MA642: Real Analysis -1

(Assignment 3: Metric and Normed Linear Spaces)

January - April, 2023

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) It is possible that \mathbb{R}^{2} can be written as countable union of connected paths.
(b) The cardinality of set of all the polynomials on \mathbb{R} such that complement of their zero set are connected is countable.
(c) There exists a non-empty open and connected set $A \subset \mathbb{R}^{n}$ such that every real valued function on A is continuous.
(d) If a metric space X is path connected, then there exists a continuous function f : $[0,1] \rightarrow X$ which is onto.
(e) There exists a discontinuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the graph G_{f} is connected in \mathbb{R}^{2} but $\operatorname{int}\left(\bar{G}_{f}\right)$ is non-empty in \mathbb{R}^{2}.
2. If E is connected subset of metric space X and $E \subset A \cup B$, where A and B are disjoint open subsets of X. Show that either $E \subset A$ or $E \subset B$.
3. Prove that $E \subset X$ is disconnected if and only if there exists non-empty open sets A and B such that $E=A \cup B$, where $A \cap \bar{B}=\emptyset$ and $\bar{A} \cap B=\emptyset$.
4. If every pair points in X is contained in some connected set, show that X itself is connected.
5. If E and F are connected subsets of X and $E \cap F \neq \emptyset$, show that $E \cup F$ is connected.
6. If E and F are non-empty subsets of X such that $E \cup F$ is connected, show that $\bar{E} \cap \bar{F} \neq \emptyset$.
7. Prove that X is disconnected if and only if there exists a continuous function $f: X \rightarrow \mathbb{R}$ such that $f^{-1}(\{0\})=\emptyset$, while $f^{-1}((-\infty, 0)) \neq \emptyset$ and $f^{-1}((0, \infty)) \neq \emptyset$.
8. If X is connected and has at leat two point, show that X is uncountable.
9. If $f:[a, b] \rightarrow[a, b]$ is continuous, show that f has a fixed point.
10. Let $f:[0,2] \rightarrow \mathbb{R}$ be continuous and $f(0)=f(2)$. Show that there exists $x \in[0,1]$ such that $f(x)=f(x+1)$.
11. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and open, show that f is strictly monotone.
12. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and one to one, show that f is strictly monotone.
13. Prove that there does not exists continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(\mathbb{Q}) \subseteq \mathbb{R} \backslash \mathbb{Q}$ and $f(\mathbb{R} \backslash \mathbb{Q}) \subseteq \mathbb{Q}$.
14. If A and B are closed subsets of X such that $A \cup B$ and $A \cap B$ are connected, show that A and B both are connected.
15. Let $I=(\mathbb{R} \backslash \mathbb{Q}) \cap[0,1]$ and $Q=\mathbb{Q} \cap[0,1]$. Show that there exists a continuous map from I onto Q, but thee does not exist a continuous map from $[0,1]$ to Q.
16. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is satisfying IVP. If G_{f} is closed, show that f is continuous.
17. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, show that f^{\prime} satisfies has intermediate value property (IVP).
18. Justify that $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{3} \in \mathbb{R} \backslash \mathbb{Q}\right\}$ is a disconnected subset of \mathbb{R}^{2} (with the usual topology).
19. Show that $G L_{n}(\mathbb{C})$ is path connected by using the fact that every polynomial on \mathbb{C} has finitely many zeros. Does the set $G L_{n}(\mathbb{C})$ is open in $M_{n}(\mathbb{C})$?
