Assignment 4 (Lebesgue Integration)

1. Whether $L^{1}(X, S, \mu)$ has an almost non-zero function for every (X, S, μ) ?
2. Let $f:(X, S, \mu) \rightarrow[0, \infty]$ be measurable. Define a set function $\nu(E)=\int_{E} f d \mu, E \in S$. Show that ν is a measure on (X, S). Does $\nu(E)=0$ imply $\mu(E)=0$?
3. Let $f \in L^{1}(X, S, \mu)$ and $E_{n}=\{x \in X:|f(x)| \geq n\}$. Show that $\lim _{n \rightarrow \infty} n \mu\left(E_{n}\right)=0$.
4. Let $f:(X, S, \mu) \rightarrow \mathbb{R}$ be measurable. Define a set function $\nu: S \rightarrow \overline{\mathbb{R}}$ by $\nu(E)=\int_{E} f d \mu$, whenever $E \in S$. Show that $\nu(X)$ is finite if and only if $f \in L^{1}(X, S, \mu)$.
5. For $f \in L^{+} \cap L^{1}(\mathbb{R}, M, m)$, define $g(x)=\sum_{n=1}^{\infty} f\left(2^{n} x+\frac{1}{n}\right)$. Show that $g \in L^{1}(\mathbb{R}, M, m)$ and $\int_{\mathbb{R}} g d m=\int_{\mathbb{R}} f d m$.
6. Let $f:(X, S, \mu) \rightarrow[0, \infty]$ be such that $\|f\|_{1}=1$. Show that there exists at leat one $n \in \mathbb{N}$ such that $\mu\{x \in \mathbb{X}:|f(x)|<n\}>0$.
7. Let $f_{n}: X \rightarrow[0, \infty]$ be a sequence of measurable functions and $f_{n} \rightarrow f$ point wise. Suppose there exists $M>0$ such that $\sup _{n \geq 1} \int_{X} f_{n} \leq M$. Show that $f \in L^{1}(X, S, \mu)$.
8. Let $f \in L^{1}(X, S, \mu)$, then show that for each $\epsilon>0$ there exists $\delta>0$ and set $E \in S$ such that $\int_{E}|f| d \mu<\epsilon$, whenever $\mu(E)<\delta$.
9. Let $\mu(\mathbb{R})<\infty$ and $f_{n} \in L^{1}(\mathbb{R}, M, \mu)$ be such that $f_{n} \rightarrow f$ uniformly. Show that $f \in L^{1}(X, S, \mu)$ and $\int_{X} f=\lim \int_{X} f_{n}$.
10. Let $\mu(X)<\infty$ and $f: X \rightarrow[0, \infty]$ be a measurable function. Show that $f \in L^{1}(X, S, \mu)$ if and only if $\sum_{n=0}^{\infty} \mu\{x \in X: f(x) \geq n\}<\infty$.
11. Let $f_{n}: X \rightarrow[0, \infty]$ be a decreasing sequence of measurable functions and $f_{n} \rightarrow f$ point wise. If $f_{1} \in L^{1}(X, S, \mu)$. Then show that $\int_{X} f=\lim \int_{X} f_{n}$.
12. Let $f \in L^{1}(\mathbb{R}, M, m)$ be such that $\int_{I} f=0$, for any open interval $I \subset \mathbb{R}$, then show that $f=0$ a.e. on X.
13. Let $f_{n}, g: X \rightarrow \overline{\mathbb{R}}$ be measurable functions such that $f_{n} \leq g, \forall n \in \mathbb{N}$ and $g \in L^{1}(X, S, \mu)$. Show that $\lim \sup \int_{X} f_{n} \leq \int_{X} \lim \sup f_{n}$.
14. Let $f_{n}: X \rightarrow[0, \infty]$ be a sequence of measurable functions and $f_{n} \rightarrow f$ point wise such that $\int_{X} f=\lim \int_{X} f_{n}<\infty$. Show that $\int_{E} f=\lim \int_{E} f_{n}$, for any $E \in S$.
15. Let $f_{n}, f, g_{n}, g \in L^{1}(X, S, \mu)$ be such that $\left|f_{n}\right| \leq g_{n}, f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ point wise. Show that $\int_{X} g=\lim \int_{X} g_{n}$ implies $\int_{X} f=\lim \int_{X} f_{n}$.
16. Let $f_{n}, f \in L^{1}(X, S, \mu)$ be such that $f_{n} \rightarrow f$ point wise. Prove that $\lim \int_{X}\left|f_{n}-f\right|=0$ if and only if $\int_{X}|f|=\lim \int_{X}\left|f_{n}\right|$. (Hint: Use question 12.)
17. Let μ be the counting measure on the measurable space $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ and let $f: \mathbb{N} \rightarrow[0,+\infty]$. Show that $\int_{E} f d \mu=\sum_{n \in E} f(n)$ for every $E \subset \mathbb{N}$ and hence, in particular, $\int_{\mathbb{N}} f d \mu=\sum_{n=1}^{\infty} f(n)$.
18. Let δ_{x} be the Dirac measure at $x \in X$ on the measurable space $(X, \mathcal{P}(X))$. If $f: X \rightarrow[0,+\infty]$ and $E \subset X$, then show that $\int_{E} f d \delta_{x}=\left\{\begin{array}{cl}f(x) & \text { if } x \in E, \\ 0 & \text { if } x \notin E .\end{array}\right.$
(Hence, in particular, $\int_{X} f d \delta_{x}=f(x)$.)
19. Let μ_{n} be a sequence of σ - finite measures on (X, S). For $E \in S$, define $\mu(E)=\sum_{n=1}^{\infty} \mu_{n}(E)$.

Show that μ is a σ - finite measure. If $f \in L^{+}(X, S, \mu)$, then prove that $\int_{X} f d \mu=\sum_{n=1}^{\infty} \int_{X} f d \mu_{n}$. (Hint: Use simple function technique.)
20. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f=\frac{1}{\sqrt{x}} \chi_{(0,1)}$. Let $g(x)=\sum_{r_{n} \in \mathbb{Q}} 2^{-n} f\left(x-r_{n}\right)$, then show that the function g belongs to $L^{1}(\mathbb{R}, M, m)$.
21. Let $f_{n}=\chi_{\left[\frac{1}{n}, \frac{1}{n+1}\right]}$. Construct an increasing sequence $\left\{g_{n}\right\}$ of measurable functions in terms of f_{n} such that $\lim _{n \rightarrow \infty} \int_{\mathbb{R}} g_{n}(x) d m(x)<\infty$.
22. For each $x \in[0,1]$, let $f(x)= \begin{cases}\frac{1}{n} & \text { if } x=\frac{k}{n} \text { for some } k, n \in \mathbb{N} \text { with g.c.d. }(k, n)=1 \text {, } \\ 0 & \text { otherwise. }\end{cases}$ Evaluate the Lebesgue integral $\int_{[0,1]} f d m$.
23. Let $f, g:(X, S, \mu) \rightarrow[0,+\infty]$ be measurable. If $\lambda(E)=\int_{E} f d \mu$ for all $E \in \mathcal{S}$, then show that λ is a measure on (X, \mathcal{S}) and that $\int_{X} g d \lambda=\int_{X} g f d \mu$.
24. For each $x \in[0,1]$, let $f(x)= \begin{cases}x^{2} & \text { if } x=\frac{1}{2^{n}} \text { for some } n \in \mathbb{N}, \\ x^{3} & \text { if } x=\frac{1}{3^{n}} \text { for some } n \in \mathbb{N}, \\ x^{4} & \text { otherwise. }\end{cases}$ Evaluate the Lebesgue integral $\int_{[0,1]} f d m$.
25. Let $f(x)=\left\{\begin{array}{cl}\sin (\pi x) & \text { if } x \in\left[0, \frac{1}{2}\right] \backslash C, \\ \cos (\pi x) & \text { if } x \in\left(\frac{1}{2}, 1\right] \backslash C, \\ x^{2} & \text { if } x \in C .\end{array}\right.$

Evaluate the Lebesgue integral $\int_{[0,1]} f d m$, where C denotes the Cantor ternary set in $[0,1]$.
26. Evaluate the Lebesgue integrals: (a) $\int_{[0,+\infty)} e^{-[x]} d x$
(b) $\int_{(0,1]} \frac{1}{\sqrt[3]{x}} d x$
27. Let $f(x)=\left\{\begin{array}{cl}e^{[x]} & \text { if } x \in \mathbb{Q}, \\ e^{-[x]} & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} .\end{array}\right.$

Evaluate the Lebesgue integral $\int_{(0,+\infty)} f d m$.
28. Let $f(x)= \begin{cases}e^{|x|} & \text { if } x \in \mathbb{Q}, \\ e^{-|x|} & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} .\end{cases}$

Evaluate the Lebesgue integral $\int_{\mathbb{R}} f d m$.
29. Let $f(x)=\left\{\begin{array}{cl}\frac{1}{\sqrt{x}} & \text { if } 0<x \leq 1, \\ \frac{1}{x} & \text { if } x>1 .\end{array}\right.$

Evaluate the Lebesgue integral $\int_{(0,+\infty)} f d m$.
30. Let $f_{n}:[0, \infty) \rightarrow \mathbb{R}$ be defined by $f_{n}(x)=\frac{n^{2} x e^{-x^{2}}}{n^{2}+x^{2}}$. Show that $f_{n} \in L^{1}([0, \infty))$, for each $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} \int_{[0, \infty)} f_{n} d m=\frac{1}{2}$.
31. Evaluate the following: (a) $\lim _{n \rightarrow \infty} \int_{-2}^{2} \frac{x^{2 n}}{1+x^{2 n}} d x$
(b) $\lim _{n \rightarrow \infty} \int_{[0,1]} \frac{1+n x}{(1+x)^{n}} d x \quad$ (c) $\int_{0}^{1}\left(\sum_{n=1}^{\infty} \frac{x^{n}}{n}\right) d x$
(d) $\lim _{n \rightarrow \infty} \int_{1}^{\infty} \frac{1}{1+x^{2 n}} d x$
(e) $\sum_{n=0}^{\infty} \int_{0}^{1} \frac{x^{2}}{\left(1+x^{2}\right)^{n}} d x$
(f) $\lim _{n \rightarrow \infty} \int_{[0, \infty)} \frac{n^{2} x e^{-x^{2}}}{n^{2}+x^{2}} d x$

