DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA549: Topology Instructor: Rajesh Srivastava Time duration: 03 hours EndSem November 21, 2023 Maximum Marks: 50

N.B. Answer without proper justification will attract zero mark.

1. (a)	We there every continuous function from a topological space X onto topological space Y is a quotient map?	al 1
(b)	Is it possible to extend every continuous function on a topological space X intitis one-point compactification?	to 1
(c)	Whether $\{\frac{1}{n}: n \in \mathbb{N}\}$ is compact with respect to K-topology on \mathbb{R} ?	1
(d)	Whether a non-constant continuous image of compact and connected topologic space X into \mathbb{R} is a closed interval?	al 1
(e)	Let A be a countable dense set in an uncountable topological space X . Does necessarily implies that X is connected?	it 1
(f)	Let $f(z) = \sin z$. We her $\mathbb{C} \setminus f^{-1}\{0\}$ is path connected in \mathbb{C} ?	1
(g)	Does every compact topological space is normal?	1

- Find continuous maps which transfer the torus onto a cylinder, and the cylinder into rectangle [0, 1] × [0, 1].
- 3. Let X be a topological space. Let $\mathcal{F} = \{A \subsetneq X : A \text{ is compact in } X\}$. If $\mathcal{F} = P(X) \smallsetminus \{X\}$, then show that X is compact.
- 4. Let X and Y be two topological spaces. If $f: X \to Y$ be such that $G_f = \{(x, f(x)) : x \in X\}$ is closed. Prove/disprove that f is continuous.
- 5. Construct an example of non-compact metric spaces in which every open cover has Lebesgue number. 3
- 6. Show that Cantor ternary set has no isolated point and totality disconnected. **3**
- 7. Let X be a connected topological space. If there exists a non-constant continuous function $f: X \to [0, 1]$, then show that X is uncountable.
- 8. Let A be a subspace of a topological space X. Let $: A \to X$ be continuous. Show that if graph of f is connected, then A is connected. Does converse hold true? 5
- 9. Let $Gl_n(\mathbb{R})$ denote the topological space of all non-singular $n \times n$ matrices. Find all connected components of $Gl_n(\mathbb{R})$ with respect to subspace topology inherited from the usual topology on \mathbb{R}^{n^2} .

- 10. Let \mathbb{R}_l denote the lower limit topology on \mathbb{R} . Show that $\mathbb{R}_l^2 = \mathbb{R}_l \times \mathbb{R}_l$ is not a Lindelöf space.
- 11. Let X be topological space. If $x_n \in A \subset X$ is such that $x_n \to x$, then $x \in \overline{A}$. Does converse hold true?
- 12. Let X be a Hausdorff space. If $f: X \to X$ is continuous and satisfying $f \circ f = f$, then show that f(X) is closed.
- 13. Let f be a continuous function on [a, b]. Use Urysohn's lemma to deduce that for each $\epsilon > 0$, there exists a continuous function g on \mathbb{R} such that g = f on [a, b] and g = 0 on complement of an open set O containing [a, b].

END