MA 101S (Mathematics I, Calculus)
Assignment 1A
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. Let (z,,) be a convergent sequence of positive real numbers such that lim z,, < 1. Show that

n—oo
lim 2] = 0.
n—oo

. Let (z,,) be a convergent sequence in R with limit ¢ € R and let o € R.

(a) If z, > a for all n € N, then show that ¢ > a.
(b) If £ > «, then show that there exists ng € N such that z,, > « for all n > ny.
(

Note that ¢ can be equal to « in (a).)

For a € R, examine whether lim (o] + [2a] + - - - 4 [na]) exists (in R). Also, find the value

n—0o0
if it exists.

(For each x € R, [z] denotes the greatest integer not exceeding x.)

Let 71 = 6 and x,,,1 = 5 — 2 for all n € N. Examine whether the sequence (z,) is convergent.
Also, find hm xp if (x,) is convergent

. Let (x,) be a sequence of nonzero real numbers. If (z,) does not have any convergent subse-

quence, then show that lim -+ = 0.
n—oo “n

Examine whether the series Z — T s convergent.
n=1"

Let z,, > 0 for all n € N. Show that the series Z x, converges iff the series Z

n=1

1+

Find all z € R for which the series Z % converges.

n=1

If a(# 0) € R, then show that the series ) (—1)"sin(%) is conditionally convergent.

n=1
Let f: R — R be defined by f(x) :{ [i] gig%’\(@

Determine all the points of R where f is continuous.

Let f:[0,1] — R be continuous such that f(0) = f(1). Show that
(a) there exist 1,5 € [0,1] such that f(x;) = f(z2) and x; — 29 =
(b) there exist x1,xs € [0,1] such that f(z1) = f(x2) and 7 — 29 =

(In fact, if n € N, then there exist x1,x9 € [0, 1] such that f(z1) = f(x ) and z; —25 = +. How-
ever, it is not necessary that there exist 21, x5 € [0,1] such that f(z1) = f(x2) and 21 —25 = 2.)

wIH[\Dh—I

Let p be an odd degree polynomial with real coefficients in one real variable. If g : R — R is a
bounded continuous function, then show that there exists zo € R such that p(xg) = g(zo).

(In particular, this shows that

(a) every odd degree polynomial with real coefficients in one real variable has at least one real
Zero.

(b) the equation - Jrlxz = sin3x 4 17 has at least one real root.

(c) the range of every odd degree polynomial with real coefficients in one real variable is R.)
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Does there exist a continuous function from (0, 1] onto R? Justify.

Let f : R — R be differentiable on (=4, 6) for some § > 0 and let f”(0) exist (in R). If f(£) =0
for all n € N, then find f/(0) and f”(0).

For n € N, show that the equation 1 — x + % — %3 +- 4 (—1)"%” = 0 has exactly one real
root if n is odd and has no real root if n is even.

Let f : R — R be differentiable such that f(0) = f(1) = 0 and f’(0) > 0, f(1) > 0. Show that
there exist ¢1, ¢ € (0,1) with ¢; # ¢o such that f'(¢;) = f'(c2) = 0.

Let f:R — R be such that f”(c) exists (in R), where ¢ € R. Show that
i Leth)=2f()+f(e=h) _ ¢n

}ILILI(l) = = f"(c).
Give an example of an f: R — R and a point ¢ € R for which f”(c¢) does not exist (in R) but

the above limit exists (in R).

1 ifx:%forsomeneN,
0 otherwise.

Let f:[—1,1] — R be defined by f(x) = {

1
Show that f is Riemann integrable on [—1,1] and that [ f(z)dz = 0.
1

T

If F(z) = [ f(t)dt for all z € [-1,1], then show that F : [-1,1] — R is differentiable, and in
~1

particular, F'(0) = f(0), although f is not continuous at 0.

b
Let f : [a,b] — R be continuous such that f(z) > 0 for all « € [a,b] and [ f(z)dz = 0. Show
that f(x) = 0 for all « € [a,b]. ’

(The above result need not be true if f is assumed to be only Riemann integrable on [a, b].)

If £ : [0,1] — R is continuous, then show that [( [ f(¢)dt) du = [(x—u)f(u)du forall z € [0, 1].
00 0

Examine whether the integral [ sin(z?)dz is convergent.
0

P~
14+x

Determine all real values of p for which the integral [ dz is convergent.
0

Find the area of the region that is inside the cardioid r = a(1 + cos#) and
(a) inside the circle r = 3a,

(b) outside the circle r = 3a.

Find the length of the curve y = [ Vcos2tdt, 0 < z < T
0



