MA642: Real Analysis -1

(Assignment 4: Functions of several variables) January - April, 2023

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) There exists a one-one continuous function from $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ onto \mathbb{R}^2 .
 - (b) There exists a function $f : \mathbb{R}^2 \to \mathbb{R}^2$ which is differentiable only at (1, 0).
 - (c) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be such that $f_x(0,0) = 0$. Then there exists some $\delta > 0$ such that f(x,0) is continuous on $(-\delta, \delta)$.
 - (d) If $f : \mathbb{R}^2 \to \mathbb{R}^2$ is differentiable with f(0,0) = (1,1) and $[f'(0,0)] = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, then there cannot exist a differentiable function $g : \mathbb{R}^2 \to \mathbb{R}^2$ with g(1,1) = (0,0) and $(f \circ g)(x,y) = (y,x)$ for all $(x,y) \in \mathbb{R}^2$.
 - (e) A continuously differentiable function $f : \mathbb{R}^2 \to \mathbb{R}^2$ cannot be one-one and onto if $\det[f'(x,y)] = 0$ for some $(x,y) \in \mathbb{R}^2$.
 - (f) The equation $\sin(xyz) = z$ defines x implicitly as a differentiable function of y and z locally around the point $(x, y, z) = (\frac{\pi}{2}, 1, 1)$.
- 2. Let Ω be an open subset of \mathbb{R}^n and let $f: \Omega \to \mathbb{R}^m$ and $g: \Omega \to \mathbb{R}^m$ be continuous at $\mathbf{x}_0 \in \Omega$. If for each $\varepsilon > 0$, there exist $\mathbf{x}, \mathbf{y} \in B_{\varepsilon}(\mathbf{x}_0)$ such that $f(\mathbf{x}) = g(\mathbf{y})$, then show that $f(\mathbf{x}_0) = g(\mathbf{x}_0)$.
- 3. Let $A(\neq \emptyset) \subset \mathbb{R}^n$ be such that every continuous function $f : A \to \mathbb{R}$ is bounded. Show that A is a closed and bounded subset of \mathbb{R}^n .
- 4. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be linear and let $f(\mathbf{x}) = T(\mathbf{x}) \cdot \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. Find $f'(\mathbf{x})$, where $\mathbf{x} \in \mathbb{R}^n$.
- 5. Examine the differentiability of f at 0, where
 (a) f: ℝⁿ → ℝ satisfies |f(**x**)| ≤ ||**x**||₂² for all **x** ∈ ℝⁿ.
 (b) f: ℝⁿ → ℝ is defined by f(**x**) = ||**x**||₂ for all **x** ∈ ℝⁿ.
 (c) f: ℝⁿ → ℝⁿ is defined by f(**x**) = ||**x**||₂**x** for all **x** ∈ ℝⁿ.
- 6. Let Ω be a nonempty open subset of \mathbb{R}^n . Let $f : \Omega \to \mathbb{R}$ be differentiable at $\mathbf{x}_0 \in \Omega$, let $f(\mathbf{x}_0) = 0$ and let $g : \Omega \to \mathbb{R}$ be continuous at \mathbf{x}_0 . Prove that $fg : \Omega \to \mathbb{R}$, defined by $(fg)(\mathbf{x}) = f(\mathbf{x})g(\mathbf{x})$ for all $\mathbf{x} \in \Omega$, is differentiable at \mathbf{x}_0 .
- 7. Let Ω be a nonempty open subset of \mathbb{R}^n and let $g : \Omega \to \mathbb{R}^n$ be continuous at $\mathbf{x}_0 \in \Omega$. If $f : \Omega \to \mathbb{R}$ is such that $f(\mathbf{x}) f(\mathbf{x}_0) = g(\mathbf{x}) \cdot (\mathbf{x} \mathbf{x}_0)$ for all $\mathbf{x} \in \Omega$, then show that f is differentiable at \mathbf{x}_0 .
- 8. The directional derivatives of a differentiable function $f : \mathbb{R}^2 \to \mathbb{R}$ at (0,0) in the directions of (1,2) and (2,1) are 1 and 2 respectively. Find $f_x(0,0)$ and $f_y(0,0)$.
- 9. Let $A \in GL(\mathbb{R}^n)$ and $\alpha \geq 2$. If $f : \mathbb{R}^n \to \mathbb{R}^n$ satisfies $||f(x)|| \leq k ||x||^{\alpha}$, for some k > 0. Prove/disprove that the map g = f + A is continuously differentiable at **0** and g is invertible in the neighborhood of **0**.
- 10. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be differentiable such that f(1,1) = 1, $f_x(1,1) = 2$ and $f_y(1,1) = 5$. If g(x) = f(x, f(x, x)) for all $x \in \mathbb{R}$, determine g'(1).

- 11. Prove that a differentiable function $f : \mathbb{R}^n \setminus \{\mathbf{0}\} \to \mathbb{R}^m$ is homogeneous of degree $\alpha \in \mathbb{R}$ (*i.e.* $f(t\mathbf{x}) = t^{\alpha}f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and for all t > 0) iff $f'(\mathbf{x})(\mathbf{x}) = \alpha f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$.
- 12. Suppose $f : \mathbb{R}^n \to \mathbb{R}^n$ is satisfying $f(rx) = r^{\frac{3}{2}}f(x)$ for all $(x, r) \in \mathbb{R}^n \times (0, \infty)$. Whether f is differentiable at **0**?
- 13. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be continuously differentiable such that $f_x(a,b) = f_y(a,b)$ for all $(a,b) \in \mathbb{R}^2$ and f(a,0) > 0 for all $a \in \mathbb{R}$. Show that f(a,b) > 0 for all $(a,b) \in \mathbb{R}^2$.
- 14. Let Ω be an open subset of \mathbb{R}^n such that $\mathbf{a}, \mathbf{b} \in \Omega$ and $S = \{(1-t)\mathbf{a} + t\mathbf{b} : t \in [0,1]\} \subset \Omega$. If $f : \Omega \to \mathbb{R}^m$ is differentiable at each point of S, then show that there exists a linear map $L : \mathbb{R}^n \to \mathbb{R}^m$ such that $f(\mathbf{b}) - f(\mathbf{a}) = L(\mathbf{b} - \mathbf{a})$.
- 15. Let $f(x,y) = (2ye^{2x}, xe^y)$ for all $(x,y) \in \mathbb{R}^2$. Show that there exist open sets U and V in \mathbb{R}^2 containing (0,1) and (2,0) respectively such that $f: U \to V$ is one-one and onto.
- 16. Let $f(x,y) = (3x y^2, 2x + y, xy + y^3)$ and $g(x,y) = (2ye^{2x}, xe^y)$ for all $(x,y) \in \mathbb{R}^2$. Examine whether $(f \circ g^{-1})'(2,0)$ exists (with a meaningful interpretation of g^{-1}) and find $(f \circ g^{-1})'(2,0)$ if it exists.
- 17. For $n \ge 2$, let $B = {\mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}||_2 < 1}$ and let $f(\mathbf{x}) = ||\mathbf{x}||_2^2 \mathbf{x}$ for all $\mathbf{x} \in B$. Show that $f: B \to B$ is differentiable and invertible but that $f^{-1}: B \to B$ is not differentiable at **0**.
- 18. Using implicit function theorem, show that the system of equations

$$x^{3}(y^{3} + z^{3}) = 0,$$

 $(x - y)^{3} - z^{2} = 7,$

can be solved locally near the point (1, -1, 1) for y and z as a differentiable function of x.

19. Using implicit function theorem, show that in a neighbourhood of any point $(x_0, y_0, u_0, v_0) \in \mathbb{R}^4$ which satisfies the equations

 $\begin{aligned} x - e^u \cos v &= 0, \\ v - e^y \sin x &= 0. \end{aligned}$

there exists a unique solution $(u, v) = \varphi(x, y)$ satisfying det $[\varphi'(x, y)] = v/x$.

- 20. Show that around the point (0, 1, 1), the equation $xy z \log y + e^{xz} = 1$ can be solved locally as y = f(x, z) but cannot be solved locally as z = g(x, y).
- 21. Find the 3rd order Taylor polynomial of $f(x, y, z) = x^2y + z$ about the point (1, 2, 1).
- 22. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be continuously differentiable. Show that f is not one-one.