Assignment 5 (L^{p} - spaces and Product measure)

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) $L^{1}(X, S, \mu)$ has an almost non-zero function for every measure space (X, S, μ).
(b) $L^{\infty}(X, S, \mu)$ contain an almost non-zero function for every measure space (X, S, μ).
(c) If $f:(X, S, \mu) \rightarrow \mathbb{R}$ is bounded almost everywhere. Then f is measurable.
(d) If $1 \leq p<\infty$. Then $L^{\infty}(X, S, \mu) \subset L^{p}(X, S, \mu)$, implies μ is a finite measure.
(e) Let $\mathcal{S}(\mathbb{R})$ be the space of all continuous functions on \mathbb{R} such that $|x|^{\alpha} f(x)$ is bounded, for any $\alpha \in \mathbb{N}$. Then $\mathcal{S}(\mathbb{R})$ is dense $L^{2}(\mathbb{R})$.
(f) Let $1 \leq p<\infty$. If $L^{\infty}(X, S, \mu) \subset L^{p}(X, S, \mu)$. Then μ is a finite measure.
2. Let (X, S, μ) be a measure space and $0<p<1$. Then for $f, g \in L^{+} \cap L^{p}(X, S, \mu)$ show that $\|f+g\|_{p} \geq\|f\|_{p}+\|g\|_{p}$.
3. Let (X, S, μ) be a measure space and $1 \leq p<\infty$. For $f \in L^{p}(X, S, \mu)$ and $\alpha>0$ show that $\mu\{x \in X:|f(x)| \geq \alpha\} \leq\left(\frac{\|f\|_{p}}{\alpha}\right)^{p}$.
4. Let $1 \leq p<\infty f \in L^{p}(\mathbb{R}, M, m)$. Then show that $\|f(x+h)-f(x)\|_{p} \rightarrow 0$ as $|h| \rightarrow 0$.
5. Let (X, S, μ) be a finite measure space and $1 \leq p<q \leq \infty$. For $f \in L^{q}(X, S, \mu)$, show that $\|f\|_{p} \leq(\mu(X))^{\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{q}$. Further deduce that $L^{q}(X, S, \mu)$ is a proper dense subspace of $L^{p}(X, S, \mu)$.
6. Show that the space of all simple functions is dense in $L^{\infty}(X, S, \mu)$.
7. Suppose $f \in L^{\infty}(X, S, \mu)$ is supported on a set of finite measure. Then show that f is in $L^{p}(X, S, \mu)$ for all $p \geq 1$ and $\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}$.
8. Prove that $L^{1}(\mathbb{R}, M, m) \cap L^{p}(\mathbb{R}, M, m)$ is a proper dense subspace of $L^{p}(\mathbb{R}, M, m)$, whenever $1<p<\infty$.
9. Let $1 \leq p, q \leq \infty$ and $p^{-1}+q^{-1}=r^{-1}$. Show that for $f \in L^{p}(X, S, \mu)$ and $g \in L^{q}(X, S, \mu)$ $f g \in L^{1}(X, S, \mu)$ and $\|f g\|_{r} \leq\|f\|_{p}\|g\|_{q}$. (A generalized Holder's inequality.)
10. Let $1 \leq p<q<r \leq \infty$. Then $L^{q}(X, S, \mu) \subset L^{p}(X, S, \mu)+L^{r}(X, S, \mu)$.
11. Let $1 \leq p<q<r \leq \infty$. Show that $L^{p}(X, S, \mu) \cap L^{r}(X, S, \mu) \subset L^{q}(X, S, \mu)$ and $\|f\|_{q} \leq\|f\|_{p}^{\lambda}\|f\|_{r}^{1-\lambda}$, where $\lambda \in(0,1)$ is given by $q^{-1}=\lambda p^{-1}+(1-\lambda) r^{-1}$.
12. Let $1 \leq p<\infty$ and $p^{-1}+q^{-1}=1$. For $f \in L^{p}(X, S, \mu)$, prove that

$$
\|f\|_{p}=\sup \left\{\left|\int_{X} f g d \mu\right|: g \in L^{q}(X, S, \mu) \text { and }\|g\|_{q}=1\right\} .
$$

13. Let (X, S, μ) be a σ-finite measure space. Then show that $\|f\|_{\infty}=\sup _{\|g\|_{1}=1}\left|\int_{X} f g d \mu\right|$.
14. Let $1 \leq p<\infty$ and $f \in L^{+}(X, S, \mu) \cap L^{p}(X, S, \mu)$. Define $f_{n}(x)=\min \{n, f(x)\}$. Then show that f_{n} increases to f point wise a.e. and $\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right|^{p} d \mu=0$.

15 . Let $\mathcal{B}\left(\mathbb{R}^{2}\right)$ be the σ-algebra generated by Borel subsets of \mathbb{R}^{2} (i.e. σ-algebra generated by open subsets of $\left.\mathbb{R}^{2}\right)$. Show that $\mathcal{B}\left(\mathbb{R}^{2}\right)=\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.
16. Let $f:(X, S, \mu) \rightarrow \mathbb{R}$ be measurable. Show that $G_{f}=\{(x, y) \in X \times \mathbb{R}, y=f(x)\} \in S \otimes \mathcal{B}(\mathbb{R})$. If $(X, S, \mu)=(\mathbb{R}, M, m)$, then show that $m \times m\left(G_{f}\right)=0$.
17. Let (X, S, μ) be a σ-finite measure space. Let $f:(X, S, \mu) \rightarrow[0, \infty]$ be measurable. Show that $A_{f}=\{(x, y) \in X \times[0, \infty], y \leq f(x)\} \in S \otimes \mathcal{B}(\mathbb{R})$ and $\mu \times m\left(A_{f}\right)=\int_{X} f(x) d \mu(x)$.
18. Let $f(x, y)=e^{-x y} \sin x$ and $D=[0, \infty) \times[1, \infty)$. Show that $f \chi_{D} \in L^{1}\left(\mathbb{R}^{2}, M \otimes M, m \times m\right)$ and $\int_{0}^{\infty} \int_{1}^{\infty} f(x, y) d y d x=\int_{1}^{\infty} \int_{0}^{\infty} f(x, y) d x d y$.
19. Let $f(x, y)=e^{-x y}-2 e^{-2 x y}$ and $D=[0,1] \times[1, \infty)$. Show that $f \chi_{D} \notin L^{1}\left(\mathbb{R}^{2}, M \otimes M, m \times m\right)$.
20. Let $f \in L^{1}(X, S, \mu)$ and $g \in L^{1}(Y, T, \nu)$. Define $\varphi(x, y)=f(x) g(y)$. Show that φ is measurable and $\varphi \in L^{1}(X \times Y, S \otimes T, \mu \times \nu)$.
21. Let $f \in L^{1}(0, a)$ and define $g(x)=\int_{x}^{a} \frac{f(t)}{t} d m(t)$. Then show that $g \in L^{1}(0, a)$ and compute $\int_{0}^{a} g(x) d m(x)$.
22. Let $X=Y=[0,1], S=T=\mathcal{B}[0,1]$ and $\mu=\nu=m$. Define $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ by

$$
f(x, y)=\left\{\begin{array}{cl}
1 & \text { if } x \in \mathbb{Q} \\
2 y & \text { if } y \in \mathbb{R} \backslash \mathbb{Q} .
\end{array}\right.
$$

Compute $\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x$ and $\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y$. Whether $f \in L^{1}(m \times m)$?
23. Let $\mathbb{D}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$. Show that \mathbb{D} is $M(\mathbb{R}) \otimes M(\mathbb{R})$ - measurable. Compute $m \times m(\mathbb{D})$, using product measure technique.
24. Let (X, S, μ) be a finite measure space and $f: X \rightarrow[1, \infty]$ be a measurable function. Compute $\mu \times m\{(x, y) \in X \times \mathbb{R}: y<f(x)\}$.
25. Let $E, F \in M(\mathbb{R})$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\chi_{E}(x) \chi_{F}(x-y)$. Then show that f is $M(\mathbb{R}) \otimes M(\mathbb{R})$ - measurable and $\int_{\mathbb{R}^{2}} f d(m \times m)=m(E) m(F)$.
26. Let $\mathbb{D}=\left\{(x, y) \in \mathbb{R}^{2}: y \geq x^{2}\right.$ and $\left.y \leq 1\right\}$. Show that \mathbb{D} is $M(\mathbb{R}) \otimes M(\mathbb{R})$ - measurable. Compute $m \times m(\mathbb{D})$, using product measure technique.
27. Let $P(x, y)$ be a polynomial on \mathbb{R}^{2}. Show that the set $G_{P}=\left\{(x, y) \in \mathbb{R}^{2}: P(x, y)=1\right\}$ is $M(\mathbb{R}) \otimes M(\mathbb{R})$ - measurable. Compute $m \times m\left(G_{P}\right)$.
28. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\frac{x^{2}}{1+(x-y)^{2}} \chi_{[-1,1]}(x)$. Then show that f is $M(\mathbb{R}) \otimes M(\mathbb{R})$ - measurable. Compute $\int_{\mathbb{R}^{2}} f d(m \times m)$.

