MA642: Real Analysis -1

(Assignment 4: Functions of several variables)
January - April, 2023

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) There exists a one-one continuous function from $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$ onto \mathbb{R}^{2}.
(b) There exists a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which is differentiable only at $(1,0)$.
(c) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that $f_{x}(0,0)=0$. Then there exists some $\delta>0$ such that $f(x, 0)$ is continuous on $(-\delta, \delta)$.
(d) If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is differentiable with $f(0,0)=(1,1)$ and $\left[f^{\prime}(0,0)\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, then there cannot exist a differentiable function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $g(1,1)=(0,0)$ and $(f \circ g)(x, y)=$ (y, x) for all $(x, y) \in \mathbb{R}^{2}$.
(e) A continuously differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ cannot be one-one and onto if $\operatorname{det}\left[f^{\prime}(x, y)\right]=0$ for some $(x, y) \in \mathbb{R}^{2}$.
(f) The equation $\sin (x y z)=z$ defines x implicitly as a differentiable function of y and z locally around the point $(x, y, z)=\left(\frac{\pi}{2}, 1,1\right)$.
2. Let Ω be an open subset of \mathbb{R}^{n} and let $f: \Omega \rightarrow \mathbb{R}^{m}$ and $g: \Omega \rightarrow \mathbb{R}^{m}$ be continuous at $\mathbf{x}_{0} \in \Omega$. If for each $\varepsilon>0$, there exist $\mathbf{x}, \mathbf{y} \in B_{\varepsilon}\left(\mathbf{x}_{0}\right)$ such that $f(\mathbf{x})=g(\mathbf{y})$, then show that $f\left(\mathbf{x}_{0}\right)=g\left(\mathbf{x}_{0}\right)$.
3. Let $A(\neq \emptyset) \subset \mathbb{R}^{n}$ be such that every continuous function $f: A \rightarrow \mathbb{R}$ is bounded. Show that A is a closed and bounded subset of \mathbb{R}^{n}.
4. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be linear and let $f(\mathbf{x})=T(\mathbf{x}) \cdot \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$. Find $f^{\prime}(\mathbf{x})$, where $\mathbf{x} \in \mathbb{R}^{n}$.
5. Examine the differentiability of f at $\mathbf{0}$, where
(a) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies $|f(\mathbf{x})| \leq\|\mathbf{x}\|_{2}^{2}$ for all $\mathbf{x} \in \mathbb{R}^{n}$.
(b) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined by $f(\mathbf{x})=\|\mathbf{x}\|_{2}$ for all $\mathbf{x} \in \mathbb{R}^{n}$.
(c) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined by $f(\mathbf{x})=\|\mathbf{x}\|_{2} \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$.
6. Let Ω be a nonempty open subset of \mathbb{R}^{n}. Let $f: \Omega \rightarrow \mathbb{R}$ be differentiable at $\mathbf{x}_{0} \in \Omega$, let $f\left(\mathbf{x}_{0}\right)=0$ and let $g: \Omega \rightarrow \mathbb{R}$ be continuous at \mathbf{x}_{0}. Prove that $f g: \Omega \rightarrow \mathbb{R}$, defined by $(f g)(\mathbf{x})=f(\mathbf{x}) g(\mathbf{x})$ for all $\mathbf{x} \in \Omega$, is differentiable at \mathbf{x}_{0}.
7. Let Ω be a nonempty open subset of \mathbb{R}^{n} and let $g: \Omega \rightarrow \mathbb{R}^{n}$ be continuous at $\mathbf{x}_{0} \in \Omega$. If $f: \Omega \rightarrow \mathbb{R}$ is such that $f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)=g(\mathbf{x}) \cdot\left(\mathbf{x}-\mathbf{x}_{0}\right)$ for all $\mathbf{x} \in \Omega$, then show that f is differentiable at \mathbf{x}_{0}.
8. The directional derivatives of a differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ at $(0,0)$ in the directions of $(1,2)$ and $(2,1)$ are 1 and 2 respectively. Find $f_{x}(0,0)$ and $f_{y}(0,0)$.
9. Let $A \in G L\left(\mathbb{R}^{n}\right)$ and $\alpha \geq 2$. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies $\|f(x)\| \leq k\|x\|^{\alpha}$, for some $k>0$. Prove/disprove that the map $g=f+A$ is continuously differentiable at $\mathbf{0}$ and g is invertible in the neighborhood of $\mathbf{0}$.
10. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable such that $f(1,1)=1, f_{x}(1,1)=2$ and $f_{y}(1,1)=5$. If $g(x)=f(x, f(x, x))$ for all $x \in \mathbb{R}$, determine $g^{\prime}(1)$.
11. Prove that a differentiable function $f: \mathbb{R}^{n} \backslash\{\mathbf{0}\} \rightarrow \mathbb{R}^{m}$ is homogeneous of degree $\alpha \in \mathbb{R}$ (i.e. $f(t \mathbf{x})=t^{\alpha} f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ and for all $\left.t>0\right)$ iff $f^{\prime}(\mathbf{x})(\mathbf{x})=\alpha f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$.
12. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is satisfying $f(r x)=r^{\frac{3}{2}} f(x)$ for all $(x, r) \in \mathbb{R}^{n} \times(0, \infty)$. Whether f is differentiable at $\mathbf{0}$?
13. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuously differentiable such that $f_{x}(a, b)=f_{y}(a, b)$ for all $(a, b) \in \mathbb{R}^{2}$ and $f(a, 0)>0$ for all $a \in \mathbb{R}$. Show that $f(a, b)>0$ for all $(a, b) \in \mathbb{R}^{2}$.
14. Let Ω be an open subset of \mathbb{R}^{n} such that $\mathbf{a}, \mathbf{b} \in \Omega$ and $S=\{(1-t) \mathbf{a}+t \mathbf{b}: t \in[0,1]\} \subset \Omega$. If $f: \Omega \rightarrow \mathbb{R}^{m}$ is differentiable at each point of S, then show that there exists a linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that $f(\mathbf{b})-f(\mathbf{a})=L(\mathbf{b}-\mathbf{a})$.
15. Let $f(x, y)=\left(2 y e^{2 x}, x e^{y}\right)$ for all $(x, y) \in \mathbb{R}^{2}$. Show that there exist open sets U and V in \mathbb{R}^{2} containing $(0,1)$ and $(2,0)$ respectively such that $f: U \rightarrow V$ is one-one and onto.
16. Let $f(x, y)=\left(3 x-y^{2}, 2 x+y, x y+y^{3}\right)$ and $g(x, y)=\left(2 y e^{2 x}, x e^{y}\right)$ for all $(x, y) \in \mathbb{R}^{2}$. Examine whether $\left(f \circ g^{-1}\right)^{\prime}(2,0)$ exists (with a meaningful interpretation of g^{-1}) and find $\left(f \circ g^{-1}\right)^{\prime}(2,0)$ if it exists.
17. For $n \geq 2$, let $B=\left\{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{x}\|_{2}<1\right\}$ and let $f(\mathbf{x})=\|\mathbf{x}\|_{2}^{2} \mathbf{x}$ for all $\mathbf{x} \in B$. Show that $f: B \rightarrow B$ is differentiable and invertible but that $f^{-1}: B \rightarrow B$ is not differentiable at $\mathbf{0}$.
18. Using implicit function theorem, show that the system of equations

$$
\begin{array}{r}
x^{3}\left(y^{3}+z^{3}\right)=0, \\
(x-y)^{3}-z^{2}=7,
\end{array}
$$

can be solved locally near the point $(1,-1,1)$ for y and z as a differentiable function of x.
19. Using implicit function theorem, show that in a neighbourhood of any point $\left(x_{0}, y_{0}, u_{0}, v_{0}\right) \in \mathbb{R}^{4}$ which satisfies the equations

$$
\begin{aligned}
& x-e^{u} \cos v=0 \\
& v-e^{y} \sin x=0
\end{aligned}
$$

there exists a unique solution $(u, v)=\varphi(x, y)$ satisfying $\operatorname{det}\left[\varphi^{\prime}(x, y)\right]=v / x$.
20. Show that around the point $(0,1,1)$, the equation $x y-z \log y+e^{x z}=1$ can be solved locally as $y=f(x, z)$ but cannot be solved locally as $z=g(x, y)$.
21. Find the 3 rd order Taylor polynomial of $f(x, y, z)=x^{2} y+z$ about the point $(1,2,1)$.
22. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuously differentiable. Show that f is not one-one.

