Assignment 3 (Measurable Functions)

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous m-a.e. on \mathbb{R}, then there exists a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f=g m$-a.e. on \mathbb{R}.
(b) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and if $g: \mathbb{R} \rightarrow \mathbb{R}$ is such that $f=g m$-a.e. on \mathbb{R}, then g must be continuous m-a.e. on \mathbb{R}.
(c) If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous such that $f=g m$-a.e. on \mathbb{R}, then it is necessary that $f(x)=g(x)$ for all $x \in \mathbb{R}$.
(d) There exists a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f=\chi_{[0,1]} m$-a.e. on \mathbb{R}.
(e) An almost everywhere vanishing Lebesgue measurable function need not be continuous.
(f) Let $f:(X, S, \mu) \rightarrow \overline{\mathbb{R}}$ be a bounded function. Then $\mu\left(f^{-1}\{-\infty\}\right)>0$.
(g) Let $f_{n}:(\mathbb{R}, M, m) \rightarrow \overline{\mathbb{R}}$ be defined by $f_{n}=\frac{1}{n} \chi_{(0, n)}$. Then $f_{n} \rightarrow 0$ uniformly.
(h) Let $|f|$ be measurable on (X, S, μ). Then f measurable.
(i) Let $f:(X, S, \mu) \rightarrow \mathbb{R}$ be bounded a.e. Then f measurable.
2. Let (X, \mathcal{A}) be a measurable space and let $f: X \rightarrow \mathbb{R}$ be \mathcal{A}-measurable. For each $x \in X$, let $g(x)=\left\{\begin{array}{cc}f(x) & \text { if }|f(x)| \leq 5, \\ 0 & \text { if }|f(x)|>5 .\end{array}\right.$ Show that $g: X \rightarrow \mathbb{R}$ is \mathcal{A}-measurable.
3. Let (X, \mathcal{A}) be a measurable space and let $f: X \rightarrow \mathbb{R}$ be \mathcal{A}-measurable. For each $x \in X$, let $g(x)=\left\{\begin{array}{ll}0 & \text { if } f(x) \in \mathbb{Q}, \\ 1 & \text { if } f(x) \in \mathbb{R} \backslash \mathbb{Q} .\end{array}\right.$ Show that $g: X \rightarrow \mathbb{R}$ is \mathcal{A}-measurable.
4. Let $f:[a, b] \rightarrow \mathbb{R}$ be Lebesgue measurable. Let $N=\{x \in[a, b]: f(x)=0\}$. Show that $g=\chi_{N}+\frac{1}{f} \chi_{N^{c}}$ is Lebesgue measurable.
5. Show that $f_{n}(x)=e^{-n(1-\cos x)}$ converges to 0 a.e. m on \mathbb{R}. Find an interval in \mathbb{R} where the sequence f_{n} converges to 0 uniformly.
6. Let $f_{n}:(\mathbb{R}, M, m) \rightarrow \overline{\mathbb{R}}$ be defined by $f_{n}=\chi_{(n, n+1)}$. Show that $f_{n} \rightarrow 0$ point wise but not uniformly.
7. Let $E \subset \mathcal{M}(\mathbb{R})$ with $m(E)<\infty$. If $\left\{f_{n}\right\}$ is a sequence of Lebesgue measurable functions on E such that $\left|f_{n}(x)\right| \leq M_{x}<\infty, \forall x \in E$ and $\forall n \geq 1$. Prove that for any $\epsilon>0$, there exists a compact set $K \subset E$ such that $\left\{f_{n}\right\}$ is uniformly bounded on K, where $m(E \backslash K)<\epsilon$.
8. Let $f:\left(\mathbb{R}^{2}, M\left(\mathbb{R}^{2}\right), m\right) \rightarrow \mathbb{R}$ be given by $f(x, y)= \begin{cases}1 & \text { if } \frac{x}{y} \in \mathbb{Q}, \\ 0 & \text { otherwise } .\end{cases}$ Show that f is Lebesgue measurable.
9. Let \mathbb{Q} denotes set of rationals. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)= \begin{cases}1 & \text { if } x+y \in \mathbb{Q} \text {, } \\ 0 & \text { otherwise. }\end{cases}$ Show that f is Lebesgue measurable.
10. Let $f: X \rightarrow \overline{\mathbb{R}}$ be an almost bounded measurable function on a complete measure space (X, S, μ). Then for $A_{n}=\{x \in X:|f(x)|>n\}$, show that $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0$.
11. Let (X, \mathcal{A}, μ) be a measure space with $\mu(X)<\infty$ and let $f: X \rightarrow \mathbb{R}$ be measurable. Let $A_{n}=\{x \in X:|f(x)|>n\}$. Show that A_{n} is \mathcal{A}-measurable and $\lim \mu\left(A_{n}\right)=0$.
12. If (X, \mathcal{A}) is a measurable space, then show that $f: X \rightarrow[-\infty,+\infty]$ is \mathcal{A}-measurable iff $\{x \in X: f(x)>r\} \in \mathcal{A}$ for each $r \in \mathbb{Q}$.
13. Let E be a Lebesgue measurable subset of \mathbb{R} with $m(E)=\infty$. Define a function $f: \mathbb{R} \rightarrow[0, \infty)$ by $f(x)=m\{E \cap(0,|x|)\}$. Show that f is continuous.
14. For $a_{n} \geq 0$, define a function f on \mathbb{R} by $f=\sum_{n=0}^{\infty} a_{n} \chi_{(n, n+1)}$. Show that the set of discontinuities of f is Lebesgue measurable.
15. Let (X, S, μ) be a measurable space and $f: X \rightarrow[0,1]$. Then show that f is measurable if and only if $\left\{x \in X: f(x)>\frac{k}{2^{n}}\right\}$ is measurable $\forall k=0,1,2,3, \ldots, 2^{n}$ and $\forall n \in \mathbb{N}$.
16. Let f_{n}, f be real valued measurable functions on \mathbb{R}. Let $E=\left\{x \in \mathbb{R}: \lim f_{n}(x)=f(x)\right\}$. Show that E is Lebesgue measurable.
17. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}x \sin \frac{1}{x} & \text { if } 0<x \leq 1, \\ 0 & \text { if } x=0\end{cases}
$$

Find the measure of the set $\{x \in[0,1]: f(x) \geq 0\}$.
18. Let (X, \mathcal{A}) be a measurable space and let $f: X \rightarrow \mathbb{R}$ be \mathcal{A}-measurable. If $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then show that $g \circ f$ is \mathcal{A}-measurable.
19. Let (X, \mathcal{A}) be a measurable space and let $f: X \rightarrow \mathbb{R}, g: X \rightarrow \mathbb{R}$ be \mathcal{A}-measurable. If G is an open subset of \mathbb{R}^{2}, then show that $\{x \in X:(f(x), g(x)) \in G\}$ is \mathcal{A}-measurable.
20. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous m-a.e. on \mathbb{R}, then show that f is Lebesgue measurable.
21. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function, then show that $f^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$ is Lebesgue measurable.
22. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that $f(x,$.$) and f(., y)$ are measurable. Prove/disprove that f is Lebesgue measurable.
23. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that $f(x,$.$) is measurable and f(., y)$ is continuous. Show that f is Lebesgue measurable.
24. Let $f, g: X \rightarrow \mathbb{R}$. Define $\varphi(x)=(f(x), g(x))$. Then show that f and g are measurable if and only if φ is measurable.
25. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Suppose for each $\epsilon>0$ there exists an open set O such that $m(O)<\epsilon$ and f is constant on $\mathbb{R} \backslash O$. Show that f is Lebesgue measurable.
26. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be Lebesgue measurable. Show that $\{x \in \mathbb{R}: f$ is continuous at x$\}$ is Lebesgue measurable.
27. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous one-one and onto map. Then show that f maps Borel sets onto Borel sets.
28. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a one to one onto continuous function. Show that F is a F_{σ} set if and only if $f(F)$ is a F_{σ} set.
29. Let C be the Cantor's ternary set. Define $f:[0,1] \rightarrow \mathbb{R}$ by $f(x)= \begin{cases}\frac{1}{x} & \text { if } x \in C \backslash\{0\}, \\ 0 & \text { otherwise. }\end{cases}$ Show that f is Lebesgue measurable. By letting C has a non-Borel measurable subset, construct a Lebesgue measurable function which is not Borel measurable.
30. Let $f:(a, b) \rightarrow \mathbb{R}$ be a continuous bijection function. Then a Lebesgue measurable $E \subset(a, b)$ satisfies $m(E)=0$ implies $m(f(E))=0$ if and only if for every Lebesgue measurable subset $A \subset(a, b)$ the set $f(A)$ is Lebesgue measurable.

