(x)=-x. What is the set of points of continuity of f?
- 2. Let (X, d) be a separable metric space. Show that for given $\epsilon > 0$ there is a countable set A in X such that $X = \bigcup_{a_i \in A} B_{\epsilon}(a_i)$. What is the least possible cardinality of a basis of the metric topology on X?
- 3. Show that the collection $S = \{[a, \infty), (-\infty, b) : a, b \in \mathbb{R}\}$ is a subbasis for some topology τ on \mathbb{R} , which is finer that the usual topology τ_u on \mathbb{R} .
- 4. Let $X = \{a, b, c, d\}$ and $S = \{\{a, b, c\}, \{b, c, d\}\}$. Find the topology generated by S as a subbasis.
- 5. Let $f:(\mathbb{R}, \tau_l) \to (\mathbb{R}, \tau_u)$ be map such that there exists a closed set A containing f(0). Show that $f^{-1}(A)$ need not be a closed set.
- 6. Let $f: X \to f(X)$ be a continuous map. If D is dense set for X, then show that f(D) is a dense set for f(X).
- 7. Let (X, τ_X) be a topological space, and Y be an arbitrary set with $\sharp(X) = \sharp(Y)$. Find a topology τ_Y on Y such that (X, τ_X) is homeomorphic to (Y, τ_Y) . Does the conclusion hold, in general, if $\sharp(X) < \sharp(Y)$?
- 8. Let X be a topological space, and the map $f_A: X \to \mathbb{R}$ be the characteristic function of the set A in X. Show that f_A is lower semi-continuous if and only if A is open. What is the final conclusion if the boundary of the set A is nowhere dense?
- 9. Let S_1 and S_2 be subbases of two non-homeomorphic topologies on X. Prove/disprove that $S_1 \cup S_2$ is a subbasis for some topology τ which is finer than the smallest topology containing $\tau(\mathcal{B}(S_1))$ and $\tau(\mathcal{B}(S_2))$.