Assignment 3 (Measurable Functions)

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) If $f: \mathbb{R} \to \mathbb{R}$ is continuous m-a.e. on \mathbb{R} , then there exists a continuous function $g: \mathbb{R} \to \mathbb{R}$ such that f = g m-a.e. on \mathbb{R} .
 - (b) If $f: \mathbb{R} \to \mathbb{R}$ is continuous and if $g: \mathbb{R} \to \mathbb{R}$ is such that f = g m-a.e. on \mathbb{R} , then g must be continuous m-a.e. on \mathbb{R} .
 - (c) If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are continuous such that f = g m-a.e. on \mathbb{R} , then it is necessary that f(x) = g(x) for all $x \in \mathbb{R}$.
 - (d) There exists a continuous function $f: \mathbb{R} \to \mathbb{R}$ such that $f = \chi_{[0,1]}$ m-a.e. on \mathbb{R} .
 - (e) An almost everywhere vanishing Lebesgue measurable function need not be continuous.
 - (f) Let $f:(X,S,\mu)\to \overline{\mathbb{R}}$ be a bounded function. Then $\mu(f^{-1}\{-\infty\})>0$.
 - (g) Let $f_n:(\mathbb{R},M,m)\to\overline{\mathbb{R}}$ be defined by $f_n=\frac{1}{n}\chi_{(0,n)}$. Then $f_n\to 0$ uniformly.
 - (h) Let |f| be measurable on (X, S, μ) . Then f measurable.
 - (i) Let $f:(X,S,\mu)\to\mathbb{R}$ be bounded a.e. Then f measurable.
- 2. Let (X, \mathcal{A}) be a measurable space and let $f: X \to \mathbb{R}$ be \mathcal{A} -measurable. For each $x \in X$, let $g(x) = \begin{cases} f(x) & \text{if } |f(x)| \leq 5, \\ 0 & \text{if } |f(x)| > 5. \end{cases}$ Show that $g: X \to \mathbb{R}$ is \mathcal{A} -measurable.
- 3. Let (X, \mathcal{A}) be a measurable space and let $f: X \to \mathbb{R}$ be \mathcal{A} -measurable. For each $x \in X$, let $g(x) = \begin{cases} 0 & \text{if } f(x) \in \mathbb{Q}, \\ 1 & \text{if } f(x) \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$ Show that $g: X \to \mathbb{R}$ is \mathcal{A} -measurable.
- 4. Let $f:[a,b]\to\mathbb{R}$ be Lebesgue measurable. Let $N=\{x\in[a,b]:f(x)=0\}$. Show that $g=\chi_N+\frac{1}{f}\chi_{N^c}$ is Lebesgue measurable.
- 5. Show that $f_n(x) = e^{-n(1-\cos x)}$ converges to 0 a.e. m on \mathbb{R} . Find an interval in \mathbb{R} where the sequence f_n converges to 0 uniformly.
- 6. Let $f_n:(\mathbb{R},M,m)\to\overline{\mathbb{R}}$ be defined by $f_n=\chi_{(n,n+1)}$. Show that $f_n\to 0$ point wise but not uniformly.
- 7. Let $E \subset \mathcal{M}(\mathbb{R})$ with $m(E) < \infty$. If $\{f_n\}$ is a sequence of Lebesgue measurable functions on E such that $|f_n(x)| \leq M_x < \infty$, $\forall x \in E$ and $\forall n \geq 1$. Prove that for any $\epsilon > 0$, there exists a compact set $K \subset E$ such that $\{f_n\}$ is uniformly bounded on K, where $m(E \setminus K) < \epsilon$.
- 8. Let $f: (\mathbb{R}^2, M(\mathbb{R}^2), m) \to \mathbb{R}$ be given by $f(x, y) = \begin{cases} 1 & \text{if } \frac{x}{y} \in \mathbb{Q}, \\ 0 & \text{otherwise.} \end{cases}$ Show that f is Lebesgue measurable.
- 9. Let \mathbb{Q} denotes set of rationals. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x,y) = \begin{cases} 1 & \text{if } x + y \in \mathbb{Q}, \\ 0 & \text{otherwise.} \end{cases}$ Show that f is Lebesgue measurable.
- 10. Let $f: X \to \overline{\mathbb{R}}$ be an almost bounded measurable function on a complete measure space (X, S, μ) . Then for $A_n = \{x \in X : |f(x)| > n\}$, show that $\lim_{n \to \infty} \mu(A_n) = 0$.
- 11. Let (X, \mathcal{A}, μ) be a measure space with $\mu(X) < \infty$ and let $f: X \to \mathbb{R}$ be measurable. Let $A_n = \{x \in X : |f(x)| > n\}$. Show that A_n is \mathcal{A} -measurable and $\lim \mu(A_n) = 0$.
- 12. If (X, A) is a measurable space, then show that $f: X \to [-\infty, +\infty]$ is A-measurable iff $\{x \in X : f(x) > r\} \in A$ for each $r \in \mathbb{Q}$.

- 13. Let E be a Lebesgue measurable subset of \mathbb{R} with $m(E) = \infty$. Define a function $f : \mathbb{R} \to [0, \infty)$ by $f(x) = m\{E \cap (0, |x|)\}$. Show that f is continuous.
- 14. For $a_n \ge 0$, define a function f on \mathbb{R} by $f = \sum_{n=0}^{\infty} a_n \chi_{(n,n+1)}$. Show that the set of discontinuities of f is Lebesgue measurable.
- 15. Let (X, S, μ) be a measurable space and $f: X \to [0, 1]$. Then show that f is measurable if and only if $\{x \in X: f(x) > \frac{k}{2^n}\}$ is measurable $\forall k = 0, 1, 2, 3, \dots, 2^n$ and $\forall n \in \mathbb{N}$.
- 16. Let f_n , f be real valued measurable functions on \mathbb{R} . Let $E = \{x \in \mathbb{R} : \lim f_n(x) = f(x)\}$. Show that E is Lebesgue measurable.
- 17. Let $f:[0, 1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } 0 < x \le 1, \\ 0 & \text{if } x = 0. \end{cases}$$

Find the measure of the set $\{x \in [0,1]: f(x) \ge 0\}$

- 18. Let (X, \mathcal{A}) be a measurable space and let $f: X \to \mathbb{R}$ be \mathcal{A} -measurable. If $g: \mathbb{R} \to \mathbb{R}$ is continuous, then show that $g \circ f$ is \mathcal{A} -measurable.
- 19. Let (X, \mathcal{A}) be a measurable space and let $f: X \to \mathbb{R}$, $g: X \to \mathbb{R}$ be \mathcal{A} -measurable. If G is an open subset of \mathbb{R}^2 , then show that $\{x \in X : (f(x), g(x)) \in G\}$ is \mathcal{A} -measurable.
- 20. If $f: \mathbb{R} \to \mathbb{R}$ is continuous m-a.e. on \mathbb{R} , then show that f is Lebesgue measurable.
- 21. If $f: \mathbb{R} \to \mathbb{R}$ is a differentiable function, then show that $f': \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable.
- 22. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be such that f(x, .) and f(., y) are measurable. Prove/disprove that f is Lebesgue measurable.
- 23. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be such that f(x, .) is measurable and f(., y) is continuous. Show that f is Lebesgue measurable.
- 24. Let $f, g: X \to \mathbb{R}$. Define $\varphi(x) = (f(x), g(x))$. Then show that f and g are measurable if and only if φ is measurable.
- 25. Let $f: \mathbb{R} \to \mathbb{R}$. Suppose for each $\epsilon > 0$ there exists an open set O such that $m(O) < \epsilon$ and f is constant on $\mathbb{R} \setminus O$. Show that f is Lebesgue measurable.
- 26. Let $f : \mathbb{R} \to \mathbb{R}$ be Lebesgue measurable. Show that $\{x \in \mathbb{R} : f \text{ is continuous at } x \}$ is Lebesgue measurable.
- 27. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous one-one and onto map. Then show that f maps Borel sets onto Borel sets.
- 28. Let $f: \mathbb{R} \to \mathbb{R}$ be a one to one onto continuous function. Show that F is a F_{σ} set if and only if f(F) is a F_{σ} set.
- 29. Let C be the Cantor's ternary set. Define $f:[0,1]\to\mathbb{R}$ by $f(x)=\left\{\begin{array}{ll} \frac{1}{x} & \text{if } x\in C\setminus\{0\},\\ 0 & \text{otherwise.} \end{array}\right.$ Show that f is Lebesgue measurable. By letting C has a non-Borel measurable subset, construct a Lebesgue measurable function which is not Borel measurable.
- 30. Let $f:(a,b)\to\mathbb{R}$ be a continuous bijection function. Then a Lebesgue measurable $E\subset(a,b)$ satisfies m(E)=0 implies m(f(E))=0 if and only if for every Lebesgue measurable subset $A\subset(a,b)$ the set f(A) is Lebesgue measurable.